1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions identifies calls to builtin functions that allocate
11 // or free memory.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/MemoryBuiltins.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/Analysis/TargetFolder.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <utility>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "memory-builtins"
52 
53 enum AllocType : uint8_t {
54   OpNewLike          = 1<<0, // allocates; never returns null
55   MallocLike         = 1<<1 | OpNewLike, // allocates; may return null
56   CallocLike         = 1<<2, // allocates + bzero
57   ReallocLike        = 1<<3, // reallocates
58   StrDupLike         = 1<<4,
59   MallocOrCallocLike = MallocLike | CallocLike,
60   AllocLike          = MallocLike | CallocLike | StrDupLike,
61   AnyAlloc           = AllocLike | ReallocLike
62 };
63 
64 struct AllocFnsTy {
65   AllocType AllocTy;
66   unsigned NumParams;
67   // First and Second size parameters (or -1 if unused)
68   int FstParam, SndParam;
69 };
70 
71 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
72 // know which functions are nounwind, noalias, nocapture parameters, etc.
73 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
74   {LibFunc_malloc,              {MallocLike,  1, 0,  -1}},
75   {LibFunc_valloc,              {MallocLike,  1, 0,  -1}},
76   {LibFunc_Znwj,                {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
77   {LibFunc_ZnwjRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
78   {LibFunc_Znwm,                {OpNewLike,   1, 0,  -1}}, // new(unsigned long)
79   {LibFunc_ZnwmRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned long, nothrow)
80   {LibFunc_Znaj,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
81   {LibFunc_ZnajRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
82   {LibFunc_Znam,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned long)
83   {LibFunc_ZnamRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned long, nothrow)
84   {LibFunc_msvc_new_int,         {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
85   {LibFunc_msvc_new_int_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
86   {LibFunc_msvc_new_longlong,         {OpNewLike,   1, 0,  -1}}, // new(unsigned long long)
87   {LibFunc_msvc_new_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned long long, nothrow)
88   {LibFunc_msvc_new_array_int,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
89   {LibFunc_msvc_new_array_int_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
90   {LibFunc_msvc_new_array_longlong,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned long long)
91   {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned long long, nothrow)
92   {LibFunc_calloc,              {CallocLike,  2, 0,   1}},
93   {LibFunc_realloc,             {ReallocLike, 2, 1,  -1}},
94   {LibFunc_reallocf,            {ReallocLike, 2, 1,  -1}},
95   {LibFunc_strdup,              {StrDupLike,  1, -1, -1}},
96   {LibFunc_strndup,             {StrDupLike,  2, 1,  -1}}
97   // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
98 };
99 
100 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast,
101                                          bool &IsNoBuiltin) {
102   // Don't care about intrinsics in this case.
103   if (isa<IntrinsicInst>(V))
104     return nullptr;
105 
106   if (LookThroughBitCast)
107     V = V->stripPointerCasts();
108 
109   ImmutableCallSite CS(V);
110   if (!CS.getInstruction())
111     return nullptr;
112 
113   IsNoBuiltin = CS.isNoBuiltin();
114 
115   if (const Function *Callee = CS.getCalledFunction())
116     return Callee;
117   return nullptr;
118 }
119 
120 /// Returns the allocation data for the given value if it's either a call to a
121 /// known allocation function, or a call to a function with the allocsize
122 /// attribute.
123 static Optional<AllocFnsTy>
124 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
125                              const TargetLibraryInfo *TLI) {
126   // Make sure that the function is available.
127   StringRef FnName = Callee->getName();
128   LibFunc TLIFn;
129   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
130     return None;
131 
132   const auto *Iter = find_if(
133       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
134         return P.first == TLIFn;
135       });
136 
137   if (Iter == std::end(AllocationFnData))
138     return None;
139 
140   const AllocFnsTy *FnData = &Iter->second;
141   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
142     return None;
143 
144   // Check function prototype.
145   int FstParam = FnData->FstParam;
146   int SndParam = FnData->SndParam;
147   FunctionType *FTy = Callee->getFunctionType();
148 
149   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
150       FTy->getNumParams() == FnData->NumParams &&
151       (FstParam < 0 ||
152        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
153         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
154       (SndParam < 0 ||
155        FTy->getParamType(SndParam)->isIntegerTy(32) ||
156        FTy->getParamType(SndParam)->isIntegerTy(64)))
157     return *FnData;
158   return None;
159 }
160 
161 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
162                                               const TargetLibraryInfo *TLI,
163                                               bool LookThroughBitCast = false) {
164   bool IsNoBuiltinCall;
165   if (const Function *Callee =
166           getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
167     if (!IsNoBuiltinCall)
168       return getAllocationDataForFunction(Callee, AllocTy, TLI);
169   return None;
170 }
171 
172 static Optional<AllocFnsTy> getAllocationSize(const Value *V,
173                                               const TargetLibraryInfo *TLI) {
174   bool IsNoBuiltinCall;
175   const Function *Callee =
176       getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
177   if (!Callee)
178     return None;
179 
180   // Prefer to use existing information over allocsize. This will give us an
181   // accurate AllocTy.
182   if (!IsNoBuiltinCall)
183     if (Optional<AllocFnsTy> Data =
184             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
185       return Data;
186 
187   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
188   if (Attr == Attribute())
189     return None;
190 
191   std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
192 
193   AllocFnsTy Result;
194   // Because allocsize only tells us how many bytes are allocated, we're not
195   // really allowed to assume anything, so we use MallocLike.
196   Result.AllocTy = MallocLike;
197   Result.NumParams = Callee->getNumOperands();
198   Result.FstParam = Args.first;
199   Result.SndParam = Args.second.getValueOr(-1);
200   return Result;
201 }
202 
203 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
204   ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
205   return CS && CS.hasRetAttr(Attribute::NoAlias);
206 }
207 
208 /// \brief Tests if a value is a call or invoke to a library function that
209 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
210 /// like).
211 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
212                           bool LookThroughBitCast) {
213   return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue();
214 }
215 
216 /// \brief Tests if a value is a call or invoke to a function that returns a
217 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
218 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
219                        bool LookThroughBitCast) {
220   // it's safe to consider realloc as noalias since accessing the original
221   // pointer is undefined behavior
222   return isAllocationFn(V, TLI, LookThroughBitCast) ||
223          hasNoAliasAttr(V, LookThroughBitCast);
224 }
225 
226 /// \brief Tests if a value is a call or invoke to a library function that
227 /// allocates uninitialized memory (such as malloc).
228 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
229                           bool LookThroughBitCast) {
230   return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue();
231 }
232 
233 /// \brief Tests if a value is a call or invoke to a library function that
234 /// allocates zero-filled memory (such as calloc).
235 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
236                           bool LookThroughBitCast) {
237   return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue();
238 }
239 
240 /// \brief Tests if a value is a call or invoke to a library function that
241 /// allocates memory similar to malloc or calloc.
242 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
243                                   bool LookThroughBitCast) {
244   return getAllocationData(V, MallocOrCallocLike, TLI,
245                            LookThroughBitCast).hasValue();
246 }
247 
248 /// \brief Tests if a value is a call or invoke to a library function that
249 /// allocates memory (either malloc, calloc, or strdup like).
250 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
251                          bool LookThroughBitCast) {
252   return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue();
253 }
254 
255 /// extractMallocCall - Returns the corresponding CallInst if the instruction
256 /// is a malloc call.  Since CallInst::CreateMalloc() only creates calls, we
257 /// ignore InvokeInst here.
258 const CallInst *llvm::extractMallocCall(const Value *I,
259                                         const TargetLibraryInfo *TLI) {
260   return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr;
261 }
262 
263 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
264                                const TargetLibraryInfo *TLI,
265                                bool LookThroughSExt = false) {
266   if (!CI)
267     return nullptr;
268 
269   // The size of the malloc's result type must be known to determine array size.
270   Type *T = getMallocAllocatedType(CI, TLI);
271   if (!T || !T->isSized())
272     return nullptr;
273 
274   unsigned ElementSize = DL.getTypeAllocSize(T);
275   if (StructType *ST = dyn_cast<StructType>(T))
276     ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
277 
278   // If malloc call's arg can be determined to be a multiple of ElementSize,
279   // return the multiple.  Otherwise, return NULL.
280   Value *MallocArg = CI->getArgOperand(0);
281   Value *Multiple = nullptr;
282   if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt))
283     return Multiple;
284 
285   return nullptr;
286 }
287 
288 /// getMallocType - Returns the PointerType resulting from the malloc call.
289 /// The PointerType depends on the number of bitcast uses of the malloc call:
290 ///   0: PointerType is the calls' return type.
291 ///   1: PointerType is the bitcast's result type.
292 ///  >1: Unique PointerType cannot be determined, return NULL.
293 PointerType *llvm::getMallocType(const CallInst *CI,
294                                  const TargetLibraryInfo *TLI) {
295   assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
296 
297   PointerType *MallocType = nullptr;
298   unsigned NumOfBitCastUses = 0;
299 
300   // Determine if CallInst has a bitcast use.
301   for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
302        UI != E;)
303     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
304       MallocType = cast<PointerType>(BCI->getDestTy());
305       NumOfBitCastUses++;
306     }
307 
308   // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
309   if (NumOfBitCastUses == 1)
310     return MallocType;
311 
312   // Malloc call was not bitcast, so type is the malloc function's return type.
313   if (NumOfBitCastUses == 0)
314     return cast<PointerType>(CI->getType());
315 
316   // Type could not be determined.
317   return nullptr;
318 }
319 
320 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
321 /// The Type depends on the number of bitcast uses of the malloc call:
322 ///   0: PointerType is the malloc calls' return type.
323 ///   1: PointerType is the bitcast's result type.
324 ///  >1: Unique PointerType cannot be determined, return NULL.
325 Type *llvm::getMallocAllocatedType(const CallInst *CI,
326                                    const TargetLibraryInfo *TLI) {
327   PointerType *PT = getMallocType(CI, TLI);
328   return PT ? PT->getElementType() : nullptr;
329 }
330 
331 /// getMallocArraySize - Returns the array size of a malloc call.  If the
332 /// argument passed to malloc is a multiple of the size of the malloced type,
333 /// then return that multiple.  For non-array mallocs, the multiple is
334 /// constant 1.  Otherwise, return NULL for mallocs whose array size cannot be
335 /// determined.
336 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
337                                 const TargetLibraryInfo *TLI,
338                                 bool LookThroughSExt) {
339   assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
340   return computeArraySize(CI, DL, TLI, LookThroughSExt);
341 }
342 
343 /// extractCallocCall - Returns the corresponding CallInst if the instruction
344 /// is a calloc call.
345 const CallInst *llvm::extractCallocCall(const Value *I,
346                                         const TargetLibraryInfo *TLI) {
347   return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
348 }
349 
350 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
351 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
352   bool IsNoBuiltinCall;
353   const Function *Callee =
354       getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
355   if (Callee == nullptr || IsNoBuiltinCall)
356     return nullptr;
357 
358   StringRef FnName = Callee->getName();
359   LibFunc TLIFn;
360   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
361     return nullptr;
362 
363   unsigned ExpectedNumParams;
364   if (TLIFn == LibFunc_free ||
365       TLIFn == LibFunc_ZdlPv || // operator delete(void*)
366       TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
367       TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
368       TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
369       TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
370       TLIFn == LibFunc_msvc_delete_array_ptr64)   // operator delete[](void*)
371     ExpectedNumParams = 1;
372   else if (TLIFn == LibFunc_ZdlPvj ||              // delete(void*, uint)
373            TLIFn == LibFunc_ZdlPvm ||              // delete(void*, ulong)
374            TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
375            TLIFn == LibFunc_ZdaPvj ||              // delete[](void*, uint)
376            TLIFn == LibFunc_ZdaPvm ||              // delete[](void*, ulong)
377            TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
378            TLIFn == LibFunc_msvc_delete_ptr32_int ||      // delete(void*, uint)
379            TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
380            TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
381            TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
382            TLIFn == LibFunc_msvc_delete_array_ptr32_int ||      // delete[](void*, uint)
383            TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
384            TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
385            TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow)   // delete[](void*, nothrow)
386     ExpectedNumParams = 2;
387   else
388     return nullptr;
389 
390   // Check free prototype.
391   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
392   // attribute will exist.
393   FunctionType *FTy = Callee->getFunctionType();
394   if (!FTy->getReturnType()->isVoidTy())
395     return nullptr;
396   if (FTy->getNumParams() != ExpectedNumParams)
397     return nullptr;
398   if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext()))
399     return nullptr;
400 
401   return dyn_cast<CallInst>(I);
402 }
403 
404 //===----------------------------------------------------------------------===//
405 //  Utility functions to compute size of objects.
406 //
407 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
408   if (Data.second.isNegative() || Data.first.ult(Data.second))
409     return APInt(Data.first.getBitWidth(), 0);
410   return Data.first - Data.second;
411 }
412 
413 /// \brief Compute the size of the object pointed by Ptr. Returns true and the
414 /// object size in Size if successful, and false otherwise.
415 /// If RoundToAlign is true, then Size is rounded up to the alignment of
416 /// allocas, byval arguments, and global variables.
417 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
418                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
419   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
420   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
421   if (!Visitor.bothKnown(Data))
422     return false;
423 
424   Size = getSizeWithOverflow(Data).getZExtValue();
425   return true;
426 }
427 
428 ConstantInt *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
429                                        const DataLayout &DL,
430                                        const TargetLibraryInfo *TLI,
431                                        bool MustSucceed) {
432   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
433          "ObjectSize must be a call to llvm.objectsize!");
434 
435   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
436   ObjectSizeOpts EvalOptions;
437   // Unless we have to fold this to something, try to be as accurate as
438   // possible.
439   if (MustSucceed)
440     EvalOptions.EvalMode =
441         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
442   else
443     EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
444 
445   EvalOptions.NullIsUnknownSize =
446       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
447 
448   // FIXME: Does it make sense to just return a failure value if the size won't
449   // fit in the output and `!MustSucceed`?
450   uint64_t Size;
451   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
452   if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
453       isUIntN(ResultType->getBitWidth(), Size))
454     return ConstantInt::get(ResultType, Size);
455 
456   if (!MustSucceed)
457     return nullptr;
458 
459   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
460 }
461 
462 STATISTIC(ObjectVisitorArgument,
463           "Number of arguments with unsolved size and offset");
464 STATISTIC(ObjectVisitorLoad,
465           "Number of load instructions with unsolved size and offset");
466 
467 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
468   if (Options.RoundToAlign && Align)
469     return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align));
470   return Size;
471 }
472 
473 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
474                                                  const TargetLibraryInfo *TLI,
475                                                  LLVMContext &Context,
476                                                  ObjectSizeOpts Options)
477     : DL(DL), TLI(TLI), Options(Options) {
478   // Pointer size must be rechecked for each object visited since it could have
479   // a different address space.
480 }
481 
482 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
483   IntTyBits = DL.getPointerTypeSizeInBits(V->getType());
484   Zero = APInt::getNullValue(IntTyBits);
485 
486   V = V->stripPointerCasts();
487   if (Instruction *I = dyn_cast<Instruction>(V)) {
488     // If we have already seen this instruction, bail out. Cycles can happen in
489     // unreachable code after constant propagation.
490     if (!SeenInsts.insert(I).second)
491       return unknown();
492 
493     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
494       return visitGEPOperator(*GEP);
495     return visit(*I);
496   }
497   if (Argument *A = dyn_cast<Argument>(V))
498     return visitArgument(*A);
499   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
500     return visitConstantPointerNull(*P);
501   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
502     return visitGlobalAlias(*GA);
503   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
504     return visitGlobalVariable(*GV);
505   if (UndefValue *UV = dyn_cast<UndefValue>(V))
506     return visitUndefValue(*UV);
507   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
508     if (CE->getOpcode() == Instruction::IntToPtr)
509       return unknown(); // clueless
510     if (CE->getOpcode() == Instruction::GetElementPtr)
511       return visitGEPOperator(cast<GEPOperator>(*CE));
512   }
513 
514   DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V
515         << '\n');
516   return unknown();
517 }
518 
519 /// When we're compiling N-bit code, and the user uses parameters that are
520 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
521 /// trouble with APInt size issues. This function handles resizing + overflow
522 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
523 /// I's value.
524 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
525   // More bits than we can handle. Checking the bit width isn't necessary, but
526   // it's faster than checking active bits, and should give `false` in the
527   // vast majority of cases.
528   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
529     return false;
530   if (I.getBitWidth() != IntTyBits)
531     I = I.zextOrTrunc(IntTyBits);
532   return true;
533 }
534 
535 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
536   if (!I.getAllocatedType()->isSized())
537     return unknown();
538 
539   APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
540   if (!I.isArrayAllocation())
541     return std::make_pair(align(Size, I.getAlignment()), Zero);
542 
543   Value *ArraySize = I.getArraySize();
544   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
545     APInt NumElems = C->getValue();
546     if (!CheckedZextOrTrunc(NumElems))
547       return unknown();
548 
549     bool Overflow;
550     Size = Size.umul_ov(NumElems, Overflow);
551     return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()),
552                                                  Zero);
553   }
554   return unknown();
555 }
556 
557 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
558   // No interprocedural analysis is done at the moment.
559   if (!A.hasByValOrInAllocaAttr()) {
560     ++ObjectVisitorArgument;
561     return unknown();
562   }
563   PointerType *PT = cast<PointerType>(A.getType());
564   APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType()));
565   return std::make_pair(align(Size, A.getParamAlignment()), Zero);
566 }
567 
568 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
569   Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
570   if (!FnData)
571     return unknown();
572 
573   // Handle strdup-like functions separately.
574   if (FnData->AllocTy == StrDupLike) {
575     APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
576     if (!Size)
577       return unknown();
578 
579     // Strndup limits strlen.
580     if (FnData->FstParam > 0) {
581       ConstantInt *Arg =
582           dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
583       if (!Arg)
584         return unknown();
585 
586       APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
587       if (Size.ugt(MaxSize))
588         Size = MaxSize + 1;
589     }
590     return std::make_pair(Size, Zero);
591   }
592 
593   ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
594   if (!Arg)
595     return unknown();
596 
597   APInt Size = Arg->getValue();
598   if (!CheckedZextOrTrunc(Size))
599     return unknown();
600 
601   // Size is determined by just 1 parameter.
602   if (FnData->SndParam < 0)
603     return std::make_pair(Size, Zero);
604 
605   Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
606   if (!Arg)
607     return unknown();
608 
609   APInt NumElems = Arg->getValue();
610   if (!CheckedZextOrTrunc(NumElems))
611     return unknown();
612 
613   bool Overflow;
614   Size = Size.umul_ov(NumElems, Overflow);
615   return Overflow ? unknown() : std::make_pair(Size, Zero);
616 
617   // TODO: handle more standard functions (+ wchar cousins):
618   // - strdup / strndup
619   // - strcpy / strncpy
620   // - strcat / strncat
621   // - memcpy / memmove
622   // - strcat / strncat
623   // - memset
624 }
625 
626 SizeOffsetType
627 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
628   if (Options.NullIsUnknownSize && CPN.getType()->getAddressSpace() == 0)
629     return unknown();
630   return std::make_pair(Zero, Zero);
631 }
632 
633 SizeOffsetType
634 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
635   return unknown();
636 }
637 
638 SizeOffsetType
639 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
640   // Easy cases were already folded by previous passes.
641   return unknown();
642 }
643 
644 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
645   SizeOffsetType PtrData = compute(GEP.getPointerOperand());
646   APInt Offset(IntTyBits, 0);
647   if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
648     return unknown();
649 
650   return std::make_pair(PtrData.first, PtrData.second + Offset);
651 }
652 
653 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
654   if (GA.isInterposable())
655     return unknown();
656   return compute(GA.getAliasee());
657 }
658 
659 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
660   if (!GV.hasDefinitiveInitializer())
661     return unknown();
662 
663   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType()));
664   return std::make_pair(align(Size, GV.getAlignment()), Zero);
665 }
666 
667 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
668   // clueless
669   return unknown();
670 }
671 
672 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
673   ++ObjectVisitorLoad;
674   return unknown();
675 }
676 
677 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
678   // too complex to analyze statically.
679   return unknown();
680 }
681 
682 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
683   SizeOffsetType TrueSide  = compute(I.getTrueValue());
684   SizeOffsetType FalseSide = compute(I.getFalseValue());
685   if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
686     if (TrueSide == FalseSide) {
687         return TrueSide;
688     }
689 
690     APInt TrueResult = getSizeWithOverflow(TrueSide);
691     APInt FalseResult = getSizeWithOverflow(FalseSide);
692 
693     if (TrueResult == FalseResult) {
694       return TrueSide;
695     }
696     if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
697       if (TrueResult.slt(FalseResult))
698         return TrueSide;
699       return FalseSide;
700     }
701     if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
702       if (TrueResult.sgt(FalseResult))
703         return TrueSide;
704       return FalseSide;
705     }
706   }
707   return unknown();
708 }
709 
710 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
711   return std::make_pair(Zero, Zero);
712 }
713 
714 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
715   DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n');
716   return unknown();
717 }
718 
719 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
720     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
721     bool RoundToAlign)
722     : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)),
723       RoundToAlign(RoundToAlign) {
724   // IntTy and Zero must be set for each compute() since the address space may
725   // be different for later objects.
726 }
727 
728 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
729   // XXX - Are vectors of pointers possible here?
730   IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
731   Zero = ConstantInt::get(IntTy, 0);
732 
733   SizeOffsetEvalType Result = compute_(V);
734 
735   if (!bothKnown(Result)) {
736     // Erase everything that was computed in this iteration from the cache, so
737     // that no dangling references are left behind. We could be a bit smarter if
738     // we kept a dependency graph. It's probably not worth the complexity.
739     for (const Value *SeenVal : SeenVals) {
740       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
741       // non-computable results can be safely cached
742       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
743         CacheMap.erase(CacheIt);
744     }
745   }
746 
747   SeenVals.clear();
748   return Result;
749 }
750 
751 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
752   ObjectSizeOpts ObjSizeOptions;
753   ObjSizeOptions.RoundToAlign = RoundToAlign;
754 
755   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, ObjSizeOptions);
756   SizeOffsetType Const = Visitor.compute(V);
757   if (Visitor.bothKnown(Const))
758     return std::make_pair(ConstantInt::get(Context, Const.first),
759                           ConstantInt::get(Context, Const.second));
760 
761   V = V->stripPointerCasts();
762 
763   // Check cache.
764   CacheMapTy::iterator CacheIt = CacheMap.find(V);
765   if (CacheIt != CacheMap.end())
766     return CacheIt->second;
767 
768   // Always generate code immediately before the instruction being
769   // processed, so that the generated code dominates the same BBs.
770   BuilderTy::InsertPointGuard Guard(Builder);
771   if (Instruction *I = dyn_cast<Instruction>(V))
772     Builder.SetInsertPoint(I);
773 
774   // Now compute the size and offset.
775   SizeOffsetEvalType Result;
776 
777   // Record the pointers that were handled in this run, so that they can be
778   // cleaned later if something fails. We also use this set to break cycles that
779   // can occur in dead code.
780   if (!SeenVals.insert(V).second) {
781     Result = unknown();
782   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
783     Result = visitGEPOperator(*GEP);
784   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
785     Result = visit(*I);
786   } else if (isa<Argument>(V) ||
787              (isa<ConstantExpr>(V) &&
788               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
789              isa<GlobalAlias>(V) ||
790              isa<GlobalVariable>(V)) {
791     // Ignore values where we cannot do more than ObjectSizeVisitor.
792     Result = unknown();
793   } else {
794     DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: "
795           << *V << '\n');
796     Result = unknown();
797   }
798 
799   // Don't reuse CacheIt since it may be invalid at this point.
800   CacheMap[V] = Result;
801   return Result;
802 }
803 
804 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
805   if (!I.getAllocatedType()->isSized())
806     return unknown();
807 
808   // must be a VLA
809   assert(I.isArrayAllocation());
810   Value *ArraySize = I.getArraySize();
811   Value *Size = ConstantInt::get(ArraySize->getType(),
812                                  DL.getTypeAllocSize(I.getAllocatedType()));
813   Size = Builder.CreateMul(Size, ArraySize);
814   return std::make_pair(Size, Zero);
815 }
816 
817 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
818   Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
819   if (!FnData)
820     return unknown();
821 
822   // Handle strdup-like functions separately.
823   if (FnData->AllocTy == StrDupLike) {
824     // TODO
825     return unknown();
826   }
827 
828   Value *FirstArg = CS.getArgument(FnData->FstParam);
829   FirstArg = Builder.CreateZExt(FirstArg, IntTy);
830   if (FnData->SndParam < 0)
831     return std::make_pair(FirstArg, Zero);
832 
833   Value *SecondArg = CS.getArgument(FnData->SndParam);
834   SecondArg = Builder.CreateZExt(SecondArg, IntTy);
835   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
836   return std::make_pair(Size, Zero);
837 
838   // TODO: handle more standard functions (+ wchar cousins):
839   // - strdup / strndup
840   // - strcpy / strncpy
841   // - strcat / strncat
842   // - memcpy / memmove
843   // - strcat / strncat
844   // - memset
845 }
846 
847 SizeOffsetEvalType
848 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
849   return unknown();
850 }
851 
852 SizeOffsetEvalType
853 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
854   return unknown();
855 }
856 
857 SizeOffsetEvalType
858 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
859   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
860   if (!bothKnown(PtrData))
861     return unknown();
862 
863   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
864   Offset = Builder.CreateAdd(PtrData.second, Offset);
865   return std::make_pair(PtrData.first, Offset);
866 }
867 
868 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
869   // clueless
870   return unknown();
871 }
872 
873 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
874   return unknown();
875 }
876 
877 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
878   // Create 2 PHIs: one for size and another for offset.
879   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
880   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
881 
882   // Insert right away in the cache to handle recursive PHIs.
883   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
884 
885   // Compute offset/size for each PHI incoming pointer.
886   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
887     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
888     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
889 
890     if (!bothKnown(EdgeData)) {
891       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
892       OffsetPHI->eraseFromParent();
893       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
894       SizePHI->eraseFromParent();
895       return unknown();
896     }
897     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
898     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
899   }
900 
901   Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp;
902   if ((Tmp = SizePHI->hasConstantValue())) {
903     Size = Tmp;
904     SizePHI->replaceAllUsesWith(Size);
905     SizePHI->eraseFromParent();
906   }
907   if ((Tmp = OffsetPHI->hasConstantValue())) {
908     Offset = Tmp;
909     OffsetPHI->replaceAllUsesWith(Offset);
910     OffsetPHI->eraseFromParent();
911   }
912   return std::make_pair(Size, Offset);
913 }
914 
915 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
916   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
917   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
918 
919   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
920     return unknown();
921   if (TrueSide == FalseSide)
922     return TrueSide;
923 
924   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
925                                      FalseSide.first);
926   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
927                                        FalseSide.second);
928   return std::make_pair(Size, Offset);
929 }
930 
931 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
932   DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n');
933   return unknown();
934 }
935