1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the LoopInfo class that is used to identify natural loops 11 // and determine the loop depth of various nodes of the CFG. Note that the 12 // loops identified may actually be several natural loops that share the same 13 // header node... not just a single natural loop. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/Analysis/LoopInfoImpl.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/CFG.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugLoc.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/PassManager.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> 36 using namespace llvm; 37 38 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 39 template class llvm::LoopBase<BasicBlock, Loop>; 40 template class llvm::LoopInfoBase<BasicBlock, Loop>; 41 42 // Always verify loopinfo if expensive checking is enabled. 43 #ifdef EXPENSIVE_CHECKS 44 bool llvm::VerifyLoopInfo = true; 45 #else 46 bool llvm::VerifyLoopInfo = false; 47 #endif 48 static cl::opt<bool, true> 49 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 50 cl::Hidden, cl::desc("Verify loop info (time consuming)")); 51 52 //===----------------------------------------------------------------------===// 53 // Loop implementation 54 // 55 56 bool Loop::isLoopInvariant(const Value *V) const { 57 if (const Instruction *I = dyn_cast<Instruction>(V)) 58 return !contains(I); 59 return true; // All non-instructions are loop invariant 60 } 61 62 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 63 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 64 } 65 66 bool Loop::makeLoopInvariant(Value *V, bool &Changed, 67 Instruction *InsertPt) const { 68 if (Instruction *I = dyn_cast<Instruction>(V)) 69 return makeLoopInvariant(I, Changed, InsertPt); 70 return true; // All non-instructions are loop-invariant. 71 } 72 73 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 74 Instruction *InsertPt) const { 75 // Test if the value is already loop-invariant. 76 if (isLoopInvariant(I)) 77 return true; 78 if (!isSafeToSpeculativelyExecute(I)) 79 return false; 80 if (I->mayReadFromMemory()) 81 return false; 82 // EH block instructions are immobile. 83 if (I->isEHPad()) 84 return false; 85 // Determine the insertion point, unless one was given. 86 if (!InsertPt) { 87 BasicBlock *Preheader = getLoopPreheader(); 88 // Without a preheader, hoisting is not feasible. 89 if (!Preheader) 90 return false; 91 InsertPt = Preheader->getTerminator(); 92 } 93 // Don't hoist instructions with loop-variant operands. 94 for (Value *Operand : I->operands()) 95 if (!makeLoopInvariant(Operand, Changed, InsertPt)) 96 return false; 97 98 // Hoist. 99 I->moveBefore(InsertPt); 100 101 // There is possibility of hoisting this instruction above some arbitrary 102 // condition. Any metadata defined on it can be control dependent on this 103 // condition. Conservatively strip it here so that we don't give any wrong 104 // information to the optimizer. 105 I->dropUnknownNonDebugMetadata(); 106 107 Changed = true; 108 return true; 109 } 110 111 PHINode *Loop::getCanonicalInductionVariable() const { 112 BasicBlock *H = getHeader(); 113 114 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 115 pred_iterator PI = pred_begin(H); 116 assert(PI != pred_end(H) && "Loop must have at least one backedge!"); 117 Backedge = *PI++; 118 if (PI == pred_end(H)) 119 return nullptr; // dead loop 120 Incoming = *PI++; 121 if (PI != pred_end(H)) 122 return nullptr; // multiple backedges? 123 124 if (contains(Incoming)) { 125 if (contains(Backedge)) 126 return nullptr; 127 std::swap(Incoming, Backedge); 128 } else if (!contains(Backedge)) 129 return nullptr; 130 131 // Loop over all of the PHI nodes, looking for a canonical indvar. 132 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 133 PHINode *PN = cast<PHINode>(I); 134 if (ConstantInt *CI = 135 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 136 if (CI->isZero()) 137 if (Instruction *Inc = 138 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 139 if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) 140 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 141 if (CI->isOne()) 142 return PN; 143 } 144 return nullptr; 145 } 146 147 // Check that 'BB' doesn't have any uses outside of the 'L' 148 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, 149 DominatorTree &DT) { 150 for (const Instruction &I : BB) { 151 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 152 // optimizations, so for the purposes of considered LCSSA form, we 153 // can ignore them. 154 if (I.getType()->isTokenTy()) 155 continue; 156 157 for (const Use &U : I.uses()) { 158 const Instruction *UI = cast<Instruction>(U.getUser()); 159 const BasicBlock *UserBB = UI->getParent(); 160 if (const PHINode *P = dyn_cast<PHINode>(UI)) 161 UserBB = P->getIncomingBlock(U); 162 163 // Check the current block, as a fast-path, before checking whether 164 // the use is anywhere in the loop. Most values are used in the same 165 // block they are defined in. Also, blocks not reachable from the 166 // entry are special; uses in them don't need to go through PHIs. 167 if (UserBB != &BB && !L.contains(UserBB) && 168 DT.isReachableFromEntry(UserBB)) 169 return false; 170 } 171 } 172 return true; 173 } 174 175 bool Loop::isLCSSAForm(DominatorTree &DT) const { 176 // For each block we check that it doesn't have any uses outside of this loop. 177 return all_of(this->blocks(), [&](const BasicBlock *BB) { 178 return isBlockInLCSSAForm(*this, *BB, DT); 179 }); 180 } 181 182 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const { 183 // For each block we check that it doesn't have any uses outside of its 184 // innermost loop. This process will transitively guarantee that the current 185 // loop and all of the nested loops are in LCSSA form. 186 return all_of(this->blocks(), [&](const BasicBlock *BB) { 187 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT); 188 }); 189 } 190 191 bool Loop::isLoopSimplifyForm() const { 192 // Normal-form loops have a preheader, a single backedge, and all of their 193 // exits have all their predecessors inside the loop. 194 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 195 } 196 197 // Routines that reform the loop CFG and split edges often fail on indirectbr. 198 bool Loop::isSafeToClone() const { 199 // Return false if any loop blocks contain indirectbrs, or there are any calls 200 // to noduplicate functions. 201 for (BasicBlock *BB : this->blocks()) { 202 if (isa<IndirectBrInst>(BB->getTerminator())) 203 return false; 204 205 for (Instruction &I : *BB) 206 if (auto CS = CallSite(&I)) 207 if (CS.cannotDuplicate()) 208 return false; 209 } 210 return true; 211 } 212 213 MDNode *Loop::getLoopID() const { 214 MDNode *LoopID = nullptr; 215 if (BasicBlock *Latch = getLoopLatch()) { 216 LoopID = Latch->getTerminator()->getMetadata(LLVMContext::MD_loop); 217 } else { 218 assert(!getLoopLatch() && 219 "The loop should have no single latch at this point"); 220 // Go through each predecessor of the loop header and check the 221 // terminator for the metadata. 222 BasicBlock *H = getHeader(); 223 for (BasicBlock *BB : this->blocks()) { 224 TerminatorInst *TI = BB->getTerminator(); 225 MDNode *MD = nullptr; 226 227 // Check if this terminator branches to the loop header. 228 for (BasicBlock *Successor : TI->successors()) { 229 if (Successor == H) { 230 MD = TI->getMetadata(LLVMContext::MD_loop); 231 break; 232 } 233 } 234 if (!MD) 235 return nullptr; 236 237 if (!LoopID) 238 LoopID = MD; 239 else if (MD != LoopID) 240 return nullptr; 241 } 242 } 243 if (!LoopID || LoopID->getNumOperands() == 0 || 244 LoopID->getOperand(0) != LoopID) 245 return nullptr; 246 return LoopID; 247 } 248 249 void Loop::setLoopID(MDNode *LoopID) const { 250 assert(LoopID && "Loop ID should not be null"); 251 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand"); 252 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself"); 253 254 if (BasicBlock *Latch = getLoopLatch()) { 255 Latch->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); 256 return; 257 } 258 259 assert(!getLoopLatch() && 260 "The loop should have no single latch at this point"); 261 BasicBlock *H = getHeader(); 262 for (BasicBlock *BB : this->blocks()) { 263 TerminatorInst *TI = BB->getTerminator(); 264 for (BasicBlock *Successor : TI->successors()) { 265 if (Successor == H) 266 TI->setMetadata(LLVMContext::MD_loop, LoopID); 267 } 268 } 269 } 270 271 void Loop::setLoopAlreadyUnrolled() { 272 MDNode *LoopID = getLoopID(); 273 // First remove any existing loop unrolling metadata. 274 SmallVector<Metadata *, 4> MDs; 275 // Reserve first location for self reference to the LoopID metadata node. 276 MDs.push_back(nullptr); 277 278 if (LoopID) { 279 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 280 bool IsUnrollMetadata = false; 281 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 282 if (MD) { 283 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 284 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 285 } 286 if (!IsUnrollMetadata) 287 MDs.push_back(LoopID->getOperand(i)); 288 } 289 } 290 291 // Add unroll(disable) metadata to disable future unrolling. 292 LLVMContext &Context = getHeader()->getContext(); 293 SmallVector<Metadata *, 1> DisableOperands; 294 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 295 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 296 MDs.push_back(DisableNode); 297 298 MDNode *NewLoopID = MDNode::get(Context, MDs); 299 // Set operand 0 to refer to the loop id itself. 300 NewLoopID->replaceOperandWith(0, NewLoopID); 301 setLoopID(NewLoopID); 302 } 303 304 bool Loop::isAnnotatedParallel() const { 305 MDNode *DesiredLoopIdMetadata = getLoopID(); 306 307 if (!DesiredLoopIdMetadata) 308 return false; 309 310 // The loop branch contains the parallel loop metadata. In order to ensure 311 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 312 // dependencies (thus converted the loop back to a sequential loop), check 313 // that all the memory instructions in the loop contain parallelism metadata 314 // that point to the same unique "loop id metadata" the loop branch does. 315 for (BasicBlock *BB : this->blocks()) { 316 for (Instruction &I : *BB) { 317 if (!I.mayReadOrWriteMemory()) 318 continue; 319 320 // The memory instruction can refer to the loop identifier metadata 321 // directly or indirectly through another list metadata (in case of 322 // nested parallel loops). The loop identifier metadata refers to 323 // itself so we can check both cases with the same routine. 324 MDNode *LoopIdMD = 325 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 326 327 if (!LoopIdMD) 328 return false; 329 330 bool LoopIdMDFound = false; 331 for (const MDOperand &MDOp : LoopIdMD->operands()) { 332 if (MDOp == DesiredLoopIdMetadata) { 333 LoopIdMDFound = true; 334 break; 335 } 336 } 337 338 if (!LoopIdMDFound) 339 return false; 340 } 341 } 342 return true; 343 } 344 345 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } 346 347 Loop::LocRange Loop::getLocRange() const { 348 // If we have a debug location in the loop ID, then use it. 349 if (MDNode *LoopID = getLoopID()) { 350 DebugLoc Start; 351 // We use the first DebugLoc in the header as the start location of the loop 352 // and if there is a second DebugLoc in the header we use it as end location 353 // of the loop. 354 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 355 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) { 356 if (!Start) 357 Start = DebugLoc(L); 358 else 359 return LocRange(Start, DebugLoc(L)); 360 } 361 } 362 363 if (Start) 364 return LocRange(Start); 365 } 366 367 // Try the pre-header first. 368 if (BasicBlock *PHeadBB = getLoopPreheader()) 369 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) 370 return LocRange(DL); 371 372 // If we have no pre-header or there are no instructions with debug 373 // info in it, try the header. 374 if (BasicBlock *HeadBB = getHeader()) 375 return LocRange(HeadBB->getTerminator()->getDebugLoc()); 376 377 return LocRange(); 378 } 379 380 bool Loop::hasDedicatedExits() const { 381 // Each predecessor of each exit block of a normal loop is contained 382 // within the loop. 383 SmallVector<BasicBlock *, 4> ExitBlocks; 384 getExitBlocks(ExitBlocks); 385 for (BasicBlock *BB : ExitBlocks) 386 for (BasicBlock *Predecessor : predecessors(BB)) 387 if (!contains(Predecessor)) 388 return false; 389 // All the requirements are met. 390 return true; 391 } 392 393 void Loop::getUniqueExitBlocks( 394 SmallVectorImpl<BasicBlock *> &ExitBlocks) const { 395 assert(hasDedicatedExits() && 396 "getUniqueExitBlocks assumes the loop has canonical form exits!"); 397 398 SmallVector<BasicBlock *, 32> SwitchExitBlocks; 399 for (BasicBlock *BB : this->blocks()) { 400 SwitchExitBlocks.clear(); 401 for (BasicBlock *Successor : successors(BB)) { 402 // If block is inside the loop then it is not an exit block. 403 if (contains(Successor)) 404 continue; 405 406 pred_iterator PI = pred_begin(Successor); 407 BasicBlock *FirstPred = *PI; 408 409 // If current basic block is this exit block's first predecessor 410 // then only insert exit block in to the output ExitBlocks vector. 411 // This ensures that same exit block is not inserted twice into 412 // ExitBlocks vector. 413 if (BB != FirstPred) 414 continue; 415 416 // If a terminator has more then two successors, for example SwitchInst, 417 // then it is possible that there are multiple edges from current block 418 // to one exit block. 419 if (std::distance(succ_begin(BB), succ_end(BB)) <= 2) { 420 ExitBlocks.push_back(Successor); 421 continue; 422 } 423 424 // In case of multiple edges from current block to exit block, collect 425 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of 426 // duplicate edges. 427 if (!is_contained(SwitchExitBlocks, Successor)) { 428 SwitchExitBlocks.push_back(Successor); 429 ExitBlocks.push_back(Successor); 430 } 431 } 432 } 433 } 434 435 BasicBlock *Loop::getUniqueExitBlock() const { 436 SmallVector<BasicBlock *, 8> UniqueExitBlocks; 437 getUniqueExitBlocks(UniqueExitBlocks); 438 if (UniqueExitBlocks.size() == 1) 439 return UniqueExitBlocks[0]; 440 return nullptr; 441 } 442 443 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 444 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } 445 446 LLVM_DUMP_METHOD void Loop::dumpVerbose() const { 447 print(dbgs(), /*Depth=*/0, /*Verbose=*/true); 448 } 449 #endif 450 451 //===----------------------------------------------------------------------===// 452 // UnloopUpdater implementation 453 // 454 455 namespace { 456 /// Find the new parent loop for all blocks within the "unloop" whose last 457 /// backedges has just been removed. 458 class UnloopUpdater { 459 Loop &Unloop; 460 LoopInfo *LI; 461 462 LoopBlocksDFS DFS; 463 464 // Map unloop's immediate subloops to their nearest reachable parents. Nested 465 // loops within these subloops will not change parents. However, an immediate 466 // subloop's new parent will be the nearest loop reachable from either its own 467 // exits *or* any of its nested loop's exits. 468 DenseMap<Loop *, Loop *> SubloopParents; 469 470 // Flag the presence of an irreducible backedge whose destination is a block 471 // directly contained by the original unloop. 472 bool FoundIB; 473 474 public: 475 UnloopUpdater(Loop *UL, LoopInfo *LInfo) 476 : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} 477 478 void updateBlockParents(); 479 480 void removeBlocksFromAncestors(); 481 482 void updateSubloopParents(); 483 484 protected: 485 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 486 }; 487 } // end anonymous namespace 488 489 /// Update the parent loop for all blocks that are directly contained within the 490 /// original "unloop". 491 void UnloopUpdater::updateBlockParents() { 492 if (Unloop.getNumBlocks()) { 493 // Perform a post order CFG traversal of all blocks within this loop, 494 // propagating the nearest loop from successors to predecessors. 495 LoopBlocksTraversal Traversal(DFS, LI); 496 for (BasicBlock *POI : Traversal) { 497 498 Loop *L = LI->getLoopFor(POI); 499 Loop *NL = getNearestLoop(POI, L); 500 501 if (NL != L) { 502 // For reducible loops, NL is now an ancestor of Unloop. 503 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && 504 "uninitialized successor"); 505 LI->changeLoopFor(POI, NL); 506 } else { 507 // Or the current block is part of a subloop, in which case its parent 508 // is unchanged. 509 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); 510 } 511 } 512 } 513 // Each irreducible loop within the unloop induces a round of iteration using 514 // the DFS result cached by Traversal. 515 bool Changed = FoundIB; 516 for (unsigned NIters = 0; Changed; ++NIters) { 517 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); 518 519 // Iterate over the postorder list of blocks, propagating the nearest loop 520 // from successors to predecessors as before. 521 Changed = false; 522 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 523 POE = DFS.endPostorder(); 524 POI != POE; ++POI) { 525 526 Loop *L = LI->getLoopFor(*POI); 527 Loop *NL = getNearestLoop(*POI, L); 528 if (NL != L) { 529 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && 530 "uninitialized successor"); 531 LI->changeLoopFor(*POI, NL); 532 Changed = true; 533 } 534 } 535 } 536 } 537 538 /// Remove unloop's blocks from all ancestors below their new parents. 539 void UnloopUpdater::removeBlocksFromAncestors() { 540 // Remove all unloop's blocks (including those in nested subloops) from 541 // ancestors below the new parent loop. 542 for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end(); 543 BI != BE; ++BI) { 544 Loop *OuterParent = LI->getLoopFor(*BI); 545 if (Unloop.contains(OuterParent)) { 546 while (OuterParent->getParentLoop() != &Unloop) 547 OuterParent = OuterParent->getParentLoop(); 548 OuterParent = SubloopParents[OuterParent]; 549 } 550 // Remove blocks from former Ancestors except Unloop itself which will be 551 // deleted. 552 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; 553 OldParent = OldParent->getParentLoop()) { 554 assert(OldParent && "new loop is not an ancestor of the original"); 555 OldParent->removeBlockFromLoop(*BI); 556 } 557 } 558 } 559 560 /// Update the parent loop for all subloops directly nested within unloop. 561 void UnloopUpdater::updateSubloopParents() { 562 while (!Unloop.empty()) { 563 Loop *Subloop = *std::prev(Unloop.end()); 564 Unloop.removeChildLoop(std::prev(Unloop.end())); 565 566 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 567 if (Loop *Parent = SubloopParents[Subloop]) 568 Parent->addChildLoop(Subloop); 569 else 570 LI->addTopLevelLoop(Subloop); 571 } 572 } 573 574 /// Return the nearest parent loop among this block's successors. If a successor 575 /// is a subloop header, consider its parent to be the nearest parent of the 576 /// subloop's exits. 577 /// 578 /// For subloop blocks, simply update SubloopParents and return NULL. 579 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 580 581 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 582 // is considered uninitialized. 583 Loop *NearLoop = BBLoop; 584 585 Loop *Subloop = nullptr; 586 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { 587 Subloop = NearLoop; 588 // Find the subloop ancestor that is directly contained within Unloop. 589 while (Subloop->getParentLoop() != &Unloop) { 590 Subloop = Subloop->getParentLoop(); 591 assert(Subloop && "subloop is not an ancestor of the original loop"); 592 } 593 // Get the current nearest parent of the Subloop exits, initially Unloop. 594 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; 595 } 596 597 succ_iterator I = succ_begin(BB), E = succ_end(BB); 598 if (I == E) { 599 assert(!Subloop && "subloop blocks must have a successor"); 600 NearLoop = nullptr; // unloop blocks may now exit the function. 601 } 602 for (; I != E; ++I) { 603 if (*I == BB) 604 continue; // self loops are uninteresting 605 606 Loop *L = LI->getLoopFor(*I); 607 if (L == &Unloop) { 608 // This successor has not been processed. This path must lead to an 609 // irreducible backedge. 610 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 611 FoundIB = true; 612 } 613 if (L != &Unloop && Unloop.contains(L)) { 614 // Successor is in a subloop. 615 if (Subloop) 616 continue; // Branching within subloops. Ignore it. 617 618 // BB branches from the original into a subloop header. 619 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); 620 621 // Get the current nearest parent of the Subloop's exits. 622 L = SubloopParents[L]; 623 // L could be Unloop if the only exit was an irreducible backedge. 624 } 625 if (L == &Unloop) { 626 continue; 627 } 628 // Handle critical edges from Unloop into a sibling loop. 629 if (L && !L->contains(&Unloop)) { 630 L = L->getParentLoop(); 631 } 632 // Remember the nearest parent loop among successors or subloop exits. 633 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) 634 NearLoop = L; 635 } 636 if (Subloop) { 637 SubloopParents[Subloop] = NearLoop; 638 return BBLoop; 639 } 640 return NearLoop; 641 } 642 643 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); } 644 645 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, 646 FunctionAnalysisManager::Invalidator &) { 647 // Check whether the analysis, all analyses on functions, or the function's 648 // CFG have been preserved. 649 auto PAC = PA.getChecker<LoopAnalysis>(); 650 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 651 PAC.preservedSet<CFGAnalyses>()); 652 } 653 654 void LoopInfo::erase(Loop *Unloop) { 655 assert(!Unloop->isInvalid() && "Loop has already been erased!"); 656 657 auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); 658 659 // First handle the special case of no parent loop to simplify the algorithm. 660 if (!Unloop->getParentLoop()) { 661 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 662 for (Loop::block_iterator I = Unloop->block_begin(), 663 E = Unloop->block_end(); 664 I != E; ++I) { 665 666 // Don't reparent blocks in subloops. 667 if (getLoopFor(*I) != Unloop) 668 continue; 669 670 // Blocks no longer have a parent but are still referenced by Unloop until 671 // the Unloop object is deleted. 672 changeLoopFor(*I, nullptr); 673 } 674 675 // Remove the loop from the top-level LoopInfo object. 676 for (iterator I = begin();; ++I) { 677 assert(I != end() && "Couldn't find loop"); 678 if (*I == Unloop) { 679 removeLoop(I); 680 break; 681 } 682 } 683 684 // Move all of the subloops to the top-level. 685 while (!Unloop->empty()) 686 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 687 688 return; 689 } 690 691 // Update the parent loop for all blocks within the loop. Blocks within 692 // subloops will not change parents. 693 UnloopUpdater Updater(Unloop, this); 694 Updater.updateBlockParents(); 695 696 // Remove blocks from former ancestor loops. 697 Updater.removeBlocksFromAncestors(); 698 699 // Add direct subloops as children in their new parent loop. 700 Updater.updateSubloopParents(); 701 702 // Remove unloop from its parent loop. 703 Loop *ParentLoop = Unloop->getParentLoop(); 704 for (Loop::iterator I = ParentLoop->begin();; ++I) { 705 assert(I != ParentLoop->end() && "Couldn't find loop"); 706 if (*I == Unloop) { 707 ParentLoop->removeChildLoop(I); 708 break; 709 } 710 } 711 } 712 713 AnalysisKey LoopAnalysis::Key; 714 715 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 716 // FIXME: Currently we create a LoopInfo from scratch for every function. 717 // This may prove to be too wasteful due to deallocating and re-allocating 718 // memory each time for the underlying map and vector datastructures. At some 719 // point it may prove worthwhile to use a freelist and recycle LoopInfo 720 // objects. I don't want to add that kind of complexity until the scope of 721 // the problem is better understood. 722 LoopInfo LI; 723 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); 724 return LI; 725 } 726 727 PreservedAnalyses LoopPrinterPass::run(Function &F, 728 FunctionAnalysisManager &AM) { 729 AM.getResult<LoopAnalysis>(F).print(OS); 730 return PreservedAnalyses::all(); 731 } 732 733 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { 734 735 if (forcePrintModuleIR()) { 736 // handling -print-module-scope 737 OS << Banner << " (loop: "; 738 L.getHeader()->printAsOperand(OS, false); 739 OS << ")\n"; 740 741 // printing whole module 742 OS << *L.getHeader()->getModule(); 743 return; 744 } 745 746 OS << Banner; 747 748 auto *PreHeader = L.getLoopPreheader(); 749 if (PreHeader) { 750 OS << "\n; Preheader:"; 751 PreHeader->print(OS); 752 OS << "\n; Loop:"; 753 } 754 755 for (auto *Block : L.blocks()) 756 if (Block) 757 Block->print(OS); 758 else 759 OS << "Printing <null> block"; 760 761 SmallVector<BasicBlock *, 8> ExitBlocks; 762 L.getExitBlocks(ExitBlocks); 763 if (!ExitBlocks.empty()) { 764 OS << "\n; Exit blocks"; 765 for (auto *Block : ExitBlocks) 766 if (Block) 767 Block->print(OS); 768 else 769 OS << "Printing <null> block"; 770 } 771 } 772 773 //===----------------------------------------------------------------------===// 774 // LoopInfo implementation 775 // 776 777 char LoopInfoWrapperPass::ID = 0; 778 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 779 true, true) 780 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 781 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 782 true, true) 783 784 bool LoopInfoWrapperPass::runOnFunction(Function &) { 785 releaseMemory(); 786 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 787 return false; 788 } 789 790 void LoopInfoWrapperPass::verifyAnalysis() const { 791 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 792 // function each time verifyAnalysis is called is very expensive. The 793 // -verify-loop-info option can enable this. In order to perform some 794 // checking by default, LoopPass has been taught to call verifyLoop manually 795 // during loop pass sequences. 796 if (VerifyLoopInfo) { 797 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 798 LI.verify(DT); 799 } 800 } 801 802 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 803 AU.setPreservesAll(); 804 AU.addRequired<DominatorTreeWrapperPass>(); 805 } 806 807 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 808 LI.print(OS); 809 } 810 811 PreservedAnalyses LoopVerifierPass::run(Function &F, 812 FunctionAnalysisManager &AM) { 813 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 814 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 815 LI.verify(DT); 816 return PreservedAnalyses::all(); 817 } 818 819 //===----------------------------------------------------------------------===// 820 // LoopBlocksDFS implementation 821 // 822 823 /// Traverse the loop blocks and store the DFS result. 824 /// Useful for clients that just want the final DFS result and don't need to 825 /// visit blocks during the initial traversal. 826 void LoopBlocksDFS::perform(LoopInfo *LI) { 827 LoopBlocksTraversal Traversal(*this, LI); 828 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 829 POE = Traversal.end(); 830 POI != POE; ++POI) 831 ; 832 } 833