1 //===------ MemoryBuiltins.cpp - Identify calls to memory builtins --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions identifies calls to builtin functions that allocate
11 // or free memory.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/MemoryBuiltins.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/Metadata.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "memory-builtins"
33 
34 enum AllocType : uint8_t {
35   OpNewLike          = 1<<0, // allocates; never returns null
36   MallocLike         = 1<<1 | OpNewLike, // allocates; may return null
37   CallocLike         = 1<<2, // allocates + bzero
38   ReallocLike        = 1<<3, // reallocates
39   StrDupLike         = 1<<4,
40   AllocLike          = MallocLike | CallocLike | StrDupLike,
41   AnyAlloc           = AllocLike | ReallocLike
42 };
43 
44 struct AllocFnsTy {
45   AllocType AllocTy;
46   unsigned NumParams;
47   // First and Second size parameters (or -1 if unused)
48   int FstParam, SndParam;
49 };
50 
51 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
52 // know which functions are nounwind, noalias, nocapture parameters, etc.
53 static const std::pair<LibFunc::Func, AllocFnsTy> AllocationFnData[] = {
54   {LibFunc::malloc,              {MallocLike,  1, 0,  -1}},
55   {LibFunc::valloc,              {MallocLike,  1, 0,  -1}},
56   {LibFunc::Znwj,                {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
57   {LibFunc::ZnwjRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
58   {LibFunc::Znwm,                {OpNewLike,   1, 0,  -1}}, // new(unsigned long)
59   {LibFunc::ZnwmRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned long, nothrow)
60   {LibFunc::Znaj,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
61   {LibFunc::ZnajRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
62   {LibFunc::Znam,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned long)
63   {LibFunc::ZnamRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned long, nothrow)
64   {LibFunc::msvc_new_int,         {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
65   {LibFunc::msvc_new_int_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
66   {LibFunc::msvc_new_longlong,         {OpNewLike,   1, 0,  -1}}, // new(unsigned long long)
67   {LibFunc::msvc_new_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned long long, nothrow)
68   {LibFunc::msvc_new_array_int,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
69   {LibFunc::msvc_new_array_int_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
70   {LibFunc::msvc_new_array_longlong,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned long long)
71   {LibFunc::msvc_new_array_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned long long, nothrow)
72   {LibFunc::calloc,              {CallocLike,  2, 0,   1}},
73   {LibFunc::realloc,             {ReallocLike, 2, 1,  -1}},
74   {LibFunc::reallocf,            {ReallocLike, 2, 1,  -1}},
75   {LibFunc::strdup,              {StrDupLike,  1, -1, -1}},
76   {LibFunc::strndup,             {StrDupLike,  2, 1,  -1}}
77   // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
78 };
79 
80 
81 static Function *getCalledFunction(const Value *V, bool LookThroughBitCast) {
82   if (LookThroughBitCast)
83     V = V->stripPointerCasts();
84 
85   CallSite CS(const_cast<Value*>(V));
86   if (!CS.getInstruction())
87     return nullptr;
88 
89   if (CS.isNoBuiltin())
90     return nullptr;
91 
92   Function *Callee = CS.getCalledFunction();
93   if (!Callee || !Callee->isDeclaration())
94     return nullptr;
95   return Callee;
96 }
97 
98 /// Returns the allocation data for the given value if it's either a call to a
99 /// known allocation function, or a call to a function with the allocsize
100 /// attribute.
101 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
102                                               const TargetLibraryInfo *TLI,
103                                               bool LookThroughBitCast = false) {
104   // Skip intrinsics
105   if (isa<IntrinsicInst>(V))
106     return None;
107 
108   const Function *Callee = getCalledFunction(V, LookThroughBitCast);
109   if (!Callee)
110     return None;
111 
112   // If it has allocsize, we can skip checking if it's a known function.
113   //
114   // MallocLike is chosen here because allocsize makes no guarantees about the
115   // nullness of the result of the function, nor does it deal with strings, nor
116   // does it require that the memory returned is zeroed out.
117   LLVM_CONSTEXPR auto AllocSizeAllocTy = MallocLike;
118   if ((AllocTy & AllocSizeAllocTy) == AllocSizeAllocTy &&
119       Callee->hasFnAttribute(Attribute::AllocSize)) {
120     Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
121     std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
122 
123     AllocFnsTy Result;
124     Result.AllocTy = AllocSizeAllocTy;
125     Result.NumParams = Callee->getNumOperands();
126     Result.FstParam = Args.first;
127     Result.SndParam = Args.second.getValueOr(-1);
128     return Result;
129   }
130 
131   // Make sure that the function is available.
132   StringRef FnName = Callee->getName();
133   LibFunc::Func TLIFn;
134   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
135     return None;
136 
137   const auto *Iter =
138       std::find_if(std::begin(AllocationFnData), std::end(AllocationFnData),
139                    [TLIFn](const std::pair<LibFunc::Func, AllocFnsTy> &P) {
140                      return P.first == TLIFn;
141                    });
142 
143   if (Iter == std::end(AllocationFnData))
144     return None;
145 
146   const AllocFnsTy *FnData = &Iter->second;
147   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
148     return None;
149 
150   // Check function prototype.
151   int FstParam = FnData->FstParam;
152   int SndParam = FnData->SndParam;
153   FunctionType *FTy = Callee->getFunctionType();
154 
155   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
156       FTy->getNumParams() == FnData->NumParams &&
157       (FstParam < 0 ||
158        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
159         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
160       (SndParam < 0 ||
161        FTy->getParamType(SndParam)->isIntegerTy(32) ||
162        FTy->getParamType(SndParam)->isIntegerTy(64)))
163     return *FnData;
164   return None;
165 }
166 
167 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
168   ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
169   return CS && CS.paramHasAttr(AttributeSet::ReturnIndex, Attribute::NoAlias);
170 }
171 
172 
173 /// \brief Tests if a value is a call or invoke to a library function that
174 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
175 /// like).
176 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
177                           bool LookThroughBitCast) {
178   return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue();
179 }
180 
181 /// \brief Tests if a value is a call or invoke to a function that returns a
182 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
183 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
184                        bool LookThroughBitCast) {
185   // it's safe to consider realloc as noalias since accessing the original
186   // pointer is undefined behavior
187   return isAllocationFn(V, TLI, LookThroughBitCast) ||
188          hasNoAliasAttr(V, LookThroughBitCast);
189 }
190 
191 /// \brief Tests if a value is a call or invoke to a library function that
192 /// allocates uninitialized memory (such as malloc).
193 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
194                           bool LookThroughBitCast) {
195   return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue();
196 }
197 
198 /// \brief Tests if a value is a call or invoke to a library function that
199 /// allocates zero-filled memory (such as calloc).
200 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
201                           bool LookThroughBitCast) {
202   return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue();
203 }
204 
205 /// \brief Tests if a value is a call or invoke to a library function that
206 /// allocates memory (either malloc, calloc, or strdup like).
207 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
208                          bool LookThroughBitCast) {
209   return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue();
210 }
211 
212 /// extractMallocCall - Returns the corresponding CallInst if the instruction
213 /// is a malloc call.  Since CallInst::CreateMalloc() only creates calls, we
214 /// ignore InvokeInst here.
215 const CallInst *llvm::extractMallocCall(const Value *I,
216                                         const TargetLibraryInfo *TLI) {
217   return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr;
218 }
219 
220 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
221                                const TargetLibraryInfo *TLI,
222                                bool LookThroughSExt = false) {
223   if (!CI)
224     return nullptr;
225 
226   // The size of the malloc's result type must be known to determine array size.
227   Type *T = getMallocAllocatedType(CI, TLI);
228   if (!T || !T->isSized())
229     return nullptr;
230 
231   unsigned ElementSize = DL.getTypeAllocSize(T);
232   if (StructType *ST = dyn_cast<StructType>(T))
233     ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
234 
235   // If malloc call's arg can be determined to be a multiple of ElementSize,
236   // return the multiple.  Otherwise, return NULL.
237   Value *MallocArg = CI->getArgOperand(0);
238   Value *Multiple = nullptr;
239   if (ComputeMultiple(MallocArg, ElementSize, Multiple,
240                       LookThroughSExt))
241     return Multiple;
242 
243   return nullptr;
244 }
245 
246 /// getMallocType - Returns the PointerType resulting from the malloc call.
247 /// The PointerType depends on the number of bitcast uses of the malloc call:
248 ///   0: PointerType is the calls' return type.
249 ///   1: PointerType is the bitcast's result type.
250 ///  >1: Unique PointerType cannot be determined, return NULL.
251 PointerType *llvm::getMallocType(const CallInst *CI,
252                                  const TargetLibraryInfo *TLI) {
253   assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
254 
255   PointerType *MallocType = nullptr;
256   unsigned NumOfBitCastUses = 0;
257 
258   // Determine if CallInst has a bitcast use.
259   for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
260        UI != E;)
261     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
262       MallocType = cast<PointerType>(BCI->getDestTy());
263       NumOfBitCastUses++;
264     }
265 
266   // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
267   if (NumOfBitCastUses == 1)
268     return MallocType;
269 
270   // Malloc call was not bitcast, so type is the malloc function's return type.
271   if (NumOfBitCastUses == 0)
272     return cast<PointerType>(CI->getType());
273 
274   // Type could not be determined.
275   return nullptr;
276 }
277 
278 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
279 /// The Type depends on the number of bitcast uses of the malloc call:
280 ///   0: PointerType is the malloc calls' return type.
281 ///   1: PointerType is the bitcast's result type.
282 ///  >1: Unique PointerType cannot be determined, return NULL.
283 Type *llvm::getMallocAllocatedType(const CallInst *CI,
284                                    const TargetLibraryInfo *TLI) {
285   PointerType *PT = getMallocType(CI, TLI);
286   return PT ? PT->getElementType() : nullptr;
287 }
288 
289 /// getMallocArraySize - Returns the array size of a malloc call.  If the
290 /// argument passed to malloc is a multiple of the size of the malloced type,
291 /// then return that multiple.  For non-array mallocs, the multiple is
292 /// constant 1.  Otherwise, return NULL for mallocs whose array size cannot be
293 /// determined.
294 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
295                                 const TargetLibraryInfo *TLI,
296                                 bool LookThroughSExt) {
297   assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
298   return computeArraySize(CI, DL, TLI, LookThroughSExt);
299 }
300 
301 
302 /// extractCallocCall - Returns the corresponding CallInst if the instruction
303 /// is a calloc call.
304 const CallInst *llvm::extractCallocCall(const Value *I,
305                                         const TargetLibraryInfo *TLI) {
306   return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
307 }
308 
309 
310 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
311 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
312   const CallInst *CI = dyn_cast<CallInst>(I);
313   if (!CI || isa<IntrinsicInst>(CI))
314     return nullptr;
315   Function *Callee = CI->getCalledFunction();
316   if (Callee == nullptr)
317     return nullptr;
318 
319   StringRef FnName = Callee->getName();
320   LibFunc::Func TLIFn;
321   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
322     return nullptr;
323 
324   unsigned ExpectedNumParams;
325   if (TLIFn == LibFunc::free ||
326       TLIFn == LibFunc::ZdlPv || // operator delete(void*)
327       TLIFn == LibFunc::ZdaPv || // operator delete[](void*)
328       TLIFn == LibFunc::msvc_delete_ptr32 || // operator delete(void*)
329       TLIFn == LibFunc::msvc_delete_ptr64 || // operator delete(void*)
330       TLIFn == LibFunc::msvc_delete_array_ptr32 || // operator delete[](void*)
331       TLIFn == LibFunc::msvc_delete_array_ptr64)   // operator delete[](void*)
332     ExpectedNumParams = 1;
333   else if (TLIFn == LibFunc::ZdlPvj ||              // delete(void*, uint)
334            TLIFn == LibFunc::ZdlPvm ||              // delete(void*, ulong)
335            TLIFn == LibFunc::ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
336            TLIFn == LibFunc::ZdaPvj ||              // delete[](void*, uint)
337            TLIFn == LibFunc::ZdaPvm ||              // delete[](void*, ulong)
338            TLIFn == LibFunc::ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
339            TLIFn == LibFunc::msvc_delete_ptr32_int ||      // delete(void*, uint)
340            TLIFn == LibFunc::msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
341            TLIFn == LibFunc::msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
342            TLIFn == LibFunc::msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
343            TLIFn == LibFunc::msvc_delete_array_ptr32_int ||      // delete[](void*, uint)
344            TLIFn == LibFunc::msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
345            TLIFn == LibFunc::msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
346            TLIFn == LibFunc::msvc_delete_array_ptr64_nothrow)   // delete[](void*, nothrow)
347     ExpectedNumParams = 2;
348   else
349     return nullptr;
350 
351   // Check free prototype.
352   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
353   // attribute will exist.
354   FunctionType *FTy = Callee->getFunctionType();
355   if (!FTy->getReturnType()->isVoidTy())
356     return nullptr;
357   if (FTy->getNumParams() != ExpectedNumParams)
358     return nullptr;
359   if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext()))
360     return nullptr;
361 
362   return CI;
363 }
364 
365 
366 
367 //===----------------------------------------------------------------------===//
368 //  Utility functions to compute size of objects.
369 //
370 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
371   if (Data.second.isNegative() || Data.first.ult(Data.second))
372     return APInt(Data.first.getBitWidth(), 0);
373   return Data.first - Data.second;
374 }
375 
376 /// \brief Compute the size of the object pointed by Ptr. Returns true and the
377 /// object size in Size if successful, and false otherwise.
378 /// If RoundToAlign is true, then Size is rounded up to the aligment of allocas,
379 /// byval arguments, and global variables.
380 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
381                          const TargetLibraryInfo *TLI, bool RoundToAlign,
382                          llvm::ObjSizeMode Mode) {
383   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(),
384                                   RoundToAlign, Mode);
385   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
386   if (!Visitor.bothKnown(Data))
387     return false;
388 
389   Size = getSizeWithOverflow(Data).getZExtValue();
390   return true;
391 }
392 
393 STATISTIC(ObjectVisitorArgument,
394           "Number of arguments with unsolved size and offset");
395 STATISTIC(ObjectVisitorLoad,
396           "Number of load instructions with unsolved size and offset");
397 
398 
399 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
400   if (RoundToAlign && Align)
401     return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align));
402   return Size;
403 }
404 
405 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
406                                                  const TargetLibraryInfo *TLI,
407                                                  LLVMContext &Context,
408                                                  bool RoundToAlign,
409                                                  ObjSizeMode Mode)
410     : DL(DL), TLI(TLI), RoundToAlign(RoundToAlign), Mode(Mode) {
411   // Pointer size must be rechecked for each object visited since it could have
412   // a different address space.
413 }
414 
415 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
416   IntTyBits = DL.getPointerTypeSizeInBits(V->getType());
417   Zero = APInt::getNullValue(IntTyBits);
418 
419   V = V->stripPointerCasts();
420   if (Instruction *I = dyn_cast<Instruction>(V)) {
421     // If we have already seen this instruction, bail out. Cycles can happen in
422     // unreachable code after constant propagation.
423     if (!SeenInsts.insert(I).second)
424       return unknown();
425 
426     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
427       return visitGEPOperator(*GEP);
428     return visit(*I);
429   }
430   if (Argument *A = dyn_cast<Argument>(V))
431     return visitArgument(*A);
432   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
433     return visitConstantPointerNull(*P);
434   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
435     return visitGlobalAlias(*GA);
436   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
437     return visitGlobalVariable(*GV);
438   if (UndefValue *UV = dyn_cast<UndefValue>(V))
439     return visitUndefValue(*UV);
440   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
441     if (CE->getOpcode() == Instruction::IntToPtr)
442       return unknown(); // clueless
443     if (CE->getOpcode() == Instruction::GetElementPtr)
444       return visitGEPOperator(cast<GEPOperator>(*CE));
445   }
446 
447   DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V
448         << '\n');
449   return unknown();
450 }
451 
452 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
453   if (!I.getAllocatedType()->isSized())
454     return unknown();
455 
456   APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
457   if (!I.isArrayAllocation())
458     return std::make_pair(align(Size, I.getAlignment()), Zero);
459 
460   Value *ArraySize = I.getArraySize();
461   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
462     Size *= C->getValue().zextOrSelf(IntTyBits);
463     return std::make_pair(align(Size, I.getAlignment()), Zero);
464   }
465   return unknown();
466 }
467 
468 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
469   // no interprocedural analysis is done at the moment
470   if (!A.hasByValOrInAllocaAttr()) {
471     ++ObjectVisitorArgument;
472     return unknown();
473   }
474   PointerType *PT = cast<PointerType>(A.getType());
475   APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType()));
476   return std::make_pair(align(Size, A.getParamAlignment()), Zero);
477 }
478 
479 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
480   Optional<AllocFnsTy> FnData =
481       getAllocationData(CS.getInstruction(), AnyAlloc, TLI);
482   if (!FnData)
483     return unknown();
484 
485   // handle strdup-like functions separately
486   if (FnData->AllocTy == StrDupLike) {
487     APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
488     if (!Size)
489       return unknown();
490 
491     // strndup limits strlen
492     if (FnData->FstParam > 0) {
493       ConstantInt *Arg =
494           dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
495       if (!Arg)
496         return unknown();
497 
498       APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
499       if (Size.ugt(MaxSize))
500         Size = MaxSize + 1;
501     }
502     return std::make_pair(Size, Zero);
503   }
504 
505   ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
506   if (!Arg)
507     return unknown();
508 
509   // When we're compiling N-bit code, and the user uses parameters that are
510   // greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
511   // trouble with APInt size issues. This function handles resizing + overflow
512   // checks for us.
513   auto CheckedZextOrTrunc = [&](APInt &I) {
514     // More bits than we can handle. Checking the bit width isn't necessary, but
515     // it's faster than checking active bits, and should give `false` in the
516     // vast majority of cases.
517     if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
518       return false;
519     if (I.getBitWidth() != IntTyBits)
520       I = I.zextOrTrunc(IntTyBits);
521     return true;
522   };
523 
524   APInt Size = Arg->getValue();
525   if (!CheckedZextOrTrunc(Size))
526     return unknown();
527 
528   // size determined by just 1 parameter
529   if (FnData->SndParam < 0)
530     return std::make_pair(Size, Zero);
531 
532   Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
533   if (!Arg)
534     return unknown();
535 
536   APInt NumElems = Arg->getValue();
537   if (!CheckedZextOrTrunc(NumElems))
538     return unknown();
539 
540   bool Overflow;
541   Size = Size.umul_ov(NumElems, Overflow);
542   return Overflow ? unknown() : std::make_pair(Size, Zero);
543 
544   // TODO: handle more standard functions (+ wchar cousins):
545   // - strdup / strndup
546   // - strcpy / strncpy
547   // - strcat / strncat
548   // - memcpy / memmove
549   // - strcat / strncat
550   // - memset
551 }
552 
553 SizeOffsetType
554 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull&) {
555   return std::make_pair(Zero, Zero);
556 }
557 
558 SizeOffsetType
559 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
560   return unknown();
561 }
562 
563 SizeOffsetType
564 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
565   // Easy cases were already folded by previous passes.
566   return unknown();
567 }
568 
569 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
570   SizeOffsetType PtrData = compute(GEP.getPointerOperand());
571   APInt Offset(IntTyBits, 0);
572   if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
573     return unknown();
574 
575   return std::make_pair(PtrData.first, PtrData.second + Offset);
576 }
577 
578 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
579   if (GA.isInterposable())
580     return unknown();
581   return compute(GA.getAliasee());
582 }
583 
584 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
585   if (!GV.hasDefinitiveInitializer())
586     return unknown();
587 
588   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType()));
589   return std::make_pair(align(Size, GV.getAlignment()), Zero);
590 }
591 
592 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
593   // clueless
594   return unknown();
595 }
596 
597 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
598   ++ObjectVisitorLoad;
599   return unknown();
600 }
601 
602 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
603   // too complex to analyze statically.
604   return unknown();
605 }
606 
607 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
608   SizeOffsetType TrueSide  = compute(I.getTrueValue());
609   SizeOffsetType FalseSide = compute(I.getFalseValue());
610   if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
611     if (TrueSide == FalseSide) {
612         return TrueSide;
613     }
614 
615     APInt TrueResult = getSizeWithOverflow(TrueSide);
616     APInt FalseResult = getSizeWithOverflow(FalseSide);
617 
618     if (TrueResult == FalseResult) {
619       return TrueSide;
620     }
621     if (Mode == ObjSizeMode::Min) {
622       if (TrueResult.slt(FalseResult))
623         return TrueSide;
624       return FalseSide;
625     }
626     if (Mode == ObjSizeMode::Max) {
627       if (TrueResult.sgt(FalseResult))
628         return TrueSide;
629       return FalseSide;
630     }
631   }
632   return unknown();
633 }
634 
635 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
636   return std::make_pair(Zero, Zero);
637 }
638 
639 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
640   DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n');
641   return unknown();
642 }
643 
644 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
645     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
646     bool RoundToAlign)
647     : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)),
648       RoundToAlign(RoundToAlign) {
649   // IntTy and Zero must be set for each compute() since the address space may
650   // be different for later objects.
651 }
652 
653 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
654   // XXX - Are vectors of pointers possible here?
655   IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
656   Zero = ConstantInt::get(IntTy, 0);
657 
658   SizeOffsetEvalType Result = compute_(V);
659 
660   if (!bothKnown(Result)) {
661     // erase everything that was computed in this iteration from the cache, so
662     // that no dangling references are left behind. We could be a bit smarter if
663     // we kept a dependency graph. It's probably not worth the complexity.
664     for (PtrSetTy::iterator I=SeenVals.begin(), E=SeenVals.end(); I != E; ++I) {
665       CacheMapTy::iterator CacheIt = CacheMap.find(*I);
666       // non-computable results can be safely cached
667       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
668         CacheMap.erase(CacheIt);
669     }
670   }
671 
672   SeenVals.clear();
673   return Result;
674 }
675 
676 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
677   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, RoundToAlign);
678   SizeOffsetType Const = Visitor.compute(V);
679   if (Visitor.bothKnown(Const))
680     return std::make_pair(ConstantInt::get(Context, Const.first),
681                           ConstantInt::get(Context, Const.second));
682 
683   V = V->stripPointerCasts();
684 
685   // check cache
686   CacheMapTy::iterator CacheIt = CacheMap.find(V);
687   if (CacheIt != CacheMap.end())
688     return CacheIt->second;
689 
690   // always generate code immediately before the instruction being
691   // processed, so that the generated code dominates the same BBs
692   BuilderTy::InsertPointGuard Guard(Builder);
693   if (Instruction *I = dyn_cast<Instruction>(V))
694     Builder.SetInsertPoint(I);
695 
696   // now compute the size and offset
697   SizeOffsetEvalType Result;
698 
699   // Record the pointers that were handled in this run, so that they can be
700   // cleaned later if something fails. We also use this set to break cycles that
701   // can occur in dead code.
702   if (!SeenVals.insert(V).second) {
703     Result = unknown();
704   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
705     Result = visitGEPOperator(*GEP);
706   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
707     Result = visit(*I);
708   } else if (isa<Argument>(V) ||
709              (isa<ConstantExpr>(V) &&
710               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
711              isa<GlobalAlias>(V) ||
712              isa<GlobalVariable>(V)) {
713     // ignore values where we cannot do more than what ObjectSizeVisitor can
714     Result = unknown();
715   } else {
716     DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: "
717           << *V << '\n');
718     Result = unknown();
719   }
720 
721   // Don't reuse CacheIt since it may be invalid at this point.
722   CacheMap[V] = Result;
723   return Result;
724 }
725 
726 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
727   if (!I.getAllocatedType()->isSized())
728     return unknown();
729 
730   // must be a VLA
731   assert(I.isArrayAllocation());
732   Value *ArraySize = I.getArraySize();
733   Value *Size = ConstantInt::get(ArraySize->getType(),
734                                  DL.getTypeAllocSize(I.getAllocatedType()));
735   Size = Builder.CreateMul(Size, ArraySize);
736   return std::make_pair(Size, Zero);
737 }
738 
739 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
740   Optional<AllocFnsTy> FnData =
741       getAllocationData(CS.getInstruction(), AnyAlloc, TLI);
742   if (!FnData)
743     return unknown();
744 
745   // handle strdup-like functions separately
746   if (FnData->AllocTy == StrDupLike) {
747     // TODO
748     return unknown();
749   }
750 
751   Value *FirstArg = CS.getArgument(FnData->FstParam);
752   FirstArg = Builder.CreateZExt(FirstArg, IntTy);
753   if (FnData->SndParam < 0)
754     return std::make_pair(FirstArg, Zero);
755 
756   Value *SecondArg = CS.getArgument(FnData->SndParam);
757   SecondArg = Builder.CreateZExt(SecondArg, IntTy);
758   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
759   return std::make_pair(Size, Zero);
760 
761   // TODO: handle more standard functions (+ wchar cousins):
762   // - strdup / strndup
763   // - strcpy / strncpy
764   // - strcat / strncat
765   // - memcpy / memmove
766   // - strcat / strncat
767   // - memset
768 }
769 
770 SizeOffsetEvalType
771 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
772   return unknown();
773 }
774 
775 SizeOffsetEvalType
776 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
777   return unknown();
778 }
779 
780 SizeOffsetEvalType
781 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
782   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
783   if (!bothKnown(PtrData))
784     return unknown();
785 
786   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
787   Offset = Builder.CreateAdd(PtrData.second, Offset);
788   return std::make_pair(PtrData.first, Offset);
789 }
790 
791 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
792   // clueless
793   return unknown();
794 }
795 
796 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
797   return unknown();
798 }
799 
800 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
801   // create 2 PHIs: one for size and another for offset
802   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
803   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
804 
805   // insert right away in the cache to handle recursive PHIs
806   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
807 
808   // compute offset/size for each PHI incoming pointer
809   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
810     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
811     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
812 
813     if (!bothKnown(EdgeData)) {
814       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
815       OffsetPHI->eraseFromParent();
816       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
817       SizePHI->eraseFromParent();
818       return unknown();
819     }
820     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
821     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
822   }
823 
824   Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp;
825   if ((Tmp = SizePHI->hasConstantValue())) {
826     Size = Tmp;
827     SizePHI->replaceAllUsesWith(Size);
828     SizePHI->eraseFromParent();
829   }
830   if ((Tmp = OffsetPHI->hasConstantValue())) {
831     Offset = Tmp;
832     OffsetPHI->replaceAllUsesWith(Offset);
833     OffsetPHI->eraseFromParent();
834   }
835   return std::make_pair(Size, Offset);
836 }
837 
838 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
839   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
840   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
841 
842   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
843     return unknown();
844   if (TrueSide == FalseSide)
845     return TrueSide;
846 
847   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
848                                      FalseSide.first);
849   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
850                                        FalseSide.second);
851   return std::make_pair(Size, Offset);
852 }
853 
854 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
855   DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n');
856   return unknown();
857 }
858