1 //===------ MemoryBuiltins.cpp - Identify calls to memory builtins --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions identifies calls to builtin functions that allocate 11 // or free memory. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/MemoryBuiltins.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/GlobalVariable.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/Metadata.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 using namespace llvm; 31 32 #define DEBUG_TYPE "memory-builtins" 33 34 enum AllocType : uint8_t { 35 OpNewLike = 1<<0, // allocates; never returns null 36 MallocLike = 1<<1 | OpNewLike, // allocates; may return null 37 CallocLike = 1<<2, // allocates + bzero 38 ReallocLike = 1<<3, // reallocates 39 StrDupLike = 1<<4, 40 AllocLike = MallocLike | CallocLike | StrDupLike, 41 AnyAlloc = AllocLike | ReallocLike 42 }; 43 44 struct AllocFnsTy { 45 AllocType AllocTy; 46 unsigned NumParams; 47 // First and Second size parameters (or -1 if unused) 48 int FstParam, SndParam; 49 }; 50 51 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 52 // know which functions are nounwind, noalias, nocapture parameters, etc. 53 static const std::pair<LibFunc::Func, AllocFnsTy> AllocationFnData[] = { 54 {LibFunc::malloc, {MallocLike, 1, 0, -1}}, 55 {LibFunc::valloc, {MallocLike, 1, 0, -1}}, 56 {LibFunc::Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 57 {LibFunc::ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 58 {LibFunc::Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long) 59 {LibFunc::ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow) 60 {LibFunc::Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 61 {LibFunc::ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 62 {LibFunc::Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long) 63 {LibFunc::ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow) 64 {LibFunc::msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 65 {LibFunc::msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 66 {LibFunc::msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long) 67 {LibFunc::msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow) 68 {LibFunc::msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 69 {LibFunc::msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 70 {LibFunc::msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long) 71 {LibFunc::msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow) 72 {LibFunc::calloc, {CallocLike, 2, 0, 1}}, 73 {LibFunc::realloc, {ReallocLike, 2, 1, -1}}, 74 {LibFunc::reallocf, {ReallocLike, 2, 1, -1}}, 75 {LibFunc::strdup, {StrDupLike, 1, -1, -1}}, 76 {LibFunc::strndup, {StrDupLike, 2, 1, -1}} 77 // TODO: Handle "int posix_memalign(void **, size_t, size_t)" 78 }; 79 80 81 static Function *getCalledFunction(const Value *V, bool LookThroughBitCast) { 82 if (LookThroughBitCast) 83 V = V->stripPointerCasts(); 84 85 CallSite CS(const_cast<Value*>(V)); 86 if (!CS.getInstruction()) 87 return nullptr; 88 89 if (CS.isNoBuiltin()) 90 return nullptr; 91 92 Function *Callee = CS.getCalledFunction(); 93 if (!Callee || !Callee->isDeclaration()) 94 return nullptr; 95 return Callee; 96 } 97 98 /// Returns the allocation data for the given value if it's either a call to a 99 /// known allocation function, or a call to a function with the allocsize 100 /// attribute. 101 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy, 102 const TargetLibraryInfo *TLI, 103 bool LookThroughBitCast = false) { 104 // Skip intrinsics 105 if (isa<IntrinsicInst>(V)) 106 return None; 107 108 const Function *Callee = getCalledFunction(V, LookThroughBitCast); 109 if (!Callee) 110 return None; 111 112 // If it has allocsize, we can skip checking if it's a known function. 113 // 114 // MallocLike is chosen here because allocsize makes no guarantees about the 115 // nullness of the result of the function, nor does it deal with strings, nor 116 // does it require that the memory returned is zeroed out. 117 LLVM_CONSTEXPR auto AllocSizeAllocTy = MallocLike; 118 if ((AllocTy & AllocSizeAllocTy) == AllocSizeAllocTy && 119 Callee->hasFnAttribute(Attribute::AllocSize)) { 120 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); 121 std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs(); 122 123 AllocFnsTy Result; 124 Result.AllocTy = AllocSizeAllocTy; 125 Result.NumParams = Callee->getNumOperands(); 126 Result.FstParam = Args.first; 127 Result.SndParam = Args.second.getValueOr(-1); 128 return Result; 129 } 130 131 // Make sure that the function is available. 132 StringRef FnName = Callee->getName(); 133 LibFunc::Func TLIFn; 134 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 135 return None; 136 137 const auto *Iter = 138 std::find_if(std::begin(AllocationFnData), std::end(AllocationFnData), 139 [TLIFn](const std::pair<LibFunc::Func, AllocFnsTy> &P) { 140 return P.first == TLIFn; 141 }); 142 143 if (Iter == std::end(AllocationFnData)) 144 return None; 145 146 const AllocFnsTy *FnData = &Iter->second; 147 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 148 return None; 149 150 // Check function prototype. 151 int FstParam = FnData->FstParam; 152 int SndParam = FnData->SndParam; 153 FunctionType *FTy = Callee->getFunctionType(); 154 155 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && 156 FTy->getNumParams() == FnData->NumParams && 157 (FstParam < 0 || 158 (FTy->getParamType(FstParam)->isIntegerTy(32) || 159 FTy->getParamType(FstParam)->isIntegerTy(64))) && 160 (SndParam < 0 || 161 FTy->getParamType(SndParam)->isIntegerTy(32) || 162 FTy->getParamType(SndParam)->isIntegerTy(64))) 163 return *FnData; 164 return None; 165 } 166 167 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) { 168 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V); 169 return CS && CS.paramHasAttr(AttributeSet::ReturnIndex, Attribute::NoAlias); 170 } 171 172 173 /// \brief Tests if a value is a call or invoke to a library function that 174 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 175 /// like). 176 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, 177 bool LookThroughBitCast) { 178 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue(); 179 } 180 181 /// \brief Tests if a value is a call or invoke to a function that returns a 182 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions). 183 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI, 184 bool LookThroughBitCast) { 185 // it's safe to consider realloc as noalias since accessing the original 186 // pointer is undefined behavior 187 return isAllocationFn(V, TLI, LookThroughBitCast) || 188 hasNoAliasAttr(V, LookThroughBitCast); 189 } 190 191 /// \brief Tests if a value is a call or invoke to a library function that 192 /// allocates uninitialized memory (such as malloc). 193 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 194 bool LookThroughBitCast) { 195 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue(); 196 } 197 198 /// \brief Tests if a value is a call or invoke to a library function that 199 /// allocates zero-filled memory (such as calloc). 200 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 201 bool LookThroughBitCast) { 202 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue(); 203 } 204 205 /// \brief Tests if a value is a call or invoke to a library function that 206 /// allocates memory (either malloc, calloc, or strdup like). 207 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 208 bool LookThroughBitCast) { 209 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue(); 210 } 211 212 /// extractMallocCall - Returns the corresponding CallInst if the instruction 213 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we 214 /// ignore InvokeInst here. 215 const CallInst *llvm::extractMallocCall(const Value *I, 216 const TargetLibraryInfo *TLI) { 217 return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr; 218 } 219 220 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL, 221 const TargetLibraryInfo *TLI, 222 bool LookThroughSExt = false) { 223 if (!CI) 224 return nullptr; 225 226 // The size of the malloc's result type must be known to determine array size. 227 Type *T = getMallocAllocatedType(CI, TLI); 228 if (!T || !T->isSized()) 229 return nullptr; 230 231 unsigned ElementSize = DL.getTypeAllocSize(T); 232 if (StructType *ST = dyn_cast<StructType>(T)) 233 ElementSize = DL.getStructLayout(ST)->getSizeInBytes(); 234 235 // If malloc call's arg can be determined to be a multiple of ElementSize, 236 // return the multiple. Otherwise, return NULL. 237 Value *MallocArg = CI->getArgOperand(0); 238 Value *Multiple = nullptr; 239 if (ComputeMultiple(MallocArg, ElementSize, Multiple, 240 LookThroughSExt)) 241 return Multiple; 242 243 return nullptr; 244 } 245 246 /// getMallocType - Returns the PointerType resulting from the malloc call. 247 /// The PointerType depends on the number of bitcast uses of the malloc call: 248 /// 0: PointerType is the calls' return type. 249 /// 1: PointerType is the bitcast's result type. 250 /// >1: Unique PointerType cannot be determined, return NULL. 251 PointerType *llvm::getMallocType(const CallInst *CI, 252 const TargetLibraryInfo *TLI) { 253 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call"); 254 255 PointerType *MallocType = nullptr; 256 unsigned NumOfBitCastUses = 0; 257 258 // Determine if CallInst has a bitcast use. 259 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end(); 260 UI != E;) 261 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) { 262 MallocType = cast<PointerType>(BCI->getDestTy()); 263 NumOfBitCastUses++; 264 } 265 266 // Malloc call has 1 bitcast use, so type is the bitcast's destination type. 267 if (NumOfBitCastUses == 1) 268 return MallocType; 269 270 // Malloc call was not bitcast, so type is the malloc function's return type. 271 if (NumOfBitCastUses == 0) 272 return cast<PointerType>(CI->getType()); 273 274 // Type could not be determined. 275 return nullptr; 276 } 277 278 /// getMallocAllocatedType - Returns the Type allocated by malloc call. 279 /// The Type depends on the number of bitcast uses of the malloc call: 280 /// 0: PointerType is the malloc calls' return type. 281 /// 1: PointerType is the bitcast's result type. 282 /// >1: Unique PointerType cannot be determined, return NULL. 283 Type *llvm::getMallocAllocatedType(const CallInst *CI, 284 const TargetLibraryInfo *TLI) { 285 PointerType *PT = getMallocType(CI, TLI); 286 return PT ? PT->getElementType() : nullptr; 287 } 288 289 /// getMallocArraySize - Returns the array size of a malloc call. If the 290 /// argument passed to malloc is a multiple of the size of the malloced type, 291 /// then return that multiple. For non-array mallocs, the multiple is 292 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be 293 /// determined. 294 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL, 295 const TargetLibraryInfo *TLI, 296 bool LookThroughSExt) { 297 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call"); 298 return computeArraySize(CI, DL, TLI, LookThroughSExt); 299 } 300 301 302 /// extractCallocCall - Returns the corresponding CallInst if the instruction 303 /// is a calloc call. 304 const CallInst *llvm::extractCallocCall(const Value *I, 305 const TargetLibraryInfo *TLI) { 306 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr; 307 } 308 309 310 /// isFreeCall - Returns non-null if the value is a call to the builtin free() 311 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { 312 const CallInst *CI = dyn_cast<CallInst>(I); 313 if (!CI || isa<IntrinsicInst>(CI)) 314 return nullptr; 315 Function *Callee = CI->getCalledFunction(); 316 if (Callee == nullptr) 317 return nullptr; 318 319 StringRef FnName = Callee->getName(); 320 LibFunc::Func TLIFn; 321 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 322 return nullptr; 323 324 unsigned ExpectedNumParams; 325 if (TLIFn == LibFunc::free || 326 TLIFn == LibFunc::ZdlPv || // operator delete(void*) 327 TLIFn == LibFunc::ZdaPv || // operator delete[](void*) 328 TLIFn == LibFunc::msvc_delete_ptr32 || // operator delete(void*) 329 TLIFn == LibFunc::msvc_delete_ptr64 || // operator delete(void*) 330 TLIFn == LibFunc::msvc_delete_array_ptr32 || // operator delete[](void*) 331 TLIFn == LibFunc::msvc_delete_array_ptr64) // operator delete[](void*) 332 ExpectedNumParams = 1; 333 else if (TLIFn == LibFunc::ZdlPvj || // delete(void*, uint) 334 TLIFn == LibFunc::ZdlPvm || // delete(void*, ulong) 335 TLIFn == LibFunc::ZdlPvRKSt9nothrow_t || // delete(void*, nothrow) 336 TLIFn == LibFunc::ZdaPvj || // delete[](void*, uint) 337 TLIFn == LibFunc::ZdaPvm || // delete[](void*, ulong) 338 TLIFn == LibFunc::ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow) 339 TLIFn == LibFunc::msvc_delete_ptr32_int || // delete(void*, uint) 340 TLIFn == LibFunc::msvc_delete_ptr64_longlong || // delete(void*, ulonglong) 341 TLIFn == LibFunc::msvc_delete_ptr32_nothrow || // delete(void*, nothrow) 342 TLIFn == LibFunc::msvc_delete_ptr64_nothrow || // delete(void*, nothrow) 343 TLIFn == LibFunc::msvc_delete_array_ptr32_int || // delete[](void*, uint) 344 TLIFn == LibFunc::msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong) 345 TLIFn == LibFunc::msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow) 346 TLIFn == LibFunc::msvc_delete_array_ptr64_nothrow) // delete[](void*, nothrow) 347 ExpectedNumParams = 2; 348 else 349 return nullptr; 350 351 // Check free prototype. 352 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 353 // attribute will exist. 354 FunctionType *FTy = Callee->getFunctionType(); 355 if (!FTy->getReturnType()->isVoidTy()) 356 return nullptr; 357 if (FTy->getNumParams() != ExpectedNumParams) 358 return nullptr; 359 if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext())) 360 return nullptr; 361 362 return CI; 363 } 364 365 366 367 //===----------------------------------------------------------------------===// 368 // Utility functions to compute size of objects. 369 // 370 static APInt getSizeWithOverflow(const SizeOffsetType &Data) { 371 if (Data.second.isNegative() || Data.first.ult(Data.second)) 372 return APInt(Data.first.getBitWidth(), 0); 373 return Data.first - Data.second; 374 } 375 376 /// \brief Compute the size of the object pointed by Ptr. Returns true and the 377 /// object size in Size if successful, and false otherwise. 378 /// If RoundToAlign is true, then Size is rounded up to the aligment of allocas, 379 /// byval arguments, and global variables. 380 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 381 const TargetLibraryInfo *TLI, bool RoundToAlign, 382 llvm::ObjSizeMode Mode) { 383 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), 384 RoundToAlign, Mode); 385 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 386 if (!Visitor.bothKnown(Data)) 387 return false; 388 389 Size = getSizeWithOverflow(Data).getZExtValue(); 390 return true; 391 } 392 393 STATISTIC(ObjectVisitorArgument, 394 "Number of arguments with unsolved size and offset"); 395 STATISTIC(ObjectVisitorLoad, 396 "Number of load instructions with unsolved size and offset"); 397 398 399 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) { 400 if (RoundToAlign && Align) 401 return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align)); 402 return Size; 403 } 404 405 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 406 const TargetLibraryInfo *TLI, 407 LLVMContext &Context, 408 bool RoundToAlign, 409 ObjSizeMode Mode) 410 : DL(DL), TLI(TLI), RoundToAlign(RoundToAlign), Mode(Mode) { 411 // Pointer size must be rechecked for each object visited since it could have 412 // a different address space. 413 } 414 415 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 416 IntTyBits = DL.getPointerTypeSizeInBits(V->getType()); 417 Zero = APInt::getNullValue(IntTyBits); 418 419 V = V->stripPointerCasts(); 420 if (Instruction *I = dyn_cast<Instruction>(V)) { 421 // If we have already seen this instruction, bail out. Cycles can happen in 422 // unreachable code after constant propagation. 423 if (!SeenInsts.insert(I).second) 424 return unknown(); 425 426 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 427 return visitGEPOperator(*GEP); 428 return visit(*I); 429 } 430 if (Argument *A = dyn_cast<Argument>(V)) 431 return visitArgument(*A); 432 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 433 return visitConstantPointerNull(*P); 434 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 435 return visitGlobalAlias(*GA); 436 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 437 return visitGlobalVariable(*GV); 438 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 439 return visitUndefValue(*UV); 440 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 441 if (CE->getOpcode() == Instruction::IntToPtr) 442 return unknown(); // clueless 443 if (CE->getOpcode() == Instruction::GetElementPtr) 444 return visitGEPOperator(cast<GEPOperator>(*CE)); 445 } 446 447 DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V 448 << '\n'); 449 return unknown(); 450 } 451 452 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 453 if (!I.getAllocatedType()->isSized()) 454 return unknown(); 455 456 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType())); 457 if (!I.isArrayAllocation()) 458 return std::make_pair(align(Size, I.getAlignment()), Zero); 459 460 Value *ArraySize = I.getArraySize(); 461 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 462 Size *= C->getValue().zextOrSelf(IntTyBits); 463 return std::make_pair(align(Size, I.getAlignment()), Zero); 464 } 465 return unknown(); 466 } 467 468 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 469 // no interprocedural analysis is done at the moment 470 if (!A.hasByValOrInAllocaAttr()) { 471 ++ObjectVisitorArgument; 472 return unknown(); 473 } 474 PointerType *PT = cast<PointerType>(A.getType()); 475 APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType())); 476 return std::make_pair(align(Size, A.getParamAlignment()), Zero); 477 } 478 479 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) { 480 Optional<AllocFnsTy> FnData = 481 getAllocationData(CS.getInstruction(), AnyAlloc, TLI); 482 if (!FnData) 483 return unknown(); 484 485 // handle strdup-like functions separately 486 if (FnData->AllocTy == StrDupLike) { 487 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0))); 488 if (!Size) 489 return unknown(); 490 491 // strndup limits strlen 492 if (FnData->FstParam > 0) { 493 ConstantInt *Arg = 494 dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 495 if (!Arg) 496 return unknown(); 497 498 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); 499 if (Size.ugt(MaxSize)) 500 Size = MaxSize + 1; 501 } 502 return std::make_pair(Size, Zero); 503 } 504 505 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 506 if (!Arg) 507 return unknown(); 508 509 // When we're compiling N-bit code, and the user uses parameters that are 510 // greater than N bits (e.g. uint64_t on a 32-bit build), we can run into 511 // trouble with APInt size issues. This function handles resizing + overflow 512 // checks for us. 513 auto CheckedZextOrTrunc = [&](APInt &I) { 514 // More bits than we can handle. Checking the bit width isn't necessary, but 515 // it's faster than checking active bits, and should give `false` in the 516 // vast majority of cases. 517 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) 518 return false; 519 if (I.getBitWidth() != IntTyBits) 520 I = I.zextOrTrunc(IntTyBits); 521 return true; 522 }; 523 524 APInt Size = Arg->getValue(); 525 if (!CheckedZextOrTrunc(Size)) 526 return unknown(); 527 528 // size determined by just 1 parameter 529 if (FnData->SndParam < 0) 530 return std::make_pair(Size, Zero); 531 532 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam)); 533 if (!Arg) 534 return unknown(); 535 536 APInt NumElems = Arg->getValue(); 537 if (!CheckedZextOrTrunc(NumElems)) 538 return unknown(); 539 540 bool Overflow; 541 Size = Size.umul_ov(NumElems, Overflow); 542 return Overflow ? unknown() : std::make_pair(Size, Zero); 543 544 // TODO: handle more standard functions (+ wchar cousins): 545 // - strdup / strndup 546 // - strcpy / strncpy 547 // - strcat / strncat 548 // - memcpy / memmove 549 // - strcat / strncat 550 // - memset 551 } 552 553 SizeOffsetType 554 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull&) { 555 return std::make_pair(Zero, Zero); 556 } 557 558 SizeOffsetType 559 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 560 return unknown(); 561 } 562 563 SizeOffsetType 564 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 565 // Easy cases were already folded by previous passes. 566 return unknown(); 567 } 568 569 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) { 570 SizeOffsetType PtrData = compute(GEP.getPointerOperand()); 571 APInt Offset(IntTyBits, 0); 572 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset)) 573 return unknown(); 574 575 return std::make_pair(PtrData.first, PtrData.second + Offset); 576 } 577 578 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 579 if (GA.isInterposable()) 580 return unknown(); 581 return compute(GA.getAliasee()); 582 } 583 584 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 585 if (!GV.hasDefinitiveInitializer()) 586 return unknown(); 587 588 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType())); 589 return std::make_pair(align(Size, GV.getAlignment()), Zero); 590 } 591 592 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 593 // clueless 594 return unknown(); 595 } 596 597 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { 598 ++ObjectVisitorLoad; 599 return unknown(); 600 } 601 602 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) { 603 // too complex to analyze statically. 604 return unknown(); 605 } 606 607 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 608 SizeOffsetType TrueSide = compute(I.getTrueValue()); 609 SizeOffsetType FalseSide = compute(I.getFalseValue()); 610 if (bothKnown(TrueSide) && bothKnown(FalseSide)) { 611 if (TrueSide == FalseSide) { 612 return TrueSide; 613 } 614 615 APInt TrueResult = getSizeWithOverflow(TrueSide); 616 APInt FalseResult = getSizeWithOverflow(FalseSide); 617 618 if (TrueResult == FalseResult) { 619 return TrueSide; 620 } 621 if (Mode == ObjSizeMode::Min) { 622 if (TrueResult.slt(FalseResult)) 623 return TrueSide; 624 return FalseSide; 625 } 626 if (Mode == ObjSizeMode::Max) { 627 if (TrueResult.sgt(FalseResult)) 628 return TrueSide; 629 return FalseSide; 630 } 631 } 632 return unknown(); 633 } 634 635 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 636 return std::make_pair(Zero, Zero); 637 } 638 639 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 640 DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n'); 641 return unknown(); 642 } 643 644 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 645 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 646 bool RoundToAlign) 647 : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)), 648 RoundToAlign(RoundToAlign) { 649 // IntTy and Zero must be set for each compute() since the address space may 650 // be different for later objects. 651 } 652 653 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 654 // XXX - Are vectors of pointers possible here? 655 IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 656 Zero = ConstantInt::get(IntTy, 0); 657 658 SizeOffsetEvalType Result = compute_(V); 659 660 if (!bothKnown(Result)) { 661 // erase everything that was computed in this iteration from the cache, so 662 // that no dangling references are left behind. We could be a bit smarter if 663 // we kept a dependency graph. It's probably not worth the complexity. 664 for (PtrSetTy::iterator I=SeenVals.begin(), E=SeenVals.end(); I != E; ++I) { 665 CacheMapTy::iterator CacheIt = CacheMap.find(*I); 666 // non-computable results can be safely cached 667 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 668 CacheMap.erase(CacheIt); 669 } 670 } 671 672 SeenVals.clear(); 673 return Result; 674 } 675 676 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 677 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, RoundToAlign); 678 SizeOffsetType Const = Visitor.compute(V); 679 if (Visitor.bothKnown(Const)) 680 return std::make_pair(ConstantInt::get(Context, Const.first), 681 ConstantInt::get(Context, Const.second)); 682 683 V = V->stripPointerCasts(); 684 685 // check cache 686 CacheMapTy::iterator CacheIt = CacheMap.find(V); 687 if (CacheIt != CacheMap.end()) 688 return CacheIt->second; 689 690 // always generate code immediately before the instruction being 691 // processed, so that the generated code dominates the same BBs 692 BuilderTy::InsertPointGuard Guard(Builder); 693 if (Instruction *I = dyn_cast<Instruction>(V)) 694 Builder.SetInsertPoint(I); 695 696 // now compute the size and offset 697 SizeOffsetEvalType Result; 698 699 // Record the pointers that were handled in this run, so that they can be 700 // cleaned later if something fails. We also use this set to break cycles that 701 // can occur in dead code. 702 if (!SeenVals.insert(V).second) { 703 Result = unknown(); 704 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 705 Result = visitGEPOperator(*GEP); 706 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 707 Result = visit(*I); 708 } else if (isa<Argument>(V) || 709 (isa<ConstantExpr>(V) && 710 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 711 isa<GlobalAlias>(V) || 712 isa<GlobalVariable>(V)) { 713 // ignore values where we cannot do more than what ObjectSizeVisitor can 714 Result = unknown(); 715 } else { 716 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " 717 << *V << '\n'); 718 Result = unknown(); 719 } 720 721 // Don't reuse CacheIt since it may be invalid at this point. 722 CacheMap[V] = Result; 723 return Result; 724 } 725 726 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 727 if (!I.getAllocatedType()->isSized()) 728 return unknown(); 729 730 // must be a VLA 731 assert(I.isArrayAllocation()); 732 Value *ArraySize = I.getArraySize(); 733 Value *Size = ConstantInt::get(ArraySize->getType(), 734 DL.getTypeAllocSize(I.getAllocatedType())); 735 Size = Builder.CreateMul(Size, ArraySize); 736 return std::make_pair(Size, Zero); 737 } 738 739 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) { 740 Optional<AllocFnsTy> FnData = 741 getAllocationData(CS.getInstruction(), AnyAlloc, TLI); 742 if (!FnData) 743 return unknown(); 744 745 // handle strdup-like functions separately 746 if (FnData->AllocTy == StrDupLike) { 747 // TODO 748 return unknown(); 749 } 750 751 Value *FirstArg = CS.getArgument(FnData->FstParam); 752 FirstArg = Builder.CreateZExt(FirstArg, IntTy); 753 if (FnData->SndParam < 0) 754 return std::make_pair(FirstArg, Zero); 755 756 Value *SecondArg = CS.getArgument(FnData->SndParam); 757 SecondArg = Builder.CreateZExt(SecondArg, IntTy); 758 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 759 return std::make_pair(Size, Zero); 760 761 // TODO: handle more standard functions (+ wchar cousins): 762 // - strdup / strndup 763 // - strcpy / strncpy 764 // - strcat / strncat 765 // - memcpy / memmove 766 // - strcat / strncat 767 // - memset 768 } 769 770 SizeOffsetEvalType 771 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 772 return unknown(); 773 } 774 775 SizeOffsetEvalType 776 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 777 return unknown(); 778 } 779 780 SizeOffsetEvalType 781 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 782 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 783 if (!bothKnown(PtrData)) 784 return unknown(); 785 786 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 787 Offset = Builder.CreateAdd(PtrData.second, Offset); 788 return std::make_pair(PtrData.first, Offset); 789 } 790 791 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 792 // clueless 793 return unknown(); 794 } 795 796 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { 797 return unknown(); 798 } 799 800 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 801 // create 2 PHIs: one for size and another for offset 802 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 803 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 804 805 // insert right away in the cache to handle recursive PHIs 806 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 807 808 // compute offset/size for each PHI incoming pointer 809 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 810 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt()); 811 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 812 813 if (!bothKnown(EdgeData)) { 814 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); 815 OffsetPHI->eraseFromParent(); 816 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); 817 SizePHI->eraseFromParent(); 818 return unknown(); 819 } 820 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); 821 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); 822 } 823 824 Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp; 825 if ((Tmp = SizePHI->hasConstantValue())) { 826 Size = Tmp; 827 SizePHI->replaceAllUsesWith(Size); 828 SizePHI->eraseFromParent(); 829 } 830 if ((Tmp = OffsetPHI->hasConstantValue())) { 831 Offset = Tmp; 832 OffsetPHI->replaceAllUsesWith(Offset); 833 OffsetPHI->eraseFromParent(); 834 } 835 return std::make_pair(Size, Offset); 836 } 837 838 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 839 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 840 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 841 842 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 843 return unknown(); 844 if (TrueSide == FalseSide) 845 return TrueSide; 846 847 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 848 FalseSide.first); 849 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 850 FalseSide.second); 851 return std::make_pair(Size, Offset); 852 } 853 854 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 855 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n'); 856 return unknown(); 857 } 858