1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG.  Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/Analysis/LoopInfoImpl.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PassManager.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 using namespace llvm;
38 
39 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
40 template class llvm::LoopBase<BasicBlock, Loop>;
41 template class llvm::LoopInfoBase<BasicBlock, Loop>;
42 
43 // Always verify loopinfo if expensive checking is enabled.
44 #ifdef EXPENSIVE_CHECKS
45 bool llvm::VerifyLoopInfo = true;
46 #else
47 bool llvm::VerifyLoopInfo = false;
48 #endif
49 static cl::opt<bool, true>
50     VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
51                     cl::Hidden, cl::desc("Verify loop info (time consuming)"));
52 
53 //===----------------------------------------------------------------------===//
54 // Loop implementation
55 //
56 
57 bool Loop::isLoopInvariant(const Value *V) const {
58   if (const Instruction *I = dyn_cast<Instruction>(V))
59     return !contains(I);
60   return true; // All non-instructions are loop invariant
61 }
62 
63 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
64   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
65 }
66 
67 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
68                              Instruction *InsertPt) const {
69   if (Instruction *I = dyn_cast<Instruction>(V))
70     return makeLoopInvariant(I, Changed, InsertPt);
71   return true; // All non-instructions are loop-invariant.
72 }
73 
74 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
75                              Instruction *InsertPt) const {
76   // Test if the value is already loop-invariant.
77   if (isLoopInvariant(I))
78     return true;
79   if (!isSafeToSpeculativelyExecute(I))
80     return false;
81   if (I->mayReadFromMemory())
82     return false;
83   // EH block instructions are immobile.
84   if (I->isEHPad())
85     return false;
86   // Determine the insertion point, unless one was given.
87   if (!InsertPt) {
88     BasicBlock *Preheader = getLoopPreheader();
89     // Without a preheader, hoisting is not feasible.
90     if (!Preheader)
91       return false;
92     InsertPt = Preheader->getTerminator();
93   }
94   // Don't hoist instructions with loop-variant operands.
95   for (Value *Operand : I->operands())
96     if (!makeLoopInvariant(Operand, Changed, InsertPt))
97       return false;
98 
99   // Hoist.
100   I->moveBefore(InsertPt);
101 
102   // There is possibility of hoisting this instruction above some arbitrary
103   // condition. Any metadata defined on it can be control dependent on this
104   // condition. Conservatively strip it here so that we don't give any wrong
105   // information to the optimizer.
106   I->dropUnknownNonDebugMetadata();
107 
108   Changed = true;
109   return true;
110 }
111 
112 PHINode *Loop::getCanonicalInductionVariable() const {
113   BasicBlock *H = getHeader();
114 
115   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
116   pred_iterator PI = pred_begin(H);
117   assert(PI != pred_end(H) && "Loop must have at least one backedge!");
118   Backedge = *PI++;
119   if (PI == pred_end(H))
120     return nullptr; // dead loop
121   Incoming = *PI++;
122   if (PI != pred_end(H))
123     return nullptr; // multiple backedges?
124 
125   if (contains(Incoming)) {
126     if (contains(Backedge))
127       return nullptr;
128     std::swap(Incoming, Backedge);
129   } else if (!contains(Backedge))
130     return nullptr;
131 
132   // Loop over all of the PHI nodes, looking for a canonical indvar.
133   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
134     PHINode *PN = cast<PHINode>(I);
135     if (ConstantInt *CI =
136             dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
137       if (CI->isZero())
138         if (Instruction *Inc =
139                 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
140           if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
141             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
142               if (CI->isOne())
143                 return PN;
144   }
145   return nullptr;
146 }
147 
148 // Check that 'BB' doesn't have any uses outside of the 'L'
149 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
150                                DominatorTree &DT) {
151   for (const Instruction &I : BB) {
152     // Tokens can't be used in PHI nodes and live-out tokens prevent loop
153     // optimizations, so for the purposes of considered LCSSA form, we
154     // can ignore them.
155     if (I.getType()->isTokenTy())
156       continue;
157 
158     for (const Use &U : I.uses()) {
159       const Instruction *UI = cast<Instruction>(U.getUser());
160       const BasicBlock *UserBB = UI->getParent();
161       if (const PHINode *P = dyn_cast<PHINode>(UI))
162         UserBB = P->getIncomingBlock(U);
163 
164       // Check the current block, as a fast-path, before checking whether
165       // the use is anywhere in the loop.  Most values are used in the same
166       // block they are defined in.  Also, blocks not reachable from the
167       // entry are special; uses in them don't need to go through PHIs.
168       if (UserBB != &BB && !L.contains(UserBB) &&
169           DT.isReachableFromEntry(UserBB))
170         return false;
171     }
172   }
173   return true;
174 }
175 
176 bool Loop::isLCSSAForm(DominatorTree &DT) const {
177   // For each block we check that it doesn't have any uses outside of this loop.
178   return all_of(this->blocks(), [&](const BasicBlock *BB) {
179     return isBlockInLCSSAForm(*this, *BB, DT);
180   });
181 }
182 
183 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const {
184   // For each block we check that it doesn't have any uses outside of its
185   // innermost loop. This process will transitively guarantee that the current
186   // loop and all of the nested loops are in LCSSA form.
187   return all_of(this->blocks(), [&](const BasicBlock *BB) {
188     return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
189   });
190 }
191 
192 bool Loop::isLoopSimplifyForm() const {
193   // Normal-form loops have a preheader, a single backedge, and all of their
194   // exits have all their predecessors inside the loop.
195   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
196 }
197 
198 // Routines that reform the loop CFG and split edges often fail on indirectbr.
199 bool Loop::isSafeToClone() const {
200   // Return false if any loop blocks contain indirectbrs, or there are any calls
201   // to noduplicate functions.
202   for (BasicBlock *BB : this->blocks()) {
203     if (isa<IndirectBrInst>(BB->getTerminator()))
204       return false;
205 
206     for (Instruction &I : *BB)
207       if (auto CS = CallSite(&I))
208         if (CS.cannotDuplicate())
209           return false;
210   }
211   return true;
212 }
213 
214 MDNode *Loop::getLoopID() const {
215   MDNode *LoopID = nullptr;
216 
217   // Go through the latch blocks and check the terminator for the metadata.
218   SmallVector<BasicBlock *, 4> LatchesBlocks;
219   getLoopLatches(LatchesBlocks);
220   for (BasicBlock *BB : LatchesBlocks) {
221     TerminatorInst *TI = BB->getTerminator();
222     MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);
223 
224     if (!MD)
225       return nullptr;
226 
227     if (!LoopID)
228       LoopID = MD;
229     else if (MD != LoopID)
230       return nullptr;
231   }
232   if (!LoopID || LoopID->getNumOperands() == 0 ||
233       LoopID->getOperand(0) != LoopID)
234     return nullptr;
235   return LoopID;
236 }
237 
238 void Loop::setLoopID(MDNode *LoopID) const {
239   assert(LoopID && "Loop ID should not be null");
240   assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
241   assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
242 
243   if (BasicBlock *Latch = getLoopLatch()) {
244     Latch->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
245     return;
246   }
247 
248   assert(!getLoopLatch() &&
249          "The loop should have no single latch at this point");
250   BasicBlock *H = getHeader();
251   for (BasicBlock *BB : this->blocks()) {
252     TerminatorInst *TI = BB->getTerminator();
253     for (BasicBlock *Successor : successors(TI)) {
254       if (Successor == H)
255         TI->setMetadata(LLVMContext::MD_loop, LoopID);
256     }
257   }
258 }
259 
260 void Loop::setLoopAlreadyUnrolled() {
261   MDNode *LoopID = getLoopID();
262   // First remove any existing loop unrolling metadata.
263   SmallVector<Metadata *, 4> MDs;
264   // Reserve first location for self reference to the LoopID metadata node.
265   MDs.push_back(nullptr);
266 
267   if (LoopID) {
268     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
269       bool IsUnrollMetadata = false;
270       MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
271       if (MD) {
272         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
273         IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
274       }
275       if (!IsUnrollMetadata)
276         MDs.push_back(LoopID->getOperand(i));
277     }
278   }
279 
280   // Add unroll(disable) metadata to disable future unrolling.
281   LLVMContext &Context = getHeader()->getContext();
282   SmallVector<Metadata *, 1> DisableOperands;
283   DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
284   MDNode *DisableNode = MDNode::get(Context, DisableOperands);
285   MDs.push_back(DisableNode);
286 
287   MDNode *NewLoopID = MDNode::get(Context, MDs);
288   // Set operand 0 to refer to the loop id itself.
289   NewLoopID->replaceOperandWith(0, NewLoopID);
290   setLoopID(NewLoopID);
291 }
292 
293 bool Loop::isAnnotatedParallel() const {
294   MDNode *DesiredLoopIdMetadata = getLoopID();
295 
296   if (!DesiredLoopIdMetadata)
297     return false;
298 
299   // The loop branch contains the parallel loop metadata. In order to ensure
300   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
301   // dependencies (thus converted the loop back to a sequential loop), check
302   // that all the memory instructions in the loop contain parallelism metadata
303   // that point to the same unique "loop id metadata" the loop branch does.
304   for (BasicBlock *BB : this->blocks()) {
305     for (Instruction &I : *BB) {
306       if (!I.mayReadOrWriteMemory())
307         continue;
308 
309       // The memory instruction can refer to the loop identifier metadata
310       // directly or indirectly through another list metadata (in case of
311       // nested parallel loops). The loop identifier metadata refers to
312       // itself so we can check both cases with the same routine.
313       MDNode *LoopIdMD =
314           I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
315 
316       if (!LoopIdMD)
317         return false;
318 
319       bool LoopIdMDFound = false;
320       for (const MDOperand &MDOp : LoopIdMD->operands()) {
321         if (MDOp == DesiredLoopIdMetadata) {
322           LoopIdMDFound = true;
323           break;
324         }
325       }
326 
327       if (!LoopIdMDFound)
328         return false;
329     }
330   }
331   return true;
332 }
333 
334 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
335 
336 Loop::LocRange Loop::getLocRange() const {
337   // If we have a debug location in the loop ID, then use it.
338   if (MDNode *LoopID = getLoopID()) {
339     DebugLoc Start;
340     // We use the first DebugLoc in the header as the start location of the loop
341     // and if there is a second DebugLoc in the header we use it as end location
342     // of the loop.
343     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
344       if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
345         if (!Start)
346           Start = DebugLoc(L);
347         else
348           return LocRange(Start, DebugLoc(L));
349       }
350     }
351 
352     if (Start)
353       return LocRange(Start);
354   }
355 
356   // Try the pre-header first.
357   if (BasicBlock *PHeadBB = getLoopPreheader())
358     if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
359       return LocRange(DL);
360 
361   // If we have no pre-header or there are no instructions with debug
362   // info in it, try the header.
363   if (BasicBlock *HeadBB = getHeader())
364     return LocRange(HeadBB->getTerminator()->getDebugLoc());
365 
366   return LocRange();
367 }
368 
369 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
370 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
371 
372 LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
373   print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
374 }
375 #endif
376 
377 //===----------------------------------------------------------------------===//
378 // UnloopUpdater implementation
379 //
380 
381 namespace {
382 /// Find the new parent loop for all blocks within the "unloop" whose last
383 /// backedges has just been removed.
384 class UnloopUpdater {
385   Loop &Unloop;
386   LoopInfo *LI;
387 
388   LoopBlocksDFS DFS;
389 
390   // Map unloop's immediate subloops to their nearest reachable parents. Nested
391   // loops within these subloops will not change parents. However, an immediate
392   // subloop's new parent will be the nearest loop reachable from either its own
393   // exits *or* any of its nested loop's exits.
394   DenseMap<Loop *, Loop *> SubloopParents;
395 
396   // Flag the presence of an irreducible backedge whose destination is a block
397   // directly contained by the original unloop.
398   bool FoundIB;
399 
400 public:
401   UnloopUpdater(Loop *UL, LoopInfo *LInfo)
402       : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
403 
404   void updateBlockParents();
405 
406   void removeBlocksFromAncestors();
407 
408   void updateSubloopParents();
409 
410 protected:
411   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
412 };
413 } // end anonymous namespace
414 
415 /// Update the parent loop for all blocks that are directly contained within the
416 /// original "unloop".
417 void UnloopUpdater::updateBlockParents() {
418   if (Unloop.getNumBlocks()) {
419     // Perform a post order CFG traversal of all blocks within this loop,
420     // propagating the nearest loop from successors to predecessors.
421     LoopBlocksTraversal Traversal(DFS, LI);
422     for (BasicBlock *POI : Traversal) {
423 
424       Loop *L = LI->getLoopFor(POI);
425       Loop *NL = getNearestLoop(POI, L);
426 
427       if (NL != L) {
428         // For reducible loops, NL is now an ancestor of Unloop.
429         assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
430                "uninitialized successor");
431         LI->changeLoopFor(POI, NL);
432       } else {
433         // Or the current block is part of a subloop, in which case its parent
434         // is unchanged.
435         assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
436       }
437     }
438   }
439   // Each irreducible loop within the unloop induces a round of iteration using
440   // the DFS result cached by Traversal.
441   bool Changed = FoundIB;
442   for (unsigned NIters = 0; Changed; ++NIters) {
443     assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
444 
445     // Iterate over the postorder list of blocks, propagating the nearest loop
446     // from successors to predecessors as before.
447     Changed = false;
448     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
449                                    POE = DFS.endPostorder();
450          POI != POE; ++POI) {
451 
452       Loop *L = LI->getLoopFor(*POI);
453       Loop *NL = getNearestLoop(*POI, L);
454       if (NL != L) {
455         assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
456                "uninitialized successor");
457         LI->changeLoopFor(*POI, NL);
458         Changed = true;
459       }
460     }
461   }
462 }
463 
464 /// Remove unloop's blocks from all ancestors below their new parents.
465 void UnloopUpdater::removeBlocksFromAncestors() {
466   // Remove all unloop's blocks (including those in nested subloops) from
467   // ancestors below the new parent loop.
468   for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end();
469        BI != BE; ++BI) {
470     Loop *OuterParent = LI->getLoopFor(*BI);
471     if (Unloop.contains(OuterParent)) {
472       while (OuterParent->getParentLoop() != &Unloop)
473         OuterParent = OuterParent->getParentLoop();
474       OuterParent = SubloopParents[OuterParent];
475     }
476     // Remove blocks from former Ancestors except Unloop itself which will be
477     // deleted.
478     for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
479          OldParent = OldParent->getParentLoop()) {
480       assert(OldParent && "new loop is not an ancestor of the original");
481       OldParent->removeBlockFromLoop(*BI);
482     }
483   }
484 }
485 
486 /// Update the parent loop for all subloops directly nested within unloop.
487 void UnloopUpdater::updateSubloopParents() {
488   while (!Unloop.empty()) {
489     Loop *Subloop = *std::prev(Unloop.end());
490     Unloop.removeChildLoop(std::prev(Unloop.end()));
491 
492     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
493     if (Loop *Parent = SubloopParents[Subloop])
494       Parent->addChildLoop(Subloop);
495     else
496       LI->addTopLevelLoop(Subloop);
497   }
498 }
499 
500 /// Return the nearest parent loop among this block's successors. If a successor
501 /// is a subloop header, consider its parent to be the nearest parent of the
502 /// subloop's exits.
503 ///
504 /// For subloop blocks, simply update SubloopParents and return NULL.
505 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
506 
507   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
508   // is considered uninitialized.
509   Loop *NearLoop = BBLoop;
510 
511   Loop *Subloop = nullptr;
512   if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
513     Subloop = NearLoop;
514     // Find the subloop ancestor that is directly contained within Unloop.
515     while (Subloop->getParentLoop() != &Unloop) {
516       Subloop = Subloop->getParentLoop();
517       assert(Subloop && "subloop is not an ancestor of the original loop");
518     }
519     // Get the current nearest parent of the Subloop exits, initially Unloop.
520     NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
521   }
522 
523   succ_iterator I = succ_begin(BB), E = succ_end(BB);
524   if (I == E) {
525     assert(!Subloop && "subloop blocks must have a successor");
526     NearLoop = nullptr; // unloop blocks may now exit the function.
527   }
528   for (; I != E; ++I) {
529     if (*I == BB)
530       continue; // self loops are uninteresting
531 
532     Loop *L = LI->getLoopFor(*I);
533     if (L == &Unloop) {
534       // This successor has not been processed. This path must lead to an
535       // irreducible backedge.
536       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
537       FoundIB = true;
538     }
539     if (L != &Unloop && Unloop.contains(L)) {
540       // Successor is in a subloop.
541       if (Subloop)
542         continue; // Branching within subloops. Ignore it.
543 
544       // BB branches from the original into a subloop header.
545       assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
546 
547       // Get the current nearest parent of the Subloop's exits.
548       L = SubloopParents[L];
549       // L could be Unloop if the only exit was an irreducible backedge.
550     }
551     if (L == &Unloop) {
552       continue;
553     }
554     // Handle critical edges from Unloop into a sibling loop.
555     if (L && !L->contains(&Unloop)) {
556       L = L->getParentLoop();
557     }
558     // Remember the nearest parent loop among successors or subloop exits.
559     if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
560       NearLoop = L;
561   }
562   if (Subloop) {
563     SubloopParents[Subloop] = NearLoop;
564     return BBLoop;
565   }
566   return NearLoop;
567 }
568 
569 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
570 
571 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
572                           FunctionAnalysisManager::Invalidator &) {
573   // Check whether the analysis, all analyses on functions, or the function's
574   // CFG have been preserved.
575   auto PAC = PA.getChecker<LoopAnalysis>();
576   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
577            PAC.preservedSet<CFGAnalyses>());
578 }
579 
580 void LoopInfo::erase(Loop *Unloop) {
581   assert(!Unloop->isInvalid() && "Loop has already been erased!");
582 
583   auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
584 
585   // First handle the special case of no parent loop to simplify the algorithm.
586   if (!Unloop->getParentLoop()) {
587     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
588     for (Loop::block_iterator I = Unloop->block_begin(),
589                               E = Unloop->block_end();
590          I != E; ++I) {
591 
592       // Don't reparent blocks in subloops.
593       if (getLoopFor(*I) != Unloop)
594         continue;
595 
596       // Blocks no longer have a parent but are still referenced by Unloop until
597       // the Unloop object is deleted.
598       changeLoopFor(*I, nullptr);
599     }
600 
601     // Remove the loop from the top-level LoopInfo object.
602     for (iterator I = begin();; ++I) {
603       assert(I != end() && "Couldn't find loop");
604       if (*I == Unloop) {
605         removeLoop(I);
606         break;
607       }
608     }
609 
610     // Move all of the subloops to the top-level.
611     while (!Unloop->empty())
612       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
613 
614     return;
615   }
616 
617   // Update the parent loop for all blocks within the loop. Blocks within
618   // subloops will not change parents.
619   UnloopUpdater Updater(Unloop, this);
620   Updater.updateBlockParents();
621 
622   // Remove blocks from former ancestor loops.
623   Updater.removeBlocksFromAncestors();
624 
625   // Add direct subloops as children in their new parent loop.
626   Updater.updateSubloopParents();
627 
628   // Remove unloop from its parent loop.
629   Loop *ParentLoop = Unloop->getParentLoop();
630   for (Loop::iterator I = ParentLoop->begin();; ++I) {
631     assert(I != ParentLoop->end() && "Couldn't find loop");
632     if (*I == Unloop) {
633       ParentLoop->removeChildLoop(I);
634       break;
635     }
636   }
637 }
638 
639 AnalysisKey LoopAnalysis::Key;
640 
641 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
642   // FIXME: Currently we create a LoopInfo from scratch for every function.
643   // This may prove to be too wasteful due to deallocating and re-allocating
644   // memory each time for the underlying map and vector datastructures. At some
645   // point it may prove worthwhile to use a freelist and recycle LoopInfo
646   // objects. I don't want to add that kind of complexity until the scope of
647   // the problem is better understood.
648   LoopInfo LI;
649   LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
650   return LI;
651 }
652 
653 PreservedAnalyses LoopPrinterPass::run(Function &F,
654                                        FunctionAnalysisManager &AM) {
655   AM.getResult<LoopAnalysis>(F).print(OS);
656   return PreservedAnalyses::all();
657 }
658 
659 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
660 
661   if (forcePrintModuleIR()) {
662     // handling -print-module-scope
663     OS << Banner << " (loop: ";
664     L.getHeader()->printAsOperand(OS, false);
665     OS << ")\n";
666 
667     // printing whole module
668     OS << *L.getHeader()->getModule();
669     return;
670   }
671 
672   OS << Banner;
673 
674   auto *PreHeader = L.getLoopPreheader();
675   if (PreHeader) {
676     OS << "\n; Preheader:";
677     PreHeader->print(OS);
678     OS << "\n; Loop:";
679   }
680 
681   for (auto *Block : L.blocks())
682     if (Block)
683       Block->print(OS);
684     else
685       OS << "Printing <null> block";
686 
687   SmallVector<BasicBlock *, 8> ExitBlocks;
688   L.getExitBlocks(ExitBlocks);
689   if (!ExitBlocks.empty()) {
690     OS << "\n; Exit blocks";
691     for (auto *Block : ExitBlocks)
692       if (Block)
693         Block->print(OS);
694       else
695         OS << "Printing <null> block";
696   }
697 }
698 
699 //===----------------------------------------------------------------------===//
700 // LoopInfo implementation
701 //
702 
703 char LoopInfoWrapperPass::ID = 0;
704 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
705                       true, true)
706 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
707 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
708                     true, true)
709 
710 bool LoopInfoWrapperPass::runOnFunction(Function &) {
711   releaseMemory();
712   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
713   return false;
714 }
715 
716 void LoopInfoWrapperPass::verifyAnalysis() const {
717   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
718   // function each time verifyAnalysis is called is very expensive. The
719   // -verify-loop-info option can enable this. In order to perform some
720   // checking by default, LoopPass has been taught to call verifyLoop manually
721   // during loop pass sequences.
722   if (VerifyLoopInfo) {
723     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
724     LI.verify(DT);
725   }
726 }
727 
728 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
729   AU.setPreservesAll();
730   AU.addRequired<DominatorTreeWrapperPass>();
731 }
732 
733 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
734   LI.print(OS);
735 }
736 
737 PreservedAnalyses LoopVerifierPass::run(Function &F,
738                                         FunctionAnalysisManager &AM) {
739   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
740   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
741   LI.verify(DT);
742   return PreservedAnalyses::all();
743 }
744 
745 //===----------------------------------------------------------------------===//
746 // LoopBlocksDFS implementation
747 //
748 
749 /// Traverse the loop blocks and store the DFS result.
750 /// Useful for clients that just want the final DFS result and don't need to
751 /// visit blocks during the initial traversal.
752 void LoopBlocksDFS::perform(LoopInfo *LI) {
753   LoopBlocksTraversal Traversal(*this, LI);
754   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
755                                         POE = Traversal.end();
756        POI != POE; ++POI)
757     ;
758 }
759