1 //===- MLInlineAdvisor.cpp - machine learned InlineAdvisor ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface between the inliner and a learned model. 10 // It delegates model evaluation to either the AOT compiled model (the 11 // 'release' mode) or a runtime-loaded model (the 'development' case). 12 // 13 //===----------------------------------------------------------------------===// 14 #include "llvm/Analysis/MLInlineAdvisor.h" 15 #include "llvm/ADT/SCCIterator.h" 16 #include "llvm/Analysis/AssumptionCache.h" 17 #include "llvm/Analysis/CallGraph.h" 18 #include "llvm/Analysis/FunctionPropertiesAnalysis.h" 19 #include "llvm/Analysis/InlineCost.h" 20 #include "llvm/Analysis/InlineModelFeatureMaps.h" 21 #include "llvm/Analysis/LazyCallGraph.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/MLModelRunner.h" 24 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/IR/InstIterator.h" 27 #include "llvm/IR/PassManager.h" 28 #include "llvm/Support/CommandLine.h" 29 30 using namespace llvm; 31 32 #if defined(LLVM_HAVE_TF_AOT_INLINERSIZEMODEL) 33 #include "llvm/Analysis/ReleaseModeModelRunner.h" 34 // codegen-ed file 35 #include "InlinerSizeModel.h" // NOLINT 36 37 std::unique_ptr<InlineAdvisor> 38 llvm::getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM) { 39 auto AOTRunner = 40 std::make_unique<ReleaseModeModelRunner<llvm::InlinerSizeModel>>( 41 M.getContext(), FeatureMap, DecisionName); 42 return std::make_unique<MLInlineAdvisor>(M, MAM, std::move(AOTRunner)); 43 } 44 #endif 45 46 #define DEBUG_TYPE "inline-ml" 47 48 static cl::opt<float> SizeIncreaseThreshold( 49 "ml-advisor-size-increase-threshold", cl::Hidden, 50 cl::desc("Maximum factor by which expected native size may increase before " 51 "blocking any further inlining."), 52 cl::init(2.0)); 53 54 // clang-format off 55 const std::array<TensorSpec, NumberOfFeatures> llvm::FeatureMap{ 56 #define POPULATE_NAMES(_, NAME) TensorSpec::createSpec<int64_t>(NAME, {1} ), 57 // InlineCost features - these must come first 58 INLINE_COST_FEATURE_ITERATOR(POPULATE_NAMES) 59 #undef POPULATE_NAMES 60 61 // Non-cost features 62 #define POPULATE_NAMES(_, NAME, __) TensorSpec::createSpec<int64_t>(NAME, {1} ), 63 INLINE_FEATURE_ITERATOR(POPULATE_NAMES) 64 #undef POPULATE_NAMES 65 }; 66 // clang-format on 67 68 const char *const llvm::DecisionName = "inlining_decision"; 69 const char *const llvm::DefaultDecisionName = "inlining_default"; 70 const char *const llvm::RewardName = "delta_size"; 71 72 CallBase *getInlinableCS(Instruction &I) { 73 if (auto *CS = dyn_cast<CallBase>(&I)) 74 if (Function *Callee = CS->getCalledFunction()) { 75 if (!Callee->isDeclaration()) { 76 return CS; 77 } 78 } 79 return nullptr; 80 } 81 82 MLInlineAdvisor::MLInlineAdvisor(Module &M, ModuleAnalysisManager &MAM, 83 std::unique_ptr<MLModelRunner> Runner) 84 : InlineAdvisor( 85 M, MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()), 86 ModelRunner(std::move(Runner)), 87 CG(MAM.getResult<LazyCallGraphAnalysis>(M)), 88 InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize) { 89 assert(ModelRunner); 90 91 // Extract the 'call site height' feature - the position of a call site 92 // relative to the farthest statically reachable SCC node. We don't mutate 93 // this value while inlining happens. Empirically, this feature proved 94 // critical in behavioral cloning - i.e. training a model to mimic the manual 95 // heuristic's decisions - and, thus, equally important for training for 96 // improvement. 97 CallGraph CGraph(M); 98 for (auto I = scc_begin(&CGraph); !I.isAtEnd(); ++I) { 99 const std::vector<CallGraphNode *> &CGNodes = *I; 100 unsigned Level = 0; 101 for (auto *CGNode : CGNodes) { 102 Function *F = CGNode->getFunction(); 103 if (!F || F->isDeclaration()) 104 continue; 105 for (auto &I : instructions(F)) { 106 if (auto *CS = getInlinableCS(I)) { 107 auto *Called = CS->getCalledFunction(); 108 auto Pos = FunctionLevels.find(&CG.get(*Called)); 109 // In bottom up traversal, an inlinable callee is either in the 110 // same SCC, or to a function in a visited SCC. So not finding its 111 // level means we haven't visited it yet, meaning it's in this SCC. 112 if (Pos == FunctionLevels.end()) 113 continue; 114 Level = std::max(Level, Pos->second + 1); 115 } 116 } 117 } 118 for (auto *CGNode : CGNodes) { 119 Function *F = CGNode->getFunction(); 120 if (F && !F->isDeclaration()) 121 FunctionLevels[&CG.get(*F)] = Level; 122 } 123 } 124 for (auto KVP : FunctionLevels) { 125 AllNodes.insert(KVP.first); 126 EdgeCount += getLocalCalls(KVP.first->getFunction()); 127 } 128 NodeCount = AllNodes.size(); 129 } 130 131 unsigned MLInlineAdvisor::getInitialFunctionLevel(const Function &F) const { 132 return CG.lookup(F) ? FunctionLevels.at(CG.lookup(F)) : 0; 133 } 134 135 void MLInlineAdvisor::onPassEntry() { 136 if (ForceStop) 137 return; 138 FPICache.clear(); 139 // Function passes executed between InlinerPass runs may have changed the 140 // module-wide features. 141 // The cgscc pass manager rules are such that: 142 // - if a pass leads to merging SCCs, then the pipeline is restarted on the 143 // merged SCC 144 // - if a pass leads to splitting the SCC, then we continue with one of the 145 // splits 146 // This means that the NodesInLastSCC is a superset (not strict) of the nodes 147 // that subsequent passes would have processed 148 // - in addition, if new Nodes were created by a pass (e.g. CoroSplit), 149 // they'd be adjacent to Nodes in the last SCC. So we just need to check the 150 // boundary of Nodes in NodesInLastSCC for Nodes we haven't seen. We don't 151 // care about the nature of the Edge (call or ref). 152 NodeCount -= static_cast<int64_t>(NodesInLastSCC.size()); 153 while (!NodesInLastSCC.empty()) { 154 const auto *N = NodesInLastSCC.front(); 155 NodesInLastSCC.pop_front(); 156 // The Function wrapped by N could have been deleted since we last saw it. 157 if (N->isDead()) { 158 assert(!N->getFunction().isDeclaration()); 159 continue; 160 } 161 ++NodeCount; 162 EdgeCount += getLocalCalls(N->getFunction()); 163 for (const auto &E : *(*N)) { 164 const auto *AdjNode = &E.getNode(); 165 assert(!AdjNode->isDead() && !AdjNode->getFunction().isDeclaration()); 166 auto I = AllNodes.insert(AdjNode); 167 if (I.second) 168 NodesInLastSCC.push_back(AdjNode); 169 } 170 } 171 172 EdgeCount -= EdgesOfLastSeenNodes; 173 EdgesOfLastSeenNodes = 0; 174 } 175 176 void MLInlineAdvisor::onPassExit(LazyCallGraph::SCC *LastSCC) { 177 // No need to keep this around - function passes will invalidate it. 178 FPICache.clear(); 179 if (!LastSCC || ForceStop) 180 return; 181 // Keep track of the nodes and edges we last saw. Then, in onPassEntry, 182 // we update the node count and edge count from the subset of these nodes that 183 // survived. 184 assert(NodesInLastSCC.empty()); 185 assert(NodeCount >= LastSCC->size()); 186 EdgesOfLastSeenNodes = 0; 187 for (const auto &N : *LastSCC) { 188 assert(!N.isDead()); 189 EdgesOfLastSeenNodes += getLocalCalls(N.getFunction()); 190 NodesInLastSCC.push_back(&N); 191 } 192 assert(EdgeCount >= EdgesOfLastSeenNodes); 193 } 194 195 int64_t MLInlineAdvisor::getLocalCalls(Function &F) { 196 return getCachedFPI(F).DirectCallsToDefinedFunctions; 197 } 198 199 // Update the internal state of the advisor, and force invalidate feature 200 // analysis. Currently, we maintain minimal (and very simple) global state - the 201 // number of functions and the number of static calls. We also keep track of the 202 // total IR size in this module, to stop misbehaving policies at a certain bloat 203 // factor (SizeIncreaseThreshold) 204 void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice, 205 bool CalleeWasDeleted) { 206 assert(!ForceStop); 207 Function *Caller = Advice.getCaller(); 208 Function *Callee = Advice.getCallee(); 209 210 // The caller features aren't valid anymore. 211 { 212 PreservedAnalyses PA = PreservedAnalyses::all(); 213 PA.abandon<FunctionPropertiesAnalysis>(); 214 FAM.invalidate(*Caller, PA); 215 } 216 int64_t IRSizeAfter = 217 getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize); 218 CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize); 219 if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize) 220 ForceStop = true; 221 222 // We can delta-update module-wide features. We know the inlining only changed 223 // the caller, and maybe the callee (by deleting the latter). 224 // Nodes are simple to update. 225 // For edges, we 'forget' the edges that the caller and callee used to have 226 // before inlining, and add back what they currently have together. 227 int64_t NewCallerAndCalleeEdges = 228 getCachedFPI(*Caller).DirectCallsToDefinedFunctions; 229 230 if (CalleeWasDeleted) 231 --NodeCount; 232 else 233 NewCallerAndCalleeEdges += 234 getCachedFPI(*Callee).DirectCallsToDefinedFunctions; 235 EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges); 236 assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0); 237 } 238 239 int64_t MLInlineAdvisor::getModuleIRSize() const { 240 int64_t Ret = 0; 241 for (auto &F : M) 242 if (!F.isDeclaration()) 243 Ret += getIRSize(F); 244 return Ret; 245 } 246 247 FunctionPropertiesInfo &MLInlineAdvisor::getCachedFPI(Function &F) const { 248 auto InsertPair = 249 FPICache.insert(std::make_pair(&F, FunctionPropertiesInfo())); 250 if (!InsertPair.second) 251 return InsertPair.first->second; 252 InsertPair.first->second = FAM.getResult<FunctionPropertiesAnalysis>(F); 253 return InsertPair.first->second; 254 } 255 256 std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdviceImpl(CallBase &CB) { 257 auto &Caller = *CB.getCaller(); 258 auto &Callee = *CB.getCalledFunction(); 259 260 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 261 return FAM.getResult<AssumptionAnalysis>(F); 262 }; 263 auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee); 264 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller); 265 266 auto MandatoryKind = InlineAdvisor::getMandatoryKind(CB, FAM, ORE); 267 // If this is a "never inline" case, there won't be any changes to internal 268 // state we need to track, so we can just return the base InlineAdvice, which 269 // will do nothing interesting. 270 // Same thing if this is a recursive case. 271 if (MandatoryKind == InlineAdvisor::MandatoryInliningKind::Never || 272 &Caller == &Callee) 273 return getMandatoryAdvice(CB, false); 274 275 bool Mandatory = 276 MandatoryKind == InlineAdvisor::MandatoryInliningKind::Always; 277 278 // If we need to stop, we won't want to track anymore any state changes, so 279 // we just return the base InlineAdvice, which acts as a noop. 280 if (ForceStop) { 281 ORE.emit([&] { 282 return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB) 283 << "Won't attempt inlining because module size grew too much."; 284 }); 285 return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory); 286 } 287 288 int CostEstimate = 0; 289 if (!Mandatory) { 290 auto IsCallSiteInlinable = 291 llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache); 292 if (!IsCallSiteInlinable) { 293 // We can't inline this for correctness reasons, so return the base 294 // InlineAdvice, as we don't care about tracking any state changes (which 295 // won't happen). 296 return std::make_unique<InlineAdvice>(this, CB, ORE, false); 297 } 298 CostEstimate = *IsCallSiteInlinable; 299 } 300 301 const auto CostFeatures = 302 llvm::getInliningCostFeatures(CB, TIR, GetAssumptionCache); 303 if (!CostFeatures) { 304 return std::make_unique<InlineAdvice>(this, CB, ORE, false); 305 } 306 307 if (Mandatory) 308 return getMandatoryAdvice(CB, true); 309 310 auto NrCtantParams = 0; 311 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 312 NrCtantParams += (isa<Constant>(*I)); 313 } 314 315 auto &CallerBefore = getCachedFPI(Caller); 316 auto &CalleeBefore = getCachedFPI(Callee); 317 318 *ModelRunner->getTensor<int64_t>(FeatureIndex::CalleeBasicBlockCount) = 319 CalleeBefore.BasicBlockCount; 320 *ModelRunner->getTensor<int64_t>(FeatureIndex::CallSiteHeight) = 321 getInitialFunctionLevel(Caller); 322 *ModelRunner->getTensor<int64_t>(FeatureIndex::NodeCount) = NodeCount; 323 *ModelRunner->getTensor<int64_t>(FeatureIndex::NrCtantParams) = NrCtantParams; 324 *ModelRunner->getTensor<int64_t>(FeatureIndex::EdgeCount) = EdgeCount; 325 *ModelRunner->getTensor<int64_t>(FeatureIndex::CallerUsers) = 326 CallerBefore.Uses; 327 *ModelRunner->getTensor<int64_t>( 328 FeatureIndex::CallerConditionallyExecutedBlocks) = 329 CallerBefore.BlocksReachedFromConditionalInstruction; 330 *ModelRunner->getTensor<int64_t>(FeatureIndex::CallerBasicBlockCount) = 331 CallerBefore.BasicBlockCount; 332 *ModelRunner->getTensor<int64_t>( 333 FeatureIndex::CalleeConditionallyExecutedBlocks) = 334 CalleeBefore.BlocksReachedFromConditionalInstruction; 335 *ModelRunner->getTensor<int64_t>(FeatureIndex::CalleeUsers) = 336 CalleeBefore.Uses; 337 *ModelRunner->getTensor<int64_t>(FeatureIndex::CostEstimate) = CostEstimate; 338 339 // Add the cost features 340 for (size_t I = 0; 341 I < static_cast<size_t>(InlineCostFeatureIndex::NumberOfFeatures); ++I) { 342 *ModelRunner->getTensor<int64_t>(inlineCostFeatureToMlFeature( 343 static_cast<InlineCostFeatureIndex>(I))) = CostFeatures->at(I); 344 } 345 346 return getAdviceFromModel(CB, ORE); 347 } 348 349 std::unique_ptr<MLInlineAdvice> 350 MLInlineAdvisor::getAdviceFromModel(CallBase &CB, 351 OptimizationRemarkEmitter &ORE) { 352 return std::make_unique<MLInlineAdvice>( 353 this, CB, ORE, static_cast<bool>(ModelRunner->evaluate<int64_t>())); 354 } 355 356 std::unique_ptr<InlineAdvice> MLInlineAdvisor::getMandatoryAdvice(CallBase &CB, 357 bool Advice) { 358 // Make sure we track inlinings in all cases - mandatory or not. 359 if (Advice && !ForceStop) 360 return getMandatoryAdviceImpl(CB); 361 362 // If this is a "never inline" case, there won't be any changes to internal 363 // state we need to track, so we can just return the base InlineAdvice, which 364 // will do nothing interesting. 365 // Same if we are forced to stop - we don't track anymore. 366 return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), Advice); 367 } 368 369 const LoopInfo &MLInlineAdvisor::getLoopInfo(Function &F) const { 370 return FAM.getResult<LoopAnalysis>(F); 371 } 372 373 std::unique_ptr<MLInlineAdvice> 374 MLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) { 375 return std::make_unique<MLInlineAdvice>(this, CB, getCallerORE(CB), true); 376 } 377 378 MLInlineAdvice::MLInlineAdvice(MLInlineAdvisor *Advisor, CallBase &CB, 379 OptimizationRemarkEmitter &ORE, 380 bool Recommendation) 381 : InlineAdvice(Advisor, CB, ORE, Recommendation), 382 CallerIRSize(Advisor->isForcedToStop() ? 0 : Advisor->getIRSize(*Caller)), 383 CalleeIRSize(Advisor->isForcedToStop() ? 0 : Advisor->getIRSize(*Callee)), 384 CallerAndCalleeEdges(Advisor->isForcedToStop() 385 ? 0 386 : (Advisor->getLocalCalls(*Caller) + 387 Advisor->getLocalCalls(*Callee))), 388 PreInlineCallerFPI(Advisor->getCachedFPI(*Caller)) { 389 if (Recommendation) 390 FPU.emplace(Advisor->getCachedFPI(*getCaller()), CB); 391 } 392 393 void MLInlineAdvice::reportContextForRemark( 394 DiagnosticInfoOptimizationBase &OR) { 395 using namespace ore; 396 OR << NV("Callee", Callee->getName()); 397 for (size_t I = 0; I < NumberOfFeatures; ++I) 398 OR << NV(FeatureMap[I].name(), 399 *getAdvisor()->getModelRunner().getTensor<int64_t>(I)); 400 OR << NV("ShouldInline", isInliningRecommended()); 401 } 402 403 void MLInlineAdvice::updateCachedCallerFPI() { 404 FPU->finish(getAdvisor()->getLoopInfo(*Caller)); 405 } 406 407 void MLInlineAdvice::recordInliningImpl() { 408 updateCachedCallerFPI(); 409 ORE.emit([&]() { 410 OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block); 411 reportContextForRemark(R); 412 return R; 413 }); 414 getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ false); 415 } 416 417 void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() { 418 updateCachedCallerFPI(); 419 ORE.emit([&]() { 420 OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc, 421 Block); 422 reportContextForRemark(R); 423 return R; 424 }); 425 getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ true); 426 } 427 428 void MLInlineAdvice::recordUnsuccessfulInliningImpl( 429 const InlineResult &Result) { 430 getAdvisor()->getCachedFPI(*Caller) = PreInlineCallerFPI; 431 ORE.emit([&]() { 432 OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful", 433 DLoc, Block); 434 reportContextForRemark(R); 435 return R; 436 }); 437 } 438 void MLInlineAdvice::recordUnattemptedInliningImpl() { 439 assert(!FPU); 440 ORE.emit([&]() { 441 OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block); 442 reportContextForRemark(R); 443 return R; 444 }); 445 } 446