1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions identifies calls to builtin functions that allocate 10 // or free memory. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/MemoryBuiltins.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/TargetFolder.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/Utils/Local.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cassert> 43 #include <cstdint> 44 #include <iterator> 45 #include <numeric> 46 #include <type_traits> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "memory-builtins" 52 53 enum AllocType : uint8_t { 54 OpNewLike = 1<<0, // allocates; never returns null 55 MallocLike = 1<<1, // allocates; may return null 56 AlignedAllocLike = 1<<2, // allocates with alignment; may return null 57 CallocLike = 1<<3, // allocates + bzero 58 ReallocLike = 1<<4, // reallocates 59 StrDupLike = 1<<5, 60 MallocOrOpNewLike = MallocLike | OpNewLike, 61 MallocOrCallocLike = MallocLike | OpNewLike | CallocLike | AlignedAllocLike, 62 AllocLike = MallocOrCallocLike | StrDupLike, 63 AnyAlloc = AllocLike | ReallocLike 64 }; 65 66 enum class MallocFamily { 67 Malloc, 68 CPPNew, // new(unsigned int) 69 CPPNewAligned, // new(unsigned int, align_val_t) 70 CPPNewArray, // new[](unsigned int) 71 CPPNewArrayAligned, // new[](unsigned long, align_val_t) 72 MSVCNew, // new(unsigned int) 73 MSVCArrayNew, // new[](unsigned int) 74 VecMalloc, 75 KmpcAllocShared, 76 }; 77 78 StringRef mangledNameForMallocFamily(const MallocFamily &Family) { 79 switch (Family) { 80 case MallocFamily::Malloc: 81 return "malloc"; 82 case MallocFamily::CPPNew: 83 return "_Znwm"; 84 case MallocFamily::CPPNewAligned: 85 return "_ZnwmSt11align_val_t"; 86 case MallocFamily::CPPNewArray: 87 return "_Znam"; 88 case MallocFamily::CPPNewArrayAligned: 89 return "_ZnamSt11align_val_t"; 90 case MallocFamily::MSVCNew: 91 return "??2@YAPAXI@Z"; 92 case MallocFamily::MSVCArrayNew: 93 return "??_U@YAPAXI@Z"; 94 case MallocFamily::VecMalloc: 95 return "vec_malloc"; 96 case MallocFamily::KmpcAllocShared: 97 return "__kmpc_alloc_shared"; 98 } 99 llvm_unreachable("missing an alloc family"); 100 } 101 102 struct AllocFnsTy { 103 AllocType AllocTy; 104 unsigned NumParams; 105 // First and Second size parameters (or -1 if unused) 106 int FstParam, SndParam; 107 // Alignment parameter for aligned_alloc and aligned new 108 int AlignParam; 109 // Name of default allocator function to group malloc/free calls by family 110 MallocFamily Family; 111 }; 112 113 // clang-format off 114 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 115 // know which functions are nounwind, noalias, nocapture parameters, etc. 116 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = { 117 {LibFunc_malloc, {MallocLike, 1, 0, -1, -1, MallocFamily::Malloc}}, 118 {LibFunc_vec_malloc, {MallocLike, 1, 0, -1, -1, MallocFamily::VecMalloc}}, 119 {LibFunc_valloc, {MallocLike, 1, 0, -1, -1, MallocFamily::Malloc}}, 120 {LibFunc_Znwj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int) 121 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int, nothrow) 122 {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t) 123 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t, nothrow) 124 {LibFunc_Znwm, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long) 125 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow) 126 {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t) 127 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow) 128 {LibFunc_Znaj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int) 129 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int, nothrow) 130 {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t) 131 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t, nothrow) 132 {LibFunc_Znam, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long) 133 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long, nothrow) 134 {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t) 135 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t, nothrow) 136 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int) 137 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int, nothrow) 138 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long) 139 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long, nothrow) 140 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int) 141 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int, nothrow) 142 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long) 143 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long, nothrow) 144 {LibFunc_aligned_alloc, {AlignedAllocLike, 2, 1, -1, 0, MallocFamily::Malloc}}, 145 {LibFunc_memalign, {AlignedAllocLike, 2, 1, -1, 0, MallocFamily::Malloc}}, 146 {LibFunc_calloc, {CallocLike, 2, 0, 1, -1, MallocFamily::Malloc}}, 147 {LibFunc_vec_calloc, {CallocLike, 2, 0, 1, -1, MallocFamily::VecMalloc}}, 148 {LibFunc_realloc, {ReallocLike, 2, 1, -1, -1, MallocFamily::Malloc}}, 149 {LibFunc_vec_realloc, {ReallocLike, 2, 1, -1, -1, MallocFamily::VecMalloc}}, 150 {LibFunc_reallocf, {ReallocLike, 2, 1, -1, -1, MallocFamily::Malloc}}, 151 {LibFunc_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}}, 152 {LibFunc_dunder_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}}, 153 {LibFunc_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}}, 154 {LibFunc_dunder_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}}, 155 {LibFunc___kmpc_alloc_shared, {MallocLike, 1, 0, -1, -1, MallocFamily::KmpcAllocShared}}, 156 // TODO: Handle "int posix_memalign(void **, size_t, size_t)" 157 }; 158 // clang-format on 159 160 static const Function *getCalledFunction(const Value *V, 161 bool &IsNoBuiltin) { 162 // Don't care about intrinsics in this case. 163 if (isa<IntrinsicInst>(V)) 164 return nullptr; 165 166 const auto *CB = dyn_cast<CallBase>(V); 167 if (!CB) 168 return nullptr; 169 170 IsNoBuiltin = CB->isNoBuiltin(); 171 172 if (const Function *Callee = CB->getCalledFunction()) 173 return Callee; 174 return nullptr; 175 } 176 177 /// Returns the allocation data for the given value if it's a call to a known 178 /// allocation function. 179 static Optional<AllocFnsTy> 180 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, 181 const TargetLibraryInfo *TLI) { 182 // Make sure that the function is available. 183 LibFunc TLIFn; 184 if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn)) 185 return None; 186 187 const auto *Iter = find_if( 188 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) { 189 return P.first == TLIFn; 190 }); 191 192 if (Iter == std::end(AllocationFnData)) 193 return None; 194 195 const AllocFnsTy *FnData = &Iter->second; 196 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 197 return None; 198 199 // Check function prototype. 200 int FstParam = FnData->FstParam; 201 int SndParam = FnData->SndParam; 202 FunctionType *FTy = Callee->getFunctionType(); 203 204 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && 205 FTy->getNumParams() == FnData->NumParams && 206 (FstParam < 0 || 207 (FTy->getParamType(FstParam)->isIntegerTy(32) || 208 FTy->getParamType(FstParam)->isIntegerTy(64))) && 209 (SndParam < 0 || 210 FTy->getParamType(SndParam)->isIntegerTy(32) || 211 FTy->getParamType(SndParam)->isIntegerTy(64))) 212 return *FnData; 213 return None; 214 } 215 216 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy, 217 const TargetLibraryInfo *TLI) { 218 bool IsNoBuiltinCall; 219 if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall)) 220 if (!IsNoBuiltinCall) 221 return getAllocationDataForFunction(Callee, AllocTy, TLI); 222 return None; 223 } 224 225 static Optional<AllocFnsTy> 226 getAllocationData(const Value *V, AllocType AllocTy, 227 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 228 bool IsNoBuiltinCall; 229 if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall)) 230 if (!IsNoBuiltinCall) 231 return getAllocationDataForFunction( 232 Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee))); 233 return None; 234 } 235 236 static Optional<AllocFnsTy> getAllocationSize(const Value *V, 237 const TargetLibraryInfo *TLI) { 238 bool IsNoBuiltinCall; 239 const Function *Callee = 240 getCalledFunction(V, IsNoBuiltinCall); 241 if (!Callee) 242 return None; 243 244 // Prefer to use existing information over allocsize. This will give us an 245 // accurate AllocTy. 246 if (!IsNoBuiltinCall) 247 if (Optional<AllocFnsTy> Data = 248 getAllocationDataForFunction(Callee, AnyAlloc, TLI)) 249 return Data; 250 251 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); 252 if (Attr == Attribute()) 253 return None; 254 255 std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs(); 256 257 AllocFnsTy Result; 258 // Because allocsize only tells us how many bytes are allocated, we're not 259 // really allowed to assume anything, so we use MallocLike. 260 Result.AllocTy = MallocLike; 261 Result.NumParams = Callee->getNumOperands(); 262 Result.FstParam = Args.first; 263 Result.SndParam = Args.second.getValueOr(-1); 264 // Allocsize has no way to specify an alignment argument 265 Result.AlignParam = -1; 266 return Result; 267 } 268 269 /// Tests if a value is a call or invoke to a library function that 270 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 271 /// like). 272 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) { 273 return getAllocationData(V, AnyAlloc, TLI).hasValue(); 274 } 275 bool llvm::isAllocationFn( 276 const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 277 return getAllocationData(V, AnyAlloc, GetTLI).hasValue(); 278 } 279 280 /// Tests if a value is a call or invoke to a library function that 281 /// allocates uninitialized memory (such as malloc). 282 static bool isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 283 return getAllocationData(V, MallocOrOpNewLike, TLI).hasValue(); 284 } 285 286 /// Tests if a value is a call or invoke to a library function that 287 /// allocates uninitialized memory with alignment (such as aligned_alloc). 288 static bool isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 289 return getAllocationData(V, AlignedAllocLike, TLI) 290 .hasValue(); 291 } 292 293 /// Tests if a value is a call or invoke to a library function that 294 /// allocates zero-filled memory (such as calloc). 295 static bool isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 296 return getAllocationData(V, CallocLike, TLI).hasValue(); 297 } 298 299 /// Tests if a value is a call or invoke to a library function that 300 /// allocates memory similar to malloc or calloc. 301 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 302 return getAllocationData(V, MallocOrCallocLike, TLI).hasValue(); 303 } 304 305 /// Tests if a value is a call or invoke to a library function that 306 /// allocates memory (either malloc, calloc, or strdup like). 307 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 308 return getAllocationData(V, AllocLike, TLI).hasValue(); 309 } 310 311 /// Tests if a value is a call or invoke to a library function that 312 /// reallocates memory (e.g., realloc). 313 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 314 return getAllocationData(V, ReallocLike, TLI).hasValue(); 315 } 316 317 /// Tests if a functions is a call or invoke to a library function that 318 /// reallocates memory (e.g., realloc). 319 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) { 320 return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue(); 321 } 322 323 bool llvm::isAllocRemovable(const CallBase *CB, const TargetLibraryInfo *TLI) { 324 assert(isAllocationFn(CB, TLI)); 325 326 // Note: Removability is highly dependent on the source language. For 327 // example, recent C++ requires direct calls to the global allocation 328 // [basic.stc.dynamic.allocation] to be observable unless part of a new 329 // expression [expr.new paragraph 13]. 330 331 // Historically we've treated the C family allocation routines as removable 332 return isAllocLikeFn(CB, TLI); 333 } 334 335 Value *llvm::getAllocAlignment(const CallBase *V, 336 const TargetLibraryInfo *TLI) { 337 const Optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI); 338 if (FnData.hasValue() && FnData->AlignParam >= 0) { 339 return V->getOperand(FnData->AlignParam); 340 } 341 return V->getArgOperandWithAttribute(Attribute::AllocAlign); 342 } 343 344 /// When we're compiling N-bit code, and the user uses parameters that are 345 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into 346 /// trouble with APInt size issues. This function handles resizing + overflow 347 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and 348 /// I's value. 349 static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) { 350 // More bits than we can handle. Checking the bit width isn't necessary, but 351 // it's faster than checking active bits, and should give `false` in the 352 // vast majority of cases. 353 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) 354 return false; 355 if (I.getBitWidth() != IntTyBits) 356 I = I.zextOrTrunc(IntTyBits); 357 return true; 358 } 359 360 Optional<APInt> 361 llvm::getAllocSize(const CallBase *CB, 362 const TargetLibraryInfo *TLI, 363 std::function<const Value*(const Value*)> Mapper) { 364 // Note: This handles both explicitly listed allocation functions and 365 // allocsize. The code structure could stand to be cleaned up a bit. 366 Optional<AllocFnsTy> FnData = getAllocationSize(CB, TLI); 367 if (!FnData) 368 return None; 369 370 // Get the index type for this address space, results and intermediate 371 // computations are performed at that width. 372 auto &DL = CB->getModule()->getDataLayout(); 373 const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType()); 374 375 // Handle strdup-like functions separately. 376 if (FnData->AllocTy == StrDupLike) { 377 APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0)))); 378 if (!Size) 379 return None; 380 381 // Strndup limits strlen. 382 if (FnData->FstParam > 0) { 383 const ConstantInt *Arg = 384 dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam))); 385 if (!Arg) 386 return None; 387 388 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); 389 if (Size.ugt(MaxSize)) 390 Size = MaxSize + 1; 391 } 392 return Size; 393 } 394 395 const ConstantInt *Arg = 396 dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam))); 397 if (!Arg) 398 return None; 399 400 APInt Size = Arg->getValue(); 401 if (!CheckedZextOrTrunc(Size, IntTyBits)) 402 return None; 403 404 // Size is determined by just 1 parameter. 405 if (FnData->SndParam < 0) 406 return Size; 407 408 Arg = dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->SndParam))); 409 if (!Arg) 410 return None; 411 412 APInt NumElems = Arg->getValue(); 413 if (!CheckedZextOrTrunc(NumElems, IntTyBits)) 414 return None; 415 416 bool Overflow; 417 Size = Size.umul_ov(NumElems, Overflow); 418 if (Overflow) 419 return None; 420 return Size; 421 } 422 423 Constant *llvm::getInitialValueOfAllocation(const CallBase *Alloc, 424 const TargetLibraryInfo *TLI, 425 Type *Ty) { 426 assert(isAllocationFn(Alloc, TLI)); 427 428 // malloc and aligned_alloc are uninitialized (undef) 429 if (isMallocLikeFn(Alloc, TLI) || isAlignedAllocLikeFn(Alloc, TLI)) 430 return UndefValue::get(Ty); 431 432 // calloc zero initializes 433 if (isCallocLikeFn(Alloc, TLI)) 434 return Constant::getNullValue(Ty); 435 436 return nullptr; 437 } 438 439 struct FreeFnsTy { 440 unsigned NumParams; 441 // Name of default allocator function to group malloc/free calls by family 442 MallocFamily Family; 443 }; 444 445 // clang-format off 446 static const std::pair<LibFunc, FreeFnsTy> FreeFnData[] = { 447 {LibFunc_free, {1, MallocFamily::Malloc}}, 448 {LibFunc_ZdlPv, {1, MallocFamily::CPPNew}}, // operator delete(void*) 449 {LibFunc_ZdaPv, {1, MallocFamily::CPPNewArray}}, // operator delete[](void*) 450 {LibFunc_msvc_delete_ptr32, {1, MallocFamily::MSVCNew}}, // operator delete(void*) 451 {LibFunc_msvc_delete_ptr64, {1, MallocFamily::MSVCNew}}, // operator delete(void*) 452 {LibFunc_msvc_delete_array_ptr32, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*) 453 {LibFunc_msvc_delete_array_ptr64, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*) 454 {LibFunc_ZdlPvj, {2, MallocFamily::CPPNew}}, // delete(void*, uint) 455 {LibFunc_ZdlPvm, {2, MallocFamily::CPPNew}}, // delete(void*, ulong) 456 {LibFunc_ZdlPvRKSt9nothrow_t, {2, MallocFamily::CPPNew}}, // delete(void*, nothrow) 457 {LibFunc_ZdlPvSt11align_val_t, {2, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t) 458 {LibFunc_ZdaPvj, {2, MallocFamily::CPPNewArray}}, // delete[](void*, uint) 459 {LibFunc_ZdaPvm, {2, MallocFamily::CPPNewArray}}, // delete[](void*, ulong) 460 {LibFunc_ZdaPvRKSt9nothrow_t, {2, MallocFamily::CPPNewArray}}, // delete[](void*, nothrow) 461 {LibFunc_ZdaPvSt11align_val_t, {2, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t) 462 {LibFunc_msvc_delete_ptr32_int, {2, MallocFamily::MSVCNew}}, // delete(void*, uint) 463 {LibFunc_msvc_delete_ptr64_longlong, {2, MallocFamily::MSVCNew}}, // delete(void*, ulonglong) 464 {LibFunc_msvc_delete_ptr32_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow) 465 {LibFunc_msvc_delete_ptr64_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow) 466 {LibFunc_msvc_delete_array_ptr32_int, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, uint) 467 {LibFunc_msvc_delete_array_ptr64_longlong, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, ulonglong) 468 {LibFunc_msvc_delete_array_ptr32_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow) 469 {LibFunc_msvc_delete_array_ptr64_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow) 470 {LibFunc___kmpc_free_shared, {2, MallocFamily::KmpcAllocShared}}, // OpenMP Offloading RTL free 471 {LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t, nothrow) 472 {LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t, nothrow) 473 {LibFunc_ZdlPvjSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned int, align_val_t) 474 {LibFunc_ZdlPvmSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned long, align_val_t) 475 {LibFunc_ZdaPvjSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned int, align_val_t) 476 {LibFunc_ZdaPvmSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned long, align_val_t) 477 }; 478 // clang-format on 479 480 Optional<FreeFnsTy> getFreeFunctionDataForFunction(const Function *Callee, 481 const LibFunc TLIFn) { 482 const auto *Iter = 483 find_if(FreeFnData, [TLIFn](const std::pair<LibFunc, FreeFnsTy> &P) { 484 return P.first == TLIFn; 485 }); 486 if (Iter == std::end(FreeFnData)) 487 return None; 488 return Iter->second; 489 } 490 491 Optional<StringRef> llvm::getAllocationFamily(const Value *I, 492 const TargetLibraryInfo *TLI) { 493 bool IsNoBuiltin; 494 const Function *Callee = getCalledFunction(I, IsNoBuiltin); 495 if (Callee == nullptr || IsNoBuiltin) 496 return None; 497 LibFunc TLIFn; 498 if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn)) 499 return None; 500 const auto AllocData = getAllocationDataForFunction(Callee, AnyAlloc, TLI); 501 if (AllocData.hasValue()) 502 return mangledNameForMallocFamily(AllocData.getValue().Family); 503 const auto FreeData = getFreeFunctionDataForFunction(Callee, TLIFn); 504 if (FreeData.hasValue()) 505 return mangledNameForMallocFamily(FreeData.getValue().Family); 506 return None; 507 } 508 509 /// isLibFreeFunction - Returns true if the function is a builtin free() 510 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) { 511 Optional<FreeFnsTy> FnData = getFreeFunctionDataForFunction(F, TLIFn); 512 if (!FnData.hasValue()) 513 return false; 514 515 // Check free prototype. 516 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 517 // attribute will exist. 518 FunctionType *FTy = F->getFunctionType(); 519 if (!FTy->getReturnType()->isVoidTy()) 520 return false; 521 if (FTy->getNumParams() != FnData->NumParams) 522 return false; 523 if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext())) 524 return false; 525 526 return true; 527 } 528 529 /// isFreeCall - Returns non-null if the value is a call to the builtin free() 530 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { 531 bool IsNoBuiltinCall; 532 const Function *Callee = getCalledFunction(I, IsNoBuiltinCall); 533 if (Callee == nullptr || IsNoBuiltinCall) 534 return nullptr; 535 536 LibFunc TLIFn; 537 if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn)) 538 return nullptr; 539 540 return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr; 541 } 542 543 544 //===----------------------------------------------------------------------===// 545 // Utility functions to compute size of objects. 546 // 547 static APInt getSizeWithOverflow(const SizeOffsetType &Data) { 548 if (Data.second.isNegative() || Data.first.ult(Data.second)) 549 return APInt(Data.first.getBitWidth(), 0); 550 return Data.first - Data.second; 551 } 552 553 /// Compute the size of the object pointed by Ptr. Returns true and the 554 /// object size in Size if successful, and false otherwise. 555 /// If RoundToAlign is true, then Size is rounded up to the alignment of 556 /// allocas, byval arguments, and global variables. 557 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 558 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { 559 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); 560 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 561 if (!Visitor.bothKnown(Data)) 562 return false; 563 564 Size = getSizeWithOverflow(Data).getZExtValue(); 565 return true; 566 } 567 568 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, 569 const DataLayout &DL, 570 const TargetLibraryInfo *TLI, 571 bool MustSucceed) { 572 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && 573 "ObjectSize must be a call to llvm.objectsize!"); 574 575 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); 576 ObjectSizeOpts EvalOptions; 577 // Unless we have to fold this to something, try to be as accurate as 578 // possible. 579 if (MustSucceed) 580 EvalOptions.EvalMode = 581 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; 582 else 583 EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact; 584 585 EvalOptions.NullIsUnknownSize = 586 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne(); 587 588 auto *ResultType = cast<IntegerType>(ObjectSize->getType()); 589 bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero(); 590 if (StaticOnly) { 591 // FIXME: Does it make sense to just return a failure value if the size won't 592 // fit in the output and `!MustSucceed`? 593 uint64_t Size; 594 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && 595 isUIntN(ResultType->getBitWidth(), Size)) 596 return ConstantInt::get(ResultType, Size); 597 } else { 598 LLVMContext &Ctx = ObjectSize->getFunction()->getContext(); 599 ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions); 600 SizeOffsetEvalType SizeOffsetPair = 601 Eval.compute(ObjectSize->getArgOperand(0)); 602 603 if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) { 604 IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL)); 605 Builder.SetInsertPoint(ObjectSize); 606 607 // If we've outside the end of the object, then we can always access 608 // exactly 0 bytes. 609 Value *ResultSize = 610 Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second); 611 Value *UseZero = 612 Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second); 613 ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType); 614 Value *Ret = Builder.CreateSelect( 615 UseZero, ConstantInt::get(ResultType, 0), ResultSize); 616 617 // The non-constant size expression cannot evaluate to -1. 618 if (!isa<Constant>(SizeOffsetPair.first) || 619 !isa<Constant>(SizeOffsetPair.second)) 620 Builder.CreateAssumption( 621 Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1))); 622 623 return Ret; 624 } 625 } 626 627 if (!MustSucceed) 628 return nullptr; 629 630 return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0); 631 } 632 633 STATISTIC(ObjectVisitorArgument, 634 "Number of arguments with unsolved size and offset"); 635 STATISTIC(ObjectVisitorLoad, 636 "Number of load instructions with unsolved size and offset"); 637 638 APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) { 639 if (Options.RoundToAlign && Alignment) 640 return APInt(IntTyBits, alignTo(Size.getZExtValue(), Alignment)); 641 return Size; 642 } 643 644 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 645 const TargetLibraryInfo *TLI, 646 LLVMContext &Context, 647 ObjectSizeOpts Options) 648 : DL(DL), TLI(TLI), Options(Options) { 649 // Pointer size must be rechecked for each object visited since it could have 650 // a different address space. 651 } 652 653 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 654 unsigned InitialIntTyBits = DL.getIndexTypeSizeInBits(V->getType()); 655 656 // Stripping pointer casts can strip address space casts which can change the 657 // index type size. The invariant is that we use the value type to determine 658 // the index type size and if we stripped address space casts we have to 659 // readjust the APInt as we pass it upwards in order for the APInt to match 660 // the type the caller passed in. 661 APInt Offset(InitialIntTyBits, 0); 662 V = V->stripAndAccumulateConstantOffsets( 663 DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true); 664 665 // Later we use the index type size and zero but it will match the type of the 666 // value that is passed to computeImpl. 667 IntTyBits = DL.getIndexTypeSizeInBits(V->getType()); 668 Zero = APInt::getZero(IntTyBits); 669 670 bool IndexTypeSizeChanged = InitialIntTyBits != IntTyBits; 671 if (!IndexTypeSizeChanged && Offset.isZero()) 672 return computeImpl(V); 673 674 // We stripped an address space cast that changed the index type size or we 675 // accumulated some constant offset (or both). Readjust the bit width to match 676 // the argument index type size and apply the offset, as required. 677 SizeOffsetType SOT = computeImpl(V); 678 if (IndexTypeSizeChanged) { 679 if (knownSize(SOT) && !::CheckedZextOrTrunc(SOT.first, InitialIntTyBits)) 680 SOT.first = APInt(); 681 if (knownOffset(SOT) && !::CheckedZextOrTrunc(SOT.second, InitialIntTyBits)) 682 SOT.second = APInt(); 683 } 684 // If the computed offset is "unknown" we cannot add the stripped offset. 685 return {SOT.first, 686 SOT.second.getBitWidth() > 1 ? SOT.second + Offset : SOT.second}; 687 } 688 689 SizeOffsetType ObjectSizeOffsetVisitor::computeImpl(Value *V) { 690 if (Instruction *I = dyn_cast<Instruction>(V)) { 691 // If we have already seen this instruction, bail out. Cycles can happen in 692 // unreachable code after constant propagation. 693 if (!SeenInsts.insert(I).second) 694 return unknown(); 695 696 return visit(*I); 697 } 698 if (Argument *A = dyn_cast<Argument>(V)) 699 return visitArgument(*A); 700 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 701 return visitConstantPointerNull(*P); 702 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 703 return visitGlobalAlias(*GA); 704 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 705 return visitGlobalVariable(*GV); 706 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 707 return visitUndefValue(*UV); 708 709 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " 710 << *V << '\n'); 711 return unknown(); 712 } 713 714 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) { 715 return ::CheckedZextOrTrunc(I, IntTyBits); 716 } 717 718 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 719 if (!I.getAllocatedType()->isSized()) 720 return unknown(); 721 722 TypeSize ElemSize = DL.getTypeAllocSize(I.getAllocatedType()); 723 if (ElemSize.isScalable() && Options.EvalMode != ObjectSizeOpts::Mode::Min) 724 return unknown(); 725 APInt Size(IntTyBits, ElemSize.getKnownMinSize()); 726 if (!I.isArrayAllocation()) 727 return std::make_pair(align(Size, I.getAlign()), Zero); 728 729 Value *ArraySize = I.getArraySize(); 730 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 731 APInt NumElems = C->getValue(); 732 if (!CheckedZextOrTrunc(NumElems)) 733 return unknown(); 734 735 bool Overflow; 736 Size = Size.umul_ov(NumElems, Overflow); 737 return Overflow ? unknown() 738 : std::make_pair(align(Size, I.getAlign()), Zero); 739 } 740 return unknown(); 741 } 742 743 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 744 Type *MemoryTy = A.getPointeeInMemoryValueType(); 745 // No interprocedural analysis is done at the moment. 746 if (!MemoryTy|| !MemoryTy->isSized()) { 747 ++ObjectVisitorArgument; 748 return unknown(); 749 } 750 751 APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy)); 752 return std::make_pair(align(Size, A.getParamAlign()), Zero); 753 } 754 755 SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) { 756 auto Mapper = [](const Value *V) { return V; }; 757 if (Optional<APInt> Size = getAllocSize(&CB, TLI, Mapper)) 758 return std::make_pair(*Size, Zero); 759 return unknown(); 760 } 761 762 SizeOffsetType 763 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) { 764 // If null is unknown, there's nothing we can do. Additionally, non-zero 765 // address spaces can make use of null, so we don't presume to know anything 766 // about that. 767 // 768 // TODO: How should this work with address space casts? We currently just drop 769 // them on the floor, but it's unclear what we should do when a NULL from 770 // addrspace(1) gets casted to addrspace(0) (or vice-versa). 771 if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace()) 772 return unknown(); 773 return std::make_pair(Zero, Zero); 774 } 775 776 SizeOffsetType 777 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 778 return unknown(); 779 } 780 781 SizeOffsetType 782 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 783 // Easy cases were already folded by previous passes. 784 return unknown(); 785 } 786 787 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 788 if (GA.isInterposable()) 789 return unknown(); 790 return compute(GA.getAliasee()); 791 } 792 793 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 794 if (!GV.hasDefinitiveInitializer()) 795 return unknown(); 796 797 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType())); 798 return std::make_pair(align(Size, GV.getAlign()), Zero); 799 } 800 801 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 802 // clueless 803 return unknown(); 804 } 805 806 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { 807 ++ObjectVisitorLoad; 808 return unknown(); 809 } 810 811 SizeOffsetType ObjectSizeOffsetVisitor::combineSizeOffset(SizeOffsetType LHS, 812 SizeOffsetType RHS) { 813 if (!bothKnown(LHS) || !bothKnown(RHS)) 814 return unknown(); 815 816 switch (Options.EvalMode) { 817 case ObjectSizeOpts::Mode::Min: 818 return (getSizeWithOverflow(LHS).slt(getSizeWithOverflow(RHS))) ? LHS : RHS; 819 case ObjectSizeOpts::Mode::Max: 820 return (getSizeWithOverflow(LHS).sgt(getSizeWithOverflow(RHS))) ? LHS : RHS; 821 case ObjectSizeOpts::Mode::Exact: 822 return (getSizeWithOverflow(LHS).eq(getSizeWithOverflow(RHS))) ? LHS 823 : unknown(); 824 } 825 llvm_unreachable("missing an eval mode"); 826 } 827 828 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode &PN) { 829 auto IncomingValues = PN.incoming_values(); 830 return std::accumulate(IncomingValues.begin() + 1, IncomingValues.end(), 831 compute(*IncomingValues.begin()), 832 [this](SizeOffsetType LHS, Value *VRHS) { 833 return combineSizeOffset(LHS, compute(VRHS)); 834 }); 835 } 836 837 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 838 return combineSizeOffset(compute(I.getTrueValue()), 839 compute(I.getFalseValue())); 840 } 841 842 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 843 return std::make_pair(Zero, Zero); 844 } 845 846 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 847 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I 848 << '\n'); 849 return unknown(); 850 } 851 852 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 853 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 854 ObjectSizeOpts EvalOpts) 855 : DL(DL), TLI(TLI), Context(Context), 856 Builder(Context, TargetFolder(DL), 857 IRBuilderCallbackInserter( 858 [&](Instruction *I) { InsertedInstructions.insert(I); })), 859 EvalOpts(EvalOpts) { 860 // IntTy and Zero must be set for each compute() since the address space may 861 // be different for later objects. 862 } 863 864 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 865 // XXX - Are vectors of pointers possible here? 866 IntTy = cast<IntegerType>(DL.getIndexType(V->getType())); 867 Zero = ConstantInt::get(IntTy, 0); 868 869 SizeOffsetEvalType Result = compute_(V); 870 871 if (!bothKnown(Result)) { 872 // Erase everything that was computed in this iteration from the cache, so 873 // that no dangling references are left behind. We could be a bit smarter if 874 // we kept a dependency graph. It's probably not worth the complexity. 875 for (const Value *SeenVal : SeenVals) { 876 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); 877 // non-computable results can be safely cached 878 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 879 CacheMap.erase(CacheIt); 880 } 881 882 // Erase any instructions we inserted as part of the traversal. 883 for (Instruction *I : InsertedInstructions) { 884 I->replaceAllUsesWith(UndefValue::get(I->getType())); 885 I->eraseFromParent(); 886 } 887 } 888 889 SeenVals.clear(); 890 InsertedInstructions.clear(); 891 return Result; 892 } 893 894 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 895 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts); 896 SizeOffsetType Const = Visitor.compute(V); 897 if (Visitor.bothKnown(Const)) 898 return std::make_pair(ConstantInt::get(Context, Const.first), 899 ConstantInt::get(Context, Const.second)); 900 901 V = V->stripPointerCasts(); 902 903 // Check cache. 904 CacheMapTy::iterator CacheIt = CacheMap.find(V); 905 if (CacheIt != CacheMap.end()) 906 return CacheIt->second; 907 908 // Always generate code immediately before the instruction being 909 // processed, so that the generated code dominates the same BBs. 910 BuilderTy::InsertPointGuard Guard(Builder); 911 if (Instruction *I = dyn_cast<Instruction>(V)) 912 Builder.SetInsertPoint(I); 913 914 // Now compute the size and offset. 915 SizeOffsetEvalType Result; 916 917 // Record the pointers that were handled in this run, so that they can be 918 // cleaned later if something fails. We also use this set to break cycles that 919 // can occur in dead code. 920 if (!SeenVals.insert(V).second) { 921 Result = unknown(); 922 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 923 Result = visitGEPOperator(*GEP); 924 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 925 Result = visit(*I); 926 } else if (isa<Argument>(V) || 927 (isa<ConstantExpr>(V) && 928 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 929 isa<GlobalAlias>(V) || 930 isa<GlobalVariable>(V)) { 931 // Ignore values where we cannot do more than ObjectSizeVisitor. 932 Result = unknown(); 933 } else { 934 LLVM_DEBUG( 935 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V 936 << '\n'); 937 Result = unknown(); 938 } 939 940 // Don't reuse CacheIt since it may be invalid at this point. 941 CacheMap[V] = Result; 942 return Result; 943 } 944 945 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 946 if (!I.getAllocatedType()->isSized()) 947 return unknown(); 948 949 // must be a VLA 950 assert(I.isArrayAllocation()); 951 952 // If needed, adjust the alloca's operand size to match the pointer size. 953 // Subsequent math operations expect the types to match. 954 Value *ArraySize = Builder.CreateZExtOrTrunc( 955 I.getArraySize(), DL.getIntPtrType(I.getContext())); 956 assert(ArraySize->getType() == Zero->getType() && 957 "Expected zero constant to have pointer type"); 958 959 Value *Size = ConstantInt::get(ArraySize->getType(), 960 DL.getTypeAllocSize(I.getAllocatedType())); 961 Size = Builder.CreateMul(Size, ArraySize); 962 return std::make_pair(Size, Zero); 963 } 964 965 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) { 966 Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI); 967 if (!FnData) 968 return unknown(); 969 970 // Handle strdup-like functions separately. 971 if (FnData->AllocTy == StrDupLike) { 972 // TODO: implement evaluation of strdup/strndup 973 return unknown(); 974 } 975 976 Value *FirstArg = CB.getArgOperand(FnData->FstParam); 977 FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy); 978 if (FnData->SndParam < 0) 979 return std::make_pair(FirstArg, Zero); 980 981 Value *SecondArg = CB.getArgOperand(FnData->SndParam); 982 SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy); 983 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 984 return std::make_pair(Size, Zero); 985 } 986 987 SizeOffsetEvalType 988 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 989 return unknown(); 990 } 991 992 SizeOffsetEvalType 993 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 994 return unknown(); 995 } 996 997 SizeOffsetEvalType 998 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 999 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 1000 if (!bothKnown(PtrData)) 1001 return unknown(); 1002 1003 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 1004 Offset = Builder.CreateAdd(PtrData.second, Offset); 1005 return std::make_pair(PtrData.first, Offset); 1006 } 1007 1008 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 1009 // clueless 1010 return unknown(); 1011 } 1012 1013 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { 1014 return unknown(); 1015 } 1016 1017 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 1018 // Create 2 PHIs: one for size and another for offset. 1019 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 1020 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 1021 1022 // Insert right away in the cache to handle recursive PHIs. 1023 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 1024 1025 // Compute offset/size for each PHI incoming pointer. 1026 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 1027 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt()); 1028 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 1029 1030 if (!bothKnown(EdgeData)) { 1031 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); 1032 OffsetPHI->eraseFromParent(); 1033 InsertedInstructions.erase(OffsetPHI); 1034 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); 1035 SizePHI->eraseFromParent(); 1036 InsertedInstructions.erase(SizePHI); 1037 return unknown(); 1038 } 1039 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); 1040 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); 1041 } 1042 1043 Value *Size = SizePHI, *Offset = OffsetPHI; 1044 if (Value *Tmp = SizePHI->hasConstantValue()) { 1045 Size = Tmp; 1046 SizePHI->replaceAllUsesWith(Size); 1047 SizePHI->eraseFromParent(); 1048 InsertedInstructions.erase(SizePHI); 1049 } 1050 if (Value *Tmp = OffsetPHI->hasConstantValue()) { 1051 Offset = Tmp; 1052 OffsetPHI->replaceAllUsesWith(Offset); 1053 OffsetPHI->eraseFromParent(); 1054 InsertedInstructions.erase(OffsetPHI); 1055 } 1056 return std::make_pair(Size, Offset); 1057 } 1058 1059 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 1060 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 1061 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 1062 1063 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 1064 return unknown(); 1065 if (TrueSide == FalseSide) 1066 return TrueSide; 1067 1068 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 1069 FalseSide.first); 1070 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 1071 FalseSide.second); 1072 return std::make_pair(Size, Offset); 1073 } 1074 1075 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 1076 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I 1077 << '\n'); 1078 return unknown(); 1079 } 1080