1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the LoopInfo class that is used to identify natural loops
10 // and determine the loop depth of various nodes of the CFG.  Note that the
11 // loops identified may actually be several natural loops that share the same
12 // header node... not just a single natural loop.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/IVDescriptors.h"
21 #include "llvm/Analysis/LoopInfoImpl.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DebugLoc.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/IRPrintingPasses.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/PassManager.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 using namespace llvm;
42 
43 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
44 template class llvm::LoopBase<BasicBlock, Loop>;
45 template class llvm::LoopInfoBase<BasicBlock, Loop>;
46 
47 // Always verify loopinfo if expensive checking is enabled.
48 #ifdef EXPENSIVE_CHECKS
49 bool llvm::VerifyLoopInfo = true;
50 #else
51 bool llvm::VerifyLoopInfo = false;
52 #endif
53 static cl::opt<bool, true>
54     VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
55                     cl::Hidden, cl::desc("Verify loop info (time consuming)"));
56 
57 //===----------------------------------------------------------------------===//
58 // Loop implementation
59 //
60 
61 bool Loop::isLoopInvariant(const Value *V) const {
62   if (const Instruction *I = dyn_cast<Instruction>(V))
63     return !contains(I);
64   return true; // All non-instructions are loop invariant
65 }
66 
67 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
68   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
69 }
70 
71 bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt,
72                              MemorySSAUpdater *MSSAU) const {
73   if (Instruction *I = dyn_cast<Instruction>(V))
74     return makeLoopInvariant(I, Changed, InsertPt, MSSAU);
75   return true; // All non-instructions are loop-invariant.
76 }
77 
78 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
79                              Instruction *InsertPt,
80                              MemorySSAUpdater *MSSAU) const {
81   // Test if the value is already loop-invariant.
82   if (isLoopInvariant(I))
83     return true;
84   if (!isSafeToSpeculativelyExecute(I))
85     return false;
86   if (I->mayReadFromMemory())
87     return false;
88   // EH block instructions are immobile.
89   if (I->isEHPad())
90     return false;
91   // Determine the insertion point, unless one was given.
92   if (!InsertPt) {
93     BasicBlock *Preheader = getLoopPreheader();
94     // Without a preheader, hoisting is not feasible.
95     if (!Preheader)
96       return false;
97     InsertPt = Preheader->getTerminator();
98   }
99   // Don't hoist instructions with loop-variant operands.
100   for (Value *Operand : I->operands())
101     if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU))
102       return false;
103 
104   // Hoist.
105   I->moveBefore(InsertPt);
106   if (MSSAU)
107     if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I))
108       MSSAU->moveToPlace(MUD, InsertPt->getParent(), MemorySSA::End);
109 
110   // There is possibility of hoisting this instruction above some arbitrary
111   // condition. Any metadata defined on it can be control dependent on this
112   // condition. Conservatively strip it here so that we don't give any wrong
113   // information to the optimizer.
114   I->dropUnknownNonDebugMetadata();
115 
116   Changed = true;
117   return true;
118 }
119 
120 bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming,
121                                   BasicBlock *&Backedge) const {
122   BasicBlock *H = getHeader();
123 
124   Incoming = nullptr;
125   Backedge = nullptr;
126   pred_iterator PI = pred_begin(H);
127   assert(PI != pred_end(H) && "Loop must have at least one backedge!");
128   Backedge = *PI++;
129   if (PI == pred_end(H))
130     return false; // dead loop
131   Incoming = *PI++;
132   if (PI != pred_end(H))
133     return false; // multiple backedges?
134 
135   if (contains(Incoming)) {
136     if (contains(Backedge))
137       return false;
138     std::swap(Incoming, Backedge);
139   } else if (!contains(Backedge))
140     return false;
141 
142   assert(Incoming && Backedge && "expected non-null incoming and backedges");
143   return true;
144 }
145 
146 PHINode *Loop::getCanonicalInductionVariable() const {
147   BasicBlock *H = getHeader();
148 
149   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
150   if (!getIncomingAndBackEdge(Incoming, Backedge))
151     return nullptr;
152 
153   // Loop over all of the PHI nodes, looking for a canonical indvar.
154   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
155     PHINode *PN = cast<PHINode>(I);
156     if (ConstantInt *CI =
157             dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
158       if (CI->isZero())
159         if (Instruction *Inc =
160                 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
161           if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
162             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
163               if (CI->isOne())
164                 return PN;
165   }
166   return nullptr;
167 }
168 
169 /// Get the latch condition instruction.
170 static ICmpInst *getLatchCmpInst(const Loop &L) {
171   if (BasicBlock *Latch = L.getLoopLatch())
172     if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()))
173       if (BI->isConditional())
174         return dyn_cast<ICmpInst>(BI->getCondition());
175 
176   return nullptr;
177 }
178 
179 /// Return the final value of the loop induction variable if found.
180 static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar,
181                                const Instruction &StepInst) {
182   ICmpInst *LatchCmpInst = getLatchCmpInst(L);
183   if (!LatchCmpInst)
184     return nullptr;
185 
186   Value *Op0 = LatchCmpInst->getOperand(0);
187   Value *Op1 = LatchCmpInst->getOperand(1);
188   if (Op0 == &IndVar || Op0 == &StepInst)
189     return Op1;
190 
191   if (Op1 == &IndVar || Op1 == &StepInst)
192     return Op0;
193 
194   return nullptr;
195 }
196 
197 Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L,
198                                                        PHINode &IndVar,
199                                                        ScalarEvolution &SE) {
200   InductionDescriptor IndDesc;
201   if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc))
202     return None;
203 
204   Value *InitialIVValue = IndDesc.getStartValue();
205   Instruction *StepInst = IndDesc.getInductionBinOp();
206   if (!InitialIVValue || !StepInst)
207     return None;
208 
209   const SCEV *Step = IndDesc.getStep();
210   Value *StepInstOp1 = StepInst->getOperand(1);
211   Value *StepInstOp0 = StepInst->getOperand(0);
212   Value *StepValue = nullptr;
213   if (SE.getSCEV(StepInstOp1) == Step)
214     StepValue = StepInstOp1;
215   else if (SE.getSCEV(StepInstOp0) == Step)
216     StepValue = StepInstOp0;
217 
218   Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst);
219   if (!FinalIVValue)
220     return None;
221 
222   return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue,
223                     SE);
224 }
225 
226 using Direction = Loop::LoopBounds::Direction;
227 
228 ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const {
229   BasicBlock *Latch = L.getLoopLatch();
230   assert(Latch && "Expecting valid latch");
231 
232   BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator());
233   assert(BI && BI->isConditional() && "Expecting conditional latch branch");
234 
235   ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition());
236   assert(LatchCmpInst &&
237          "Expecting the latch compare instruction to be a CmpInst");
238 
239   // Need to inverse the predicate when first successor is not the loop
240   // header
241   ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader())
242                                  ? LatchCmpInst->getPredicate()
243                                  : LatchCmpInst->getInversePredicate();
244 
245   if (LatchCmpInst->getOperand(0) == &getFinalIVValue())
246     Pred = ICmpInst::getSwappedPredicate(Pred);
247 
248   // Need to flip strictness of the predicate when the latch compare instruction
249   // is not using StepInst
250   if (LatchCmpInst->getOperand(0) == &getStepInst() ||
251       LatchCmpInst->getOperand(1) == &getStepInst())
252     return Pred;
253 
254   // Cannot flip strictness of NE and EQ
255   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
256     return ICmpInst::getFlippedStrictnessPredicate(Pred);
257 
258   Direction D = getDirection();
259   if (D == Direction::Increasing)
260     return ICmpInst::ICMP_SLT;
261 
262   if (D == Direction::Decreasing)
263     return ICmpInst::ICMP_SGT;
264 
265   // If cannot determine the direction, then unable to find the canonical
266   // predicate
267   return ICmpInst::BAD_ICMP_PREDICATE;
268 }
269 
270 Direction Loop::LoopBounds::getDirection() const {
271   if (const SCEVAddRecExpr *StepAddRecExpr =
272           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst())))
273     if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) {
274       if (SE.isKnownPositive(StepRecur))
275         return Direction::Increasing;
276       if (SE.isKnownNegative(StepRecur))
277         return Direction::Decreasing;
278     }
279 
280   return Direction::Unknown;
281 }
282 
283 Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const {
284   if (PHINode *IndVar = getInductionVariable(SE))
285     return LoopBounds::getBounds(*this, *IndVar, SE);
286 
287   return None;
288 }
289 
290 PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const {
291   if (!isLoopSimplifyForm())
292     return nullptr;
293 
294   BasicBlock *Header = getHeader();
295   assert(Header && "Expected a valid loop header");
296   ICmpInst *CmpInst = getLatchCmpInst(*this);
297   if (!CmpInst)
298     return nullptr;
299 
300   Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0));
301   Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1));
302 
303   for (PHINode &IndVar : Header->phis()) {
304     InductionDescriptor IndDesc;
305     if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc))
306       continue;
307 
308     Instruction *StepInst = IndDesc.getInductionBinOp();
309 
310     // case 1:
311     // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
312     // StepInst = IndVar + step
313     // cmp = StepInst < FinalValue
314     if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1)
315       return &IndVar;
316 
317     // case 2:
318     // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
319     // StepInst = IndVar + step
320     // cmp = IndVar < FinalValue
321     if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1)
322       return &IndVar;
323   }
324 
325   return nullptr;
326 }
327 
328 bool Loop::getInductionDescriptor(ScalarEvolution &SE,
329                                   InductionDescriptor &IndDesc) const {
330   if (PHINode *IndVar = getInductionVariable(SE))
331     return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc);
332 
333   return false;
334 }
335 
336 bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar,
337                                         ScalarEvolution &SE) const {
338   // Located in the loop header
339   BasicBlock *Header = getHeader();
340   if (AuxIndVar.getParent() != Header)
341     return false;
342 
343   // No uses outside of the loop
344   for (User *U : AuxIndVar.users())
345     if (const Instruction *I = dyn_cast<Instruction>(U))
346       if (!contains(I))
347         return false;
348 
349   InductionDescriptor IndDesc;
350   if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc))
351     return false;
352 
353   // The step instruction opcode should be add or sub.
354   if (IndDesc.getInductionOpcode() != Instruction::Add &&
355       IndDesc.getInductionOpcode() != Instruction::Sub)
356     return false;
357 
358   // Incremented by a loop invariant step for each loop iteration
359   return SE.isLoopInvariant(IndDesc.getStep(), this);
360 }
361 
362 BranchInst *Loop::getLoopGuardBranch() const {
363   assert(isLoopSimplifyForm() && "Only valid for loop in simplify form");
364   BasicBlock *Preheader = getLoopPreheader();
365   BasicBlock *Latch = getLoopLatch();
366   assert(Preheader && Latch &&
367          "Expecting a loop with valid preheader and latch");
368   assert(isLoopExiting(Latch) && "Only valid for rotated loop");
369 
370   Instruction *LatchTI = Latch->getTerminator();
371   if (!LatchTI || LatchTI->getNumSuccessors() != 2)
372     return nullptr;
373 
374   BasicBlock *ExitFromLatch = (LatchTI->getSuccessor(0) == getHeader())
375                                   ? LatchTI->getSuccessor(1)
376                                   : LatchTI->getSuccessor(0);
377   BasicBlock *ExitFromLatchSucc = ExitFromLatch->getUniqueSuccessor();
378   if (!ExitFromLatchSucc)
379     return nullptr;
380 
381   BasicBlock *GuardBB = Preheader->getUniquePredecessor();
382   if (!GuardBB)
383     return nullptr;
384 
385   assert(GuardBB->getTerminator() && "Expecting valid guard terminator");
386 
387   BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator());
388   if (!GuardBI || GuardBI->isUnconditional())
389     return nullptr;
390 
391   BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader)
392                                    ? GuardBI->getSuccessor(1)
393                                    : GuardBI->getSuccessor(0);
394   return (GuardOtherSucc == ExitFromLatchSucc) ? GuardBI : nullptr;
395 }
396 
397 bool Loop::isCanonical(ScalarEvolution &SE) const {
398   InductionDescriptor IndDesc;
399   if (!getInductionDescriptor(SE, IndDesc))
400     return false;
401 
402   ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue());
403   if (!Init || !Init->isZero())
404     return false;
405 
406   if (IndDesc.getInductionOpcode() != Instruction::Add)
407     return false;
408 
409   ConstantInt *Step = IndDesc.getConstIntStepValue();
410   if (!Step || !Step->isOne())
411     return false;
412 
413   return true;
414 }
415 
416 // Check that 'BB' doesn't have any uses outside of the 'L'
417 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
418                                DominatorTree &DT) {
419   for (const Instruction &I : BB) {
420     // Tokens can't be used in PHI nodes and live-out tokens prevent loop
421     // optimizations, so for the purposes of considered LCSSA form, we
422     // can ignore them.
423     if (I.getType()->isTokenTy())
424       continue;
425 
426     for (const Use &U : I.uses()) {
427       const Instruction *UI = cast<Instruction>(U.getUser());
428       const BasicBlock *UserBB = UI->getParent();
429       if (const PHINode *P = dyn_cast<PHINode>(UI))
430         UserBB = P->getIncomingBlock(U);
431 
432       // Check the current block, as a fast-path, before checking whether
433       // the use is anywhere in the loop.  Most values are used in the same
434       // block they are defined in.  Also, blocks not reachable from the
435       // entry are special; uses in them don't need to go through PHIs.
436       if (UserBB != &BB && !L.contains(UserBB) &&
437           DT.isReachableFromEntry(UserBB))
438         return false;
439     }
440   }
441   return true;
442 }
443 
444 bool Loop::isLCSSAForm(DominatorTree &DT) const {
445   // For each block we check that it doesn't have any uses outside of this loop.
446   return all_of(this->blocks(), [&](const BasicBlock *BB) {
447     return isBlockInLCSSAForm(*this, *BB, DT);
448   });
449 }
450 
451 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const {
452   // For each block we check that it doesn't have any uses outside of its
453   // innermost loop. This process will transitively guarantee that the current
454   // loop and all of the nested loops are in LCSSA form.
455   return all_of(this->blocks(), [&](const BasicBlock *BB) {
456     return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
457   });
458 }
459 
460 bool Loop::isLoopSimplifyForm() const {
461   // Normal-form loops have a preheader, a single backedge, and all of their
462   // exits have all their predecessors inside the loop.
463   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
464 }
465 
466 // Routines that reform the loop CFG and split edges often fail on indirectbr.
467 bool Loop::isSafeToClone() const {
468   // Return false if any loop blocks contain indirectbrs, or there are any calls
469   // to noduplicate functions.
470   // FIXME: it should be ok to clone CallBrInst's if we correctly update the
471   // operand list to reflect the newly cloned labels.
472   for (BasicBlock *BB : this->blocks()) {
473     if (isa<IndirectBrInst>(BB->getTerminator()) ||
474         isa<CallBrInst>(BB->getTerminator()))
475       return false;
476 
477     for (Instruction &I : *BB)
478       if (auto CS = CallSite(&I))
479         if (CS.cannotDuplicate())
480           return false;
481   }
482   return true;
483 }
484 
485 MDNode *Loop::getLoopID() const {
486   MDNode *LoopID = nullptr;
487 
488   // Go through the latch blocks and check the terminator for the metadata.
489   SmallVector<BasicBlock *, 4> LatchesBlocks;
490   getLoopLatches(LatchesBlocks);
491   for (BasicBlock *BB : LatchesBlocks) {
492     Instruction *TI = BB->getTerminator();
493     MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);
494 
495     if (!MD)
496       return nullptr;
497 
498     if (!LoopID)
499       LoopID = MD;
500     else if (MD != LoopID)
501       return nullptr;
502   }
503   if (!LoopID || LoopID->getNumOperands() == 0 ||
504       LoopID->getOperand(0) != LoopID)
505     return nullptr;
506   return LoopID;
507 }
508 
509 void Loop::setLoopID(MDNode *LoopID) const {
510   assert((!LoopID || LoopID->getNumOperands() > 0) &&
511          "Loop ID needs at least one operand");
512   assert((!LoopID || LoopID->getOperand(0) == LoopID) &&
513          "Loop ID should refer to itself");
514 
515   SmallVector<BasicBlock *, 4> LoopLatches;
516   getLoopLatches(LoopLatches);
517   for (BasicBlock *BB : LoopLatches)
518     BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
519 }
520 
521 void Loop::setLoopAlreadyUnrolled() {
522   LLVMContext &Context = getHeader()->getContext();
523 
524   MDNode *DisableUnrollMD =
525       MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable"));
526   MDNode *LoopID = getLoopID();
527   MDNode *NewLoopID = makePostTransformationMetadata(
528       Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD});
529   setLoopID(NewLoopID);
530 }
531 
532 bool Loop::isAnnotatedParallel() const {
533   MDNode *DesiredLoopIdMetadata = getLoopID();
534 
535   if (!DesiredLoopIdMetadata)
536     return false;
537 
538   MDNode *ParallelAccesses =
539       findOptionMDForLoop(this, "llvm.loop.parallel_accesses");
540   SmallPtrSet<MDNode *, 4>
541       ParallelAccessGroups; // For scalable 'contains' check.
542   if (ParallelAccesses) {
543     for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) {
544       MDNode *AccGroup = cast<MDNode>(MD.get());
545       assert(isValidAsAccessGroup(AccGroup) &&
546              "List item must be an access group");
547       ParallelAccessGroups.insert(AccGroup);
548     }
549   }
550 
551   // The loop branch contains the parallel loop metadata. In order to ensure
552   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
553   // dependencies (thus converted the loop back to a sequential loop), check
554   // that all the memory instructions in the loop belong to an access group that
555   // is parallel to this loop.
556   for (BasicBlock *BB : this->blocks()) {
557     for (Instruction &I : *BB) {
558       if (!I.mayReadOrWriteMemory())
559         continue;
560 
561       if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) {
562         auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool {
563           if (AG->getNumOperands() == 0) {
564             assert(isValidAsAccessGroup(AG) && "Item must be an access group");
565             return ParallelAccessGroups.count(AG);
566           }
567 
568           for (const MDOperand &AccessListItem : AG->operands()) {
569             MDNode *AccGroup = cast<MDNode>(AccessListItem.get());
570             assert(isValidAsAccessGroup(AccGroup) &&
571                    "List item must be an access group");
572             if (ParallelAccessGroups.count(AccGroup))
573               return true;
574           }
575           return false;
576         };
577 
578         if (ContainsAccessGroup(AccessGroup))
579           continue;
580       }
581 
582       // The memory instruction can refer to the loop identifier metadata
583       // directly or indirectly through another list metadata (in case of
584       // nested parallel loops). The loop identifier metadata refers to
585       // itself so we can check both cases with the same routine.
586       MDNode *LoopIdMD =
587           I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
588 
589       if (!LoopIdMD)
590         return false;
591 
592       bool LoopIdMDFound = false;
593       for (const MDOperand &MDOp : LoopIdMD->operands()) {
594         if (MDOp == DesiredLoopIdMetadata) {
595           LoopIdMDFound = true;
596           break;
597         }
598       }
599 
600       if (!LoopIdMDFound)
601         return false;
602     }
603   }
604   return true;
605 }
606 
607 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
608 
609 Loop::LocRange Loop::getLocRange() const {
610   // If we have a debug location in the loop ID, then use it.
611   if (MDNode *LoopID = getLoopID()) {
612     DebugLoc Start;
613     // We use the first DebugLoc in the header as the start location of the loop
614     // and if there is a second DebugLoc in the header we use it as end location
615     // of the loop.
616     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
617       if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
618         if (!Start)
619           Start = DebugLoc(L);
620         else
621           return LocRange(Start, DebugLoc(L));
622       }
623     }
624 
625     if (Start)
626       return LocRange(Start);
627   }
628 
629   // Try the pre-header first.
630   if (BasicBlock *PHeadBB = getLoopPreheader())
631     if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
632       return LocRange(DL);
633 
634   // If we have no pre-header or there are no instructions with debug
635   // info in it, try the header.
636   if (BasicBlock *HeadBB = getHeader())
637     return LocRange(HeadBB->getTerminator()->getDebugLoc());
638 
639   return LocRange();
640 }
641 
642 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
643 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
644 
645 LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
646   print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
647 }
648 #endif
649 
650 //===----------------------------------------------------------------------===//
651 // UnloopUpdater implementation
652 //
653 
654 namespace {
655 /// Find the new parent loop for all blocks within the "unloop" whose last
656 /// backedges has just been removed.
657 class UnloopUpdater {
658   Loop &Unloop;
659   LoopInfo *LI;
660 
661   LoopBlocksDFS DFS;
662 
663   // Map unloop's immediate subloops to their nearest reachable parents. Nested
664   // loops within these subloops will not change parents. However, an immediate
665   // subloop's new parent will be the nearest loop reachable from either its own
666   // exits *or* any of its nested loop's exits.
667   DenseMap<Loop *, Loop *> SubloopParents;
668 
669   // Flag the presence of an irreducible backedge whose destination is a block
670   // directly contained by the original unloop.
671   bool FoundIB;
672 
673 public:
674   UnloopUpdater(Loop *UL, LoopInfo *LInfo)
675       : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
676 
677   void updateBlockParents();
678 
679   void removeBlocksFromAncestors();
680 
681   void updateSubloopParents();
682 
683 protected:
684   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
685 };
686 } // end anonymous namespace
687 
688 /// Update the parent loop for all blocks that are directly contained within the
689 /// original "unloop".
690 void UnloopUpdater::updateBlockParents() {
691   if (Unloop.getNumBlocks()) {
692     // Perform a post order CFG traversal of all blocks within this loop,
693     // propagating the nearest loop from successors to predecessors.
694     LoopBlocksTraversal Traversal(DFS, LI);
695     for (BasicBlock *POI : Traversal) {
696 
697       Loop *L = LI->getLoopFor(POI);
698       Loop *NL = getNearestLoop(POI, L);
699 
700       if (NL != L) {
701         // For reducible loops, NL is now an ancestor of Unloop.
702         assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
703                "uninitialized successor");
704         LI->changeLoopFor(POI, NL);
705       } else {
706         // Or the current block is part of a subloop, in which case its parent
707         // is unchanged.
708         assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
709       }
710     }
711   }
712   // Each irreducible loop within the unloop induces a round of iteration using
713   // the DFS result cached by Traversal.
714   bool Changed = FoundIB;
715   for (unsigned NIters = 0; Changed; ++NIters) {
716     assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
717 
718     // Iterate over the postorder list of blocks, propagating the nearest loop
719     // from successors to predecessors as before.
720     Changed = false;
721     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
722                                    POE = DFS.endPostorder();
723          POI != POE; ++POI) {
724 
725       Loop *L = LI->getLoopFor(*POI);
726       Loop *NL = getNearestLoop(*POI, L);
727       if (NL != L) {
728         assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
729                "uninitialized successor");
730         LI->changeLoopFor(*POI, NL);
731         Changed = true;
732       }
733     }
734   }
735 }
736 
737 /// Remove unloop's blocks from all ancestors below their new parents.
738 void UnloopUpdater::removeBlocksFromAncestors() {
739   // Remove all unloop's blocks (including those in nested subloops) from
740   // ancestors below the new parent loop.
741   for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end();
742        BI != BE; ++BI) {
743     Loop *OuterParent = LI->getLoopFor(*BI);
744     if (Unloop.contains(OuterParent)) {
745       while (OuterParent->getParentLoop() != &Unloop)
746         OuterParent = OuterParent->getParentLoop();
747       OuterParent = SubloopParents[OuterParent];
748     }
749     // Remove blocks from former Ancestors except Unloop itself which will be
750     // deleted.
751     for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
752          OldParent = OldParent->getParentLoop()) {
753       assert(OldParent && "new loop is not an ancestor of the original");
754       OldParent->removeBlockFromLoop(*BI);
755     }
756   }
757 }
758 
759 /// Update the parent loop for all subloops directly nested within unloop.
760 void UnloopUpdater::updateSubloopParents() {
761   while (!Unloop.empty()) {
762     Loop *Subloop = *std::prev(Unloop.end());
763     Unloop.removeChildLoop(std::prev(Unloop.end()));
764 
765     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
766     if (Loop *Parent = SubloopParents[Subloop])
767       Parent->addChildLoop(Subloop);
768     else
769       LI->addTopLevelLoop(Subloop);
770   }
771 }
772 
773 /// Return the nearest parent loop among this block's successors. If a successor
774 /// is a subloop header, consider its parent to be the nearest parent of the
775 /// subloop's exits.
776 ///
777 /// For subloop blocks, simply update SubloopParents and return NULL.
778 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
779 
780   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
781   // is considered uninitialized.
782   Loop *NearLoop = BBLoop;
783 
784   Loop *Subloop = nullptr;
785   if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
786     Subloop = NearLoop;
787     // Find the subloop ancestor that is directly contained within Unloop.
788     while (Subloop->getParentLoop() != &Unloop) {
789       Subloop = Subloop->getParentLoop();
790       assert(Subloop && "subloop is not an ancestor of the original loop");
791     }
792     // Get the current nearest parent of the Subloop exits, initially Unloop.
793     NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
794   }
795 
796   succ_iterator I = succ_begin(BB), E = succ_end(BB);
797   if (I == E) {
798     assert(!Subloop && "subloop blocks must have a successor");
799     NearLoop = nullptr; // unloop blocks may now exit the function.
800   }
801   for (; I != E; ++I) {
802     if (*I == BB)
803       continue; // self loops are uninteresting
804 
805     Loop *L = LI->getLoopFor(*I);
806     if (L == &Unloop) {
807       // This successor has not been processed. This path must lead to an
808       // irreducible backedge.
809       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
810       FoundIB = true;
811     }
812     if (L != &Unloop && Unloop.contains(L)) {
813       // Successor is in a subloop.
814       if (Subloop)
815         continue; // Branching within subloops. Ignore it.
816 
817       // BB branches from the original into a subloop header.
818       assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
819 
820       // Get the current nearest parent of the Subloop's exits.
821       L = SubloopParents[L];
822       // L could be Unloop if the only exit was an irreducible backedge.
823     }
824     if (L == &Unloop) {
825       continue;
826     }
827     // Handle critical edges from Unloop into a sibling loop.
828     if (L && !L->contains(&Unloop)) {
829       L = L->getParentLoop();
830     }
831     // Remember the nearest parent loop among successors or subloop exits.
832     if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
833       NearLoop = L;
834   }
835   if (Subloop) {
836     SubloopParents[Subloop] = NearLoop;
837     return BBLoop;
838   }
839   return NearLoop;
840 }
841 
842 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
843 
844 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
845                           FunctionAnalysisManager::Invalidator &) {
846   // Check whether the analysis, all analyses on functions, or the function's
847   // CFG have been preserved.
848   auto PAC = PA.getChecker<LoopAnalysis>();
849   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
850            PAC.preservedSet<CFGAnalyses>());
851 }
852 
853 void LoopInfo::erase(Loop *Unloop) {
854   assert(!Unloop->isInvalid() && "Loop has already been erased!");
855 
856   auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
857 
858   // First handle the special case of no parent loop to simplify the algorithm.
859   if (!Unloop->getParentLoop()) {
860     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
861     for (Loop::block_iterator I = Unloop->block_begin(),
862                               E = Unloop->block_end();
863          I != E; ++I) {
864 
865       // Don't reparent blocks in subloops.
866       if (getLoopFor(*I) != Unloop)
867         continue;
868 
869       // Blocks no longer have a parent but are still referenced by Unloop until
870       // the Unloop object is deleted.
871       changeLoopFor(*I, nullptr);
872     }
873 
874     // Remove the loop from the top-level LoopInfo object.
875     for (iterator I = begin();; ++I) {
876       assert(I != end() && "Couldn't find loop");
877       if (*I == Unloop) {
878         removeLoop(I);
879         break;
880       }
881     }
882 
883     // Move all of the subloops to the top-level.
884     while (!Unloop->empty())
885       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
886 
887     return;
888   }
889 
890   // Update the parent loop for all blocks within the loop. Blocks within
891   // subloops will not change parents.
892   UnloopUpdater Updater(Unloop, this);
893   Updater.updateBlockParents();
894 
895   // Remove blocks from former ancestor loops.
896   Updater.removeBlocksFromAncestors();
897 
898   // Add direct subloops as children in their new parent loop.
899   Updater.updateSubloopParents();
900 
901   // Remove unloop from its parent loop.
902   Loop *ParentLoop = Unloop->getParentLoop();
903   for (Loop::iterator I = ParentLoop->begin();; ++I) {
904     assert(I != ParentLoop->end() && "Couldn't find loop");
905     if (*I == Unloop) {
906       ParentLoop->removeChildLoop(I);
907       break;
908     }
909   }
910 }
911 
912 AnalysisKey LoopAnalysis::Key;
913 
914 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
915   // FIXME: Currently we create a LoopInfo from scratch for every function.
916   // This may prove to be too wasteful due to deallocating and re-allocating
917   // memory each time for the underlying map and vector datastructures. At some
918   // point it may prove worthwhile to use a freelist and recycle LoopInfo
919   // objects. I don't want to add that kind of complexity until the scope of
920   // the problem is better understood.
921   LoopInfo LI;
922   LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
923   return LI;
924 }
925 
926 PreservedAnalyses LoopPrinterPass::run(Function &F,
927                                        FunctionAnalysisManager &AM) {
928   AM.getResult<LoopAnalysis>(F).print(OS);
929   return PreservedAnalyses::all();
930 }
931 
932 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
933 
934   if (forcePrintModuleIR()) {
935     // handling -print-module-scope
936     OS << Banner << " (loop: ";
937     L.getHeader()->printAsOperand(OS, false);
938     OS << ")\n";
939 
940     // printing whole module
941     OS << *L.getHeader()->getModule();
942     return;
943   }
944 
945   OS << Banner;
946 
947   auto *PreHeader = L.getLoopPreheader();
948   if (PreHeader) {
949     OS << "\n; Preheader:";
950     PreHeader->print(OS);
951     OS << "\n; Loop:";
952   }
953 
954   for (auto *Block : L.blocks())
955     if (Block)
956       Block->print(OS);
957     else
958       OS << "Printing <null> block";
959 
960   SmallVector<BasicBlock *, 8> ExitBlocks;
961   L.getExitBlocks(ExitBlocks);
962   if (!ExitBlocks.empty()) {
963     OS << "\n; Exit blocks";
964     for (auto *Block : ExitBlocks)
965       if (Block)
966         Block->print(OS);
967       else
968         OS << "Printing <null> block";
969   }
970 }
971 
972 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) {
973   // No loop metadata node, no loop properties.
974   if (!LoopID)
975     return nullptr;
976 
977   // First operand should refer to the metadata node itself, for legacy reasons.
978   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
979   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
980 
981   // Iterate over the metdata node operands and look for MDString metadata.
982   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
983     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
984     if (!MD || MD->getNumOperands() < 1)
985       continue;
986     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
987     if (!S)
988       continue;
989     // Return the operand node if MDString holds expected metadata.
990     if (Name.equals(S->getString()))
991       return MD;
992   }
993 
994   // Loop property not found.
995   return nullptr;
996 }
997 
998 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) {
999   return findOptionMDForLoopID(TheLoop->getLoopID(), Name);
1000 }
1001 
1002 bool llvm::isValidAsAccessGroup(MDNode *Node) {
1003   return Node->getNumOperands() == 0 && Node->isDistinct();
1004 }
1005 
1006 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context,
1007                                              MDNode *OrigLoopID,
1008                                              ArrayRef<StringRef> RemovePrefixes,
1009                                              ArrayRef<MDNode *> AddAttrs) {
1010   // First remove any existing loop metadata related to this transformation.
1011   SmallVector<Metadata *, 4> MDs;
1012 
1013   // Reserve first location for self reference to the LoopID metadata node.
1014   TempMDTuple TempNode = MDNode::getTemporary(Context, None);
1015   MDs.push_back(TempNode.get());
1016 
1017   // Remove metadata for the transformation that has been applied or that became
1018   // outdated.
1019   if (OrigLoopID) {
1020     for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) {
1021       bool IsVectorMetadata = false;
1022       Metadata *Op = OrigLoopID->getOperand(i);
1023       if (MDNode *MD = dyn_cast<MDNode>(Op)) {
1024         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1025         if (S)
1026           IsVectorMetadata =
1027               llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool {
1028                 return S->getString().startswith(Prefix);
1029               });
1030       }
1031       if (!IsVectorMetadata)
1032         MDs.push_back(Op);
1033     }
1034   }
1035 
1036   // Add metadata to avoid reapplying a transformation, such as
1037   // llvm.loop.unroll.disable and llvm.loop.isvectorized.
1038   MDs.append(AddAttrs.begin(), AddAttrs.end());
1039 
1040   MDNode *NewLoopID = MDNode::getDistinct(Context, MDs);
1041   // Replace the temporary node with a self-reference.
1042   NewLoopID->replaceOperandWith(0, NewLoopID);
1043   return NewLoopID;
1044 }
1045 
1046 //===----------------------------------------------------------------------===//
1047 // LoopInfo implementation
1048 //
1049 
1050 char LoopInfoWrapperPass::ID = 0;
1051 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
1052                       true, true)
1053 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1054 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
1055                     true, true)
1056 
1057 bool LoopInfoWrapperPass::runOnFunction(Function &) {
1058   releaseMemory();
1059   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
1060   return false;
1061 }
1062 
1063 void LoopInfoWrapperPass::verifyAnalysis() const {
1064   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
1065   // function each time verifyAnalysis is called is very expensive. The
1066   // -verify-loop-info option can enable this. In order to perform some
1067   // checking by default, LoopPass has been taught to call verifyLoop manually
1068   // during loop pass sequences.
1069   if (VerifyLoopInfo) {
1070     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1071     LI.verify(DT);
1072   }
1073 }
1074 
1075 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1076   AU.setPreservesAll();
1077   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1078 }
1079 
1080 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
1081   LI.print(OS);
1082 }
1083 
1084 PreservedAnalyses LoopVerifierPass::run(Function &F,
1085                                         FunctionAnalysisManager &AM) {
1086   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1087   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1088   LI.verify(DT);
1089   return PreservedAnalyses::all();
1090 }
1091 
1092 //===----------------------------------------------------------------------===//
1093 // LoopBlocksDFS implementation
1094 //
1095 
1096 /// Traverse the loop blocks and store the DFS result.
1097 /// Useful for clients that just want the final DFS result and don't need to
1098 /// visit blocks during the initial traversal.
1099 void LoopBlocksDFS::perform(LoopInfo *LI) {
1100   LoopBlocksTraversal Traversal(*this, LI);
1101   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
1102                                         POE = Traversal.end();
1103        POI != POE; ++POI)
1104     ;
1105 }
1106