1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions identifies calls to builtin functions that allocate 11 // or free memory. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/MemoryBuiltins.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Analysis/TargetFolder.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <cassert> 45 #include <cstdint> 46 #include <iterator> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "memory-builtins" 52 53 enum AllocType : uint8_t { 54 OpNewLike = 1<<0, // allocates; never returns null 55 MallocLike = 1<<1 | OpNewLike, // allocates; may return null 56 CallocLike = 1<<2, // allocates + bzero 57 ReallocLike = 1<<3, // reallocates 58 StrDupLike = 1<<4, 59 MallocOrCallocLike = MallocLike | CallocLike, 60 AllocLike = MallocLike | CallocLike | StrDupLike, 61 AnyAlloc = AllocLike | ReallocLike 62 }; 63 64 struct AllocFnsTy { 65 AllocType AllocTy; 66 unsigned NumParams; 67 // First and Second size parameters (or -1 if unused) 68 int FstParam, SndParam; 69 }; 70 71 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 72 // know which functions are nounwind, noalias, nocapture parameters, etc. 73 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = { 74 {LibFunc_malloc, {MallocLike, 1, 0, -1}}, 75 {LibFunc_valloc, {MallocLike, 1, 0, -1}}, 76 {LibFunc_Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 77 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 78 {LibFunc_Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long) 79 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow) 80 {LibFunc_Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 81 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 82 {LibFunc_Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long) 83 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow) 84 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 85 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 86 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long) 87 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow) 88 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 89 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 90 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long) 91 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow) 92 {LibFunc_calloc, {CallocLike, 2, 0, 1}}, 93 {LibFunc_realloc, {ReallocLike, 2, 1, -1}}, 94 {LibFunc_reallocf, {ReallocLike, 2, 1, -1}}, 95 {LibFunc_strdup, {StrDupLike, 1, -1, -1}}, 96 {LibFunc_strndup, {StrDupLike, 2, 1, -1}} 97 // TODO: Handle "int posix_memalign(void **, size_t, size_t)" 98 }; 99 100 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast, 101 bool &IsNoBuiltin) { 102 // Don't care about intrinsics in this case. 103 if (isa<IntrinsicInst>(V)) 104 return nullptr; 105 106 if (LookThroughBitCast) 107 V = V->stripPointerCasts(); 108 109 ImmutableCallSite CS(V); 110 if (!CS.getInstruction()) 111 return nullptr; 112 113 IsNoBuiltin = CS.isNoBuiltin(); 114 115 if (const Function *Callee = CS.getCalledFunction()) 116 return Callee; 117 return nullptr; 118 } 119 120 /// Returns the allocation data for the given value if it's either a call to a 121 /// known allocation function, or a call to a function with the allocsize 122 /// attribute. 123 static Optional<AllocFnsTy> 124 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, 125 const TargetLibraryInfo *TLI) { 126 // Make sure that the function is available. 127 StringRef FnName = Callee->getName(); 128 LibFunc TLIFn; 129 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 130 return None; 131 132 const auto *Iter = find_if( 133 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) { 134 return P.first == TLIFn; 135 }); 136 137 if (Iter == std::end(AllocationFnData)) 138 return None; 139 140 const AllocFnsTy *FnData = &Iter->second; 141 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 142 return None; 143 144 // Check function prototype. 145 int FstParam = FnData->FstParam; 146 int SndParam = FnData->SndParam; 147 FunctionType *FTy = Callee->getFunctionType(); 148 149 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && 150 FTy->getNumParams() == FnData->NumParams && 151 (FstParam < 0 || 152 (FTy->getParamType(FstParam)->isIntegerTy(32) || 153 FTy->getParamType(FstParam)->isIntegerTy(64))) && 154 (SndParam < 0 || 155 FTy->getParamType(SndParam)->isIntegerTy(32) || 156 FTy->getParamType(SndParam)->isIntegerTy(64))) 157 return *FnData; 158 return None; 159 } 160 161 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy, 162 const TargetLibraryInfo *TLI, 163 bool LookThroughBitCast = false) { 164 bool IsNoBuiltinCall; 165 if (const Function *Callee = 166 getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall)) 167 if (!IsNoBuiltinCall) 168 return getAllocationDataForFunction(Callee, AllocTy, TLI); 169 return None; 170 } 171 172 static Optional<AllocFnsTy> getAllocationSize(const Value *V, 173 const TargetLibraryInfo *TLI) { 174 bool IsNoBuiltinCall; 175 const Function *Callee = 176 getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall); 177 if (!Callee) 178 return None; 179 180 // Prefer to use existing information over allocsize. This will give us an 181 // accurate AllocTy. 182 if (!IsNoBuiltinCall) 183 if (Optional<AllocFnsTy> Data = 184 getAllocationDataForFunction(Callee, AnyAlloc, TLI)) 185 return Data; 186 187 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); 188 if (Attr == Attribute()) 189 return None; 190 191 std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs(); 192 193 AllocFnsTy Result; 194 // Because allocsize only tells us how many bytes are allocated, we're not 195 // really allowed to assume anything, so we use MallocLike. 196 Result.AllocTy = MallocLike; 197 Result.NumParams = Callee->getNumOperands(); 198 Result.FstParam = Args.first; 199 Result.SndParam = Args.second.getValueOr(-1); 200 return Result; 201 } 202 203 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) { 204 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V); 205 return CS && CS.hasRetAttr(Attribute::NoAlias); 206 } 207 208 /// \brief Tests if a value is a call or invoke to a library function that 209 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 210 /// like). 211 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, 212 bool LookThroughBitCast) { 213 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue(); 214 } 215 216 /// \brief Tests if a value is a call or invoke to a function that returns a 217 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions). 218 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI, 219 bool LookThroughBitCast) { 220 // it's safe to consider realloc as noalias since accessing the original 221 // pointer is undefined behavior 222 return isAllocationFn(V, TLI, LookThroughBitCast) || 223 hasNoAliasAttr(V, LookThroughBitCast); 224 } 225 226 /// \brief Tests if a value is a call or invoke to a library function that 227 /// allocates uninitialized memory (such as malloc). 228 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 229 bool LookThroughBitCast) { 230 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue(); 231 } 232 233 /// \brief Tests if a value is a call or invoke to a library function that 234 /// allocates zero-filled memory (such as calloc). 235 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 236 bool LookThroughBitCast) { 237 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue(); 238 } 239 240 /// \brief Tests if a value is a call or invoke to a library function that 241 /// allocates memory similar to malloc or calloc. 242 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 243 bool LookThroughBitCast) { 244 return getAllocationData(V, MallocOrCallocLike, TLI, 245 LookThroughBitCast).hasValue(); 246 } 247 248 /// \brief Tests if a value is a call or invoke to a library function that 249 /// allocates memory (either malloc, calloc, or strdup like). 250 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 251 bool LookThroughBitCast) { 252 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue(); 253 } 254 255 /// extractMallocCall - Returns the corresponding CallInst if the instruction 256 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we 257 /// ignore InvokeInst here. 258 const CallInst *llvm::extractMallocCall(const Value *I, 259 const TargetLibraryInfo *TLI) { 260 return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr; 261 } 262 263 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL, 264 const TargetLibraryInfo *TLI, 265 bool LookThroughSExt = false) { 266 if (!CI) 267 return nullptr; 268 269 // The size of the malloc's result type must be known to determine array size. 270 Type *T = getMallocAllocatedType(CI, TLI); 271 if (!T || !T->isSized()) 272 return nullptr; 273 274 unsigned ElementSize = DL.getTypeAllocSize(T); 275 if (StructType *ST = dyn_cast<StructType>(T)) 276 ElementSize = DL.getStructLayout(ST)->getSizeInBytes(); 277 278 // If malloc call's arg can be determined to be a multiple of ElementSize, 279 // return the multiple. Otherwise, return NULL. 280 Value *MallocArg = CI->getArgOperand(0); 281 Value *Multiple = nullptr; 282 if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt)) 283 return Multiple; 284 285 return nullptr; 286 } 287 288 /// getMallocType - Returns the PointerType resulting from the malloc call. 289 /// The PointerType depends on the number of bitcast uses of the malloc call: 290 /// 0: PointerType is the calls' return type. 291 /// 1: PointerType is the bitcast's result type. 292 /// >1: Unique PointerType cannot be determined, return NULL. 293 PointerType *llvm::getMallocType(const CallInst *CI, 294 const TargetLibraryInfo *TLI) { 295 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call"); 296 297 PointerType *MallocType = nullptr; 298 unsigned NumOfBitCastUses = 0; 299 300 // Determine if CallInst has a bitcast use. 301 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end(); 302 UI != E;) 303 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) { 304 MallocType = cast<PointerType>(BCI->getDestTy()); 305 NumOfBitCastUses++; 306 } 307 308 // Malloc call has 1 bitcast use, so type is the bitcast's destination type. 309 if (NumOfBitCastUses == 1) 310 return MallocType; 311 312 // Malloc call was not bitcast, so type is the malloc function's return type. 313 if (NumOfBitCastUses == 0) 314 return cast<PointerType>(CI->getType()); 315 316 // Type could not be determined. 317 return nullptr; 318 } 319 320 /// getMallocAllocatedType - Returns the Type allocated by malloc call. 321 /// The Type depends on the number of bitcast uses of the malloc call: 322 /// 0: PointerType is the malloc calls' return type. 323 /// 1: PointerType is the bitcast's result type. 324 /// >1: Unique PointerType cannot be determined, return NULL. 325 Type *llvm::getMallocAllocatedType(const CallInst *CI, 326 const TargetLibraryInfo *TLI) { 327 PointerType *PT = getMallocType(CI, TLI); 328 return PT ? PT->getElementType() : nullptr; 329 } 330 331 /// getMallocArraySize - Returns the array size of a malloc call. If the 332 /// argument passed to malloc is a multiple of the size of the malloced type, 333 /// then return that multiple. For non-array mallocs, the multiple is 334 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be 335 /// determined. 336 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL, 337 const TargetLibraryInfo *TLI, 338 bool LookThroughSExt) { 339 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call"); 340 return computeArraySize(CI, DL, TLI, LookThroughSExt); 341 } 342 343 /// extractCallocCall - Returns the corresponding CallInst if the instruction 344 /// is a calloc call. 345 const CallInst *llvm::extractCallocCall(const Value *I, 346 const TargetLibraryInfo *TLI) { 347 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr; 348 } 349 350 /// isFreeCall - Returns non-null if the value is a call to the builtin free() 351 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { 352 bool IsNoBuiltinCall; 353 const Function *Callee = 354 getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall); 355 if (Callee == nullptr || IsNoBuiltinCall) 356 return nullptr; 357 358 StringRef FnName = Callee->getName(); 359 LibFunc TLIFn; 360 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 361 return nullptr; 362 363 unsigned ExpectedNumParams; 364 if (TLIFn == LibFunc_free || 365 TLIFn == LibFunc_ZdlPv || // operator delete(void*) 366 TLIFn == LibFunc_ZdaPv || // operator delete[](void*) 367 TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*) 368 TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*) 369 TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*) 370 TLIFn == LibFunc_msvc_delete_array_ptr64) // operator delete[](void*) 371 ExpectedNumParams = 1; 372 else if (TLIFn == LibFunc_ZdlPvj || // delete(void*, uint) 373 TLIFn == LibFunc_ZdlPvm || // delete(void*, ulong) 374 TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow) 375 TLIFn == LibFunc_ZdaPvj || // delete[](void*, uint) 376 TLIFn == LibFunc_ZdaPvm || // delete[](void*, ulong) 377 TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow) 378 TLIFn == LibFunc_msvc_delete_ptr32_int || // delete(void*, uint) 379 TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong) 380 TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow) 381 TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow) 382 TLIFn == LibFunc_msvc_delete_array_ptr32_int || // delete[](void*, uint) 383 TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong) 384 TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow) 385 TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow) // delete[](void*, nothrow) 386 ExpectedNumParams = 2; 387 else 388 return nullptr; 389 390 // Check free prototype. 391 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 392 // attribute will exist. 393 FunctionType *FTy = Callee->getFunctionType(); 394 if (!FTy->getReturnType()->isVoidTy()) 395 return nullptr; 396 if (FTy->getNumParams() != ExpectedNumParams) 397 return nullptr; 398 if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext())) 399 return nullptr; 400 401 return dyn_cast<CallInst>(I); 402 } 403 404 //===----------------------------------------------------------------------===// 405 // Utility functions to compute size of objects. 406 // 407 static APInt getSizeWithOverflow(const SizeOffsetType &Data) { 408 if (Data.second.isNegative() || Data.first.ult(Data.second)) 409 return APInt(Data.first.getBitWidth(), 0); 410 return Data.first - Data.second; 411 } 412 413 /// \brief Compute the size of the object pointed by Ptr. Returns true and the 414 /// object size in Size if successful, and false otherwise. 415 /// If RoundToAlign is true, then Size is rounded up to the alignment of 416 /// allocas, byval arguments, and global variables. 417 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 418 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { 419 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); 420 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 421 if (!Visitor.bothKnown(Data)) 422 return false; 423 424 Size = getSizeWithOverflow(Data).getZExtValue(); 425 return true; 426 } 427 428 ConstantInt *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, 429 const DataLayout &DL, 430 const TargetLibraryInfo *TLI, 431 bool MustSucceed) { 432 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && 433 "ObjectSize must be a call to llvm.objectsize!"); 434 435 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); 436 ObjectSizeOpts EvalOptions; 437 // Unless we have to fold this to something, try to be as accurate as 438 // possible. 439 if (MustSucceed) 440 EvalOptions.EvalMode = 441 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; 442 else 443 EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact; 444 445 EvalOptions.NullIsUnknownSize = 446 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne(); 447 448 // FIXME: Does it make sense to just return a failure value if the size won't 449 // fit in the output and `!MustSucceed`? 450 uint64_t Size; 451 auto *ResultType = cast<IntegerType>(ObjectSize->getType()); 452 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && 453 isUIntN(ResultType->getBitWidth(), Size)) 454 return ConstantInt::get(ResultType, Size); 455 456 if (!MustSucceed) 457 return nullptr; 458 459 return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0); 460 } 461 462 STATISTIC(ObjectVisitorArgument, 463 "Number of arguments with unsolved size and offset"); 464 STATISTIC(ObjectVisitorLoad, 465 "Number of load instructions with unsolved size and offset"); 466 467 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) { 468 if (Options.RoundToAlign && Align) 469 return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align)); 470 return Size; 471 } 472 473 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 474 const TargetLibraryInfo *TLI, 475 LLVMContext &Context, 476 ObjectSizeOpts Options) 477 : DL(DL), TLI(TLI), Options(Options) { 478 // Pointer size must be rechecked for each object visited since it could have 479 // a different address space. 480 } 481 482 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 483 IntTyBits = DL.getPointerTypeSizeInBits(V->getType()); 484 Zero = APInt::getNullValue(IntTyBits); 485 486 V = V->stripPointerCasts(); 487 if (Instruction *I = dyn_cast<Instruction>(V)) { 488 // If we have already seen this instruction, bail out. Cycles can happen in 489 // unreachable code after constant propagation. 490 if (!SeenInsts.insert(I).second) 491 return unknown(); 492 493 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 494 return visitGEPOperator(*GEP); 495 return visit(*I); 496 } 497 if (Argument *A = dyn_cast<Argument>(V)) 498 return visitArgument(*A); 499 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 500 return visitConstantPointerNull(*P); 501 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 502 return visitGlobalAlias(*GA); 503 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 504 return visitGlobalVariable(*GV); 505 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 506 return visitUndefValue(*UV); 507 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 508 if (CE->getOpcode() == Instruction::IntToPtr) 509 return unknown(); // clueless 510 if (CE->getOpcode() == Instruction::GetElementPtr) 511 return visitGEPOperator(cast<GEPOperator>(*CE)); 512 } 513 514 DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V 515 << '\n'); 516 return unknown(); 517 } 518 519 /// When we're compiling N-bit code, and the user uses parameters that are 520 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into 521 /// trouble with APInt size issues. This function handles resizing + overflow 522 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and 523 /// I's value. 524 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) { 525 // More bits than we can handle. Checking the bit width isn't necessary, but 526 // it's faster than checking active bits, and should give `false` in the 527 // vast majority of cases. 528 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) 529 return false; 530 if (I.getBitWidth() != IntTyBits) 531 I = I.zextOrTrunc(IntTyBits); 532 return true; 533 } 534 535 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 536 if (!I.getAllocatedType()->isSized()) 537 return unknown(); 538 539 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType())); 540 if (!I.isArrayAllocation()) 541 return std::make_pair(align(Size, I.getAlignment()), Zero); 542 543 Value *ArraySize = I.getArraySize(); 544 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 545 APInt NumElems = C->getValue(); 546 if (!CheckedZextOrTrunc(NumElems)) 547 return unknown(); 548 549 bool Overflow; 550 Size = Size.umul_ov(NumElems, Overflow); 551 return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()), 552 Zero); 553 } 554 return unknown(); 555 } 556 557 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 558 // No interprocedural analysis is done at the moment. 559 if (!A.hasByValOrInAllocaAttr()) { 560 ++ObjectVisitorArgument; 561 return unknown(); 562 } 563 PointerType *PT = cast<PointerType>(A.getType()); 564 APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType())); 565 return std::make_pair(align(Size, A.getParamAlignment()), Zero); 566 } 567 568 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) { 569 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI); 570 if (!FnData) 571 return unknown(); 572 573 // Handle strdup-like functions separately. 574 if (FnData->AllocTy == StrDupLike) { 575 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0))); 576 if (!Size) 577 return unknown(); 578 579 // Strndup limits strlen. 580 if (FnData->FstParam > 0) { 581 ConstantInt *Arg = 582 dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 583 if (!Arg) 584 return unknown(); 585 586 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); 587 if (Size.ugt(MaxSize)) 588 Size = MaxSize + 1; 589 } 590 return std::make_pair(Size, Zero); 591 } 592 593 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 594 if (!Arg) 595 return unknown(); 596 597 APInt Size = Arg->getValue(); 598 if (!CheckedZextOrTrunc(Size)) 599 return unknown(); 600 601 // Size is determined by just 1 parameter. 602 if (FnData->SndParam < 0) 603 return std::make_pair(Size, Zero); 604 605 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam)); 606 if (!Arg) 607 return unknown(); 608 609 APInt NumElems = Arg->getValue(); 610 if (!CheckedZextOrTrunc(NumElems)) 611 return unknown(); 612 613 bool Overflow; 614 Size = Size.umul_ov(NumElems, Overflow); 615 return Overflow ? unknown() : std::make_pair(Size, Zero); 616 617 // TODO: handle more standard functions (+ wchar cousins): 618 // - strdup / strndup 619 // - strcpy / strncpy 620 // - strcat / strncat 621 // - memcpy / memmove 622 // - strcat / strncat 623 // - memset 624 } 625 626 SizeOffsetType 627 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) { 628 if (Options.NullIsUnknownSize && CPN.getType()->getAddressSpace() == 0) 629 return unknown(); 630 return std::make_pair(Zero, Zero); 631 } 632 633 SizeOffsetType 634 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 635 return unknown(); 636 } 637 638 SizeOffsetType 639 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 640 // Easy cases were already folded by previous passes. 641 return unknown(); 642 } 643 644 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) { 645 SizeOffsetType PtrData = compute(GEP.getPointerOperand()); 646 APInt Offset(IntTyBits, 0); 647 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset)) 648 return unknown(); 649 650 return std::make_pair(PtrData.first, PtrData.second + Offset); 651 } 652 653 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 654 if (GA.isInterposable()) 655 return unknown(); 656 return compute(GA.getAliasee()); 657 } 658 659 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 660 if (!GV.hasDefinitiveInitializer()) 661 return unknown(); 662 663 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType())); 664 return std::make_pair(align(Size, GV.getAlignment()), Zero); 665 } 666 667 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 668 // clueless 669 return unknown(); 670 } 671 672 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { 673 ++ObjectVisitorLoad; 674 return unknown(); 675 } 676 677 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) { 678 // too complex to analyze statically. 679 return unknown(); 680 } 681 682 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 683 SizeOffsetType TrueSide = compute(I.getTrueValue()); 684 SizeOffsetType FalseSide = compute(I.getFalseValue()); 685 if (bothKnown(TrueSide) && bothKnown(FalseSide)) { 686 if (TrueSide == FalseSide) { 687 return TrueSide; 688 } 689 690 APInt TrueResult = getSizeWithOverflow(TrueSide); 691 APInt FalseResult = getSizeWithOverflow(FalseSide); 692 693 if (TrueResult == FalseResult) { 694 return TrueSide; 695 } 696 if (Options.EvalMode == ObjectSizeOpts::Mode::Min) { 697 if (TrueResult.slt(FalseResult)) 698 return TrueSide; 699 return FalseSide; 700 } 701 if (Options.EvalMode == ObjectSizeOpts::Mode::Max) { 702 if (TrueResult.sgt(FalseResult)) 703 return TrueSide; 704 return FalseSide; 705 } 706 } 707 return unknown(); 708 } 709 710 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 711 return std::make_pair(Zero, Zero); 712 } 713 714 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 715 DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n'); 716 return unknown(); 717 } 718 719 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 720 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 721 bool RoundToAlign) 722 : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)), 723 RoundToAlign(RoundToAlign) { 724 // IntTy and Zero must be set for each compute() since the address space may 725 // be different for later objects. 726 } 727 728 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 729 // XXX - Are vectors of pointers possible here? 730 IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 731 Zero = ConstantInt::get(IntTy, 0); 732 733 SizeOffsetEvalType Result = compute_(V); 734 735 if (!bothKnown(Result)) { 736 // Erase everything that was computed in this iteration from the cache, so 737 // that no dangling references are left behind. We could be a bit smarter if 738 // we kept a dependency graph. It's probably not worth the complexity. 739 for (const Value *SeenVal : SeenVals) { 740 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); 741 // non-computable results can be safely cached 742 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 743 CacheMap.erase(CacheIt); 744 } 745 } 746 747 SeenVals.clear(); 748 return Result; 749 } 750 751 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 752 ObjectSizeOpts ObjSizeOptions; 753 ObjSizeOptions.RoundToAlign = RoundToAlign; 754 755 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, ObjSizeOptions); 756 SizeOffsetType Const = Visitor.compute(V); 757 if (Visitor.bothKnown(Const)) 758 return std::make_pair(ConstantInt::get(Context, Const.first), 759 ConstantInt::get(Context, Const.second)); 760 761 V = V->stripPointerCasts(); 762 763 // Check cache. 764 CacheMapTy::iterator CacheIt = CacheMap.find(V); 765 if (CacheIt != CacheMap.end()) 766 return CacheIt->second; 767 768 // Always generate code immediately before the instruction being 769 // processed, so that the generated code dominates the same BBs. 770 BuilderTy::InsertPointGuard Guard(Builder); 771 if (Instruction *I = dyn_cast<Instruction>(V)) 772 Builder.SetInsertPoint(I); 773 774 // Now compute the size and offset. 775 SizeOffsetEvalType Result; 776 777 // Record the pointers that were handled in this run, so that they can be 778 // cleaned later if something fails. We also use this set to break cycles that 779 // can occur in dead code. 780 if (!SeenVals.insert(V).second) { 781 Result = unknown(); 782 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 783 Result = visitGEPOperator(*GEP); 784 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 785 Result = visit(*I); 786 } else if (isa<Argument>(V) || 787 (isa<ConstantExpr>(V) && 788 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 789 isa<GlobalAlias>(V) || 790 isa<GlobalVariable>(V)) { 791 // Ignore values where we cannot do more than ObjectSizeVisitor. 792 Result = unknown(); 793 } else { 794 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " 795 << *V << '\n'); 796 Result = unknown(); 797 } 798 799 // Don't reuse CacheIt since it may be invalid at this point. 800 CacheMap[V] = Result; 801 return Result; 802 } 803 804 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 805 if (!I.getAllocatedType()->isSized()) 806 return unknown(); 807 808 // must be a VLA 809 assert(I.isArrayAllocation()); 810 Value *ArraySize = I.getArraySize(); 811 Value *Size = ConstantInt::get(ArraySize->getType(), 812 DL.getTypeAllocSize(I.getAllocatedType())); 813 Size = Builder.CreateMul(Size, ArraySize); 814 return std::make_pair(Size, Zero); 815 } 816 817 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) { 818 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI); 819 if (!FnData) 820 return unknown(); 821 822 // Handle strdup-like functions separately. 823 if (FnData->AllocTy == StrDupLike) { 824 // TODO 825 return unknown(); 826 } 827 828 Value *FirstArg = CS.getArgument(FnData->FstParam); 829 FirstArg = Builder.CreateZExt(FirstArg, IntTy); 830 if (FnData->SndParam < 0) 831 return std::make_pair(FirstArg, Zero); 832 833 Value *SecondArg = CS.getArgument(FnData->SndParam); 834 SecondArg = Builder.CreateZExt(SecondArg, IntTy); 835 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 836 return std::make_pair(Size, Zero); 837 838 // TODO: handle more standard functions (+ wchar cousins): 839 // - strdup / strndup 840 // - strcpy / strncpy 841 // - strcat / strncat 842 // - memcpy / memmove 843 // - strcat / strncat 844 // - memset 845 } 846 847 SizeOffsetEvalType 848 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 849 return unknown(); 850 } 851 852 SizeOffsetEvalType 853 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 854 return unknown(); 855 } 856 857 SizeOffsetEvalType 858 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 859 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 860 if (!bothKnown(PtrData)) 861 return unknown(); 862 863 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 864 Offset = Builder.CreateAdd(PtrData.second, Offset); 865 return std::make_pair(PtrData.first, Offset); 866 } 867 868 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 869 // clueless 870 return unknown(); 871 } 872 873 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { 874 return unknown(); 875 } 876 877 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 878 // Create 2 PHIs: one for size and another for offset. 879 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 880 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 881 882 // Insert right away in the cache to handle recursive PHIs. 883 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 884 885 // Compute offset/size for each PHI incoming pointer. 886 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 887 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt()); 888 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 889 890 if (!bothKnown(EdgeData)) { 891 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); 892 OffsetPHI->eraseFromParent(); 893 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); 894 SizePHI->eraseFromParent(); 895 return unknown(); 896 } 897 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); 898 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); 899 } 900 901 Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp; 902 if ((Tmp = SizePHI->hasConstantValue())) { 903 Size = Tmp; 904 SizePHI->replaceAllUsesWith(Size); 905 SizePHI->eraseFromParent(); 906 } 907 if ((Tmp = OffsetPHI->hasConstantValue())) { 908 Offset = Tmp; 909 OffsetPHI->replaceAllUsesWith(Offset); 910 OffsetPHI->eraseFromParent(); 911 } 912 return std::make_pair(Size, Offset); 913 } 914 915 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 916 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 917 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 918 919 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 920 return unknown(); 921 if (TrueSide == FalseSide) 922 return TrueSide; 923 924 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 925 FalseSide.first); 926 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 927 FalseSide.second); 928 return std::make_pair(Size, Offset); 929 } 930 931 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 932 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n'); 933 return unknown(); 934 } 935