1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the LoopInfo class that is used to identify natural loops 10 // and determine the loop depth of various nodes of the CFG. Note that the 11 // loops identified may actually be several natural loops that share the same 12 // header node... not just a single natural loop. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/IVDescriptors.h" 21 #include "llvm/Analysis/LoopInfoImpl.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include "llvm/Analysis/MemorySSA.h" 24 #include "llvm/Analysis/MemorySSAUpdater.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Config/llvm-config.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DebugLoc.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 44 template class llvm::LoopBase<BasicBlock, Loop>; 45 template class llvm::LoopInfoBase<BasicBlock, Loop>; 46 47 // Always verify loopinfo if expensive checking is enabled. 48 #ifdef EXPENSIVE_CHECKS 49 bool llvm::VerifyLoopInfo = true; 50 #else 51 bool llvm::VerifyLoopInfo = false; 52 #endif 53 static cl::opt<bool, true> 54 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 55 cl::Hidden, cl::desc("Verify loop info (time consuming)")); 56 57 //===----------------------------------------------------------------------===// 58 // Loop implementation 59 // 60 61 bool Loop::isLoopInvariant(const Value *V) const { 62 if (const Instruction *I = dyn_cast<Instruction>(V)) 63 return !contains(I); 64 return true; // All non-instructions are loop invariant 65 } 66 67 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 68 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 69 } 70 71 bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt, 72 MemorySSAUpdater *MSSAU) const { 73 if (Instruction *I = dyn_cast<Instruction>(V)) 74 return makeLoopInvariant(I, Changed, InsertPt, MSSAU); 75 return true; // All non-instructions are loop-invariant. 76 } 77 78 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 79 Instruction *InsertPt, 80 MemorySSAUpdater *MSSAU) const { 81 // Test if the value is already loop-invariant. 82 if (isLoopInvariant(I)) 83 return true; 84 if (!isSafeToSpeculativelyExecute(I)) 85 return false; 86 if (I->mayReadFromMemory()) 87 return false; 88 // EH block instructions are immobile. 89 if (I->isEHPad()) 90 return false; 91 // Determine the insertion point, unless one was given. 92 if (!InsertPt) { 93 BasicBlock *Preheader = getLoopPreheader(); 94 // Without a preheader, hoisting is not feasible. 95 if (!Preheader) 96 return false; 97 InsertPt = Preheader->getTerminator(); 98 } 99 // Don't hoist instructions with loop-variant operands. 100 for (Value *Operand : I->operands()) 101 if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU)) 102 return false; 103 104 // Hoist. 105 I->moveBefore(InsertPt); 106 if (MSSAU) 107 if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I)) 108 MSSAU->moveToPlace(MUD, InsertPt->getParent(), MemorySSA::End); 109 110 // There is possibility of hoisting this instruction above some arbitrary 111 // condition. Any metadata defined on it can be control dependent on this 112 // condition. Conservatively strip it here so that we don't give any wrong 113 // information to the optimizer. 114 I->dropUnknownNonDebugMetadata(); 115 116 Changed = true; 117 return true; 118 } 119 120 bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming, 121 BasicBlock *&Backedge) const { 122 BasicBlock *H = getHeader(); 123 124 Incoming = nullptr; 125 Backedge = nullptr; 126 pred_iterator PI = pred_begin(H); 127 assert(PI != pred_end(H) && "Loop must have at least one backedge!"); 128 Backedge = *PI++; 129 if (PI == pred_end(H)) 130 return false; // dead loop 131 Incoming = *PI++; 132 if (PI != pred_end(H)) 133 return false; // multiple backedges? 134 135 if (contains(Incoming)) { 136 if (contains(Backedge)) 137 return false; 138 std::swap(Incoming, Backedge); 139 } else if (!contains(Backedge)) 140 return false; 141 142 assert(Incoming && Backedge && "expected non-null incoming and backedges"); 143 return true; 144 } 145 146 PHINode *Loop::getCanonicalInductionVariable() const { 147 BasicBlock *H = getHeader(); 148 149 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 150 if (!getIncomingAndBackEdge(Incoming, Backedge)) 151 return nullptr; 152 153 // Loop over all of the PHI nodes, looking for a canonical indvar. 154 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 155 PHINode *PN = cast<PHINode>(I); 156 if (ConstantInt *CI = 157 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 158 if (CI->isZero()) 159 if (Instruction *Inc = 160 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 161 if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) 162 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 163 if (CI->isOne()) 164 return PN; 165 } 166 return nullptr; 167 } 168 169 /// Get the latch condition instruction. 170 static ICmpInst *getLatchCmpInst(const Loop &L) { 171 if (BasicBlock *Latch = L.getLoopLatch()) 172 if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator())) 173 if (BI->isConditional()) 174 return dyn_cast<ICmpInst>(BI->getCondition()); 175 176 return nullptr; 177 } 178 179 /// Return the final value of the loop induction variable if found. 180 static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar, 181 const Instruction &StepInst) { 182 ICmpInst *LatchCmpInst = getLatchCmpInst(L); 183 if (!LatchCmpInst) 184 return nullptr; 185 186 Value *Op0 = LatchCmpInst->getOperand(0); 187 Value *Op1 = LatchCmpInst->getOperand(1); 188 if (Op0 == &IndVar || Op0 == &StepInst) 189 return Op1; 190 191 if (Op1 == &IndVar || Op1 == &StepInst) 192 return Op0; 193 194 return nullptr; 195 } 196 197 Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L, 198 PHINode &IndVar, 199 ScalarEvolution &SE) { 200 InductionDescriptor IndDesc; 201 if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc)) 202 return None; 203 204 Value *InitialIVValue = IndDesc.getStartValue(); 205 Instruction *StepInst = IndDesc.getInductionBinOp(); 206 if (!InitialIVValue || !StepInst) 207 return None; 208 209 const SCEV *Step = IndDesc.getStep(); 210 Value *StepInstOp1 = StepInst->getOperand(1); 211 Value *StepInstOp0 = StepInst->getOperand(0); 212 Value *StepValue = nullptr; 213 if (SE.getSCEV(StepInstOp1) == Step) 214 StepValue = StepInstOp1; 215 else if (SE.getSCEV(StepInstOp0) == Step) 216 StepValue = StepInstOp0; 217 218 Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst); 219 if (!FinalIVValue) 220 return None; 221 222 return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue, 223 SE); 224 } 225 226 using Direction = Loop::LoopBounds::Direction; 227 228 ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const { 229 BasicBlock *Latch = L.getLoopLatch(); 230 assert(Latch && "Expecting valid latch"); 231 232 BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()); 233 assert(BI && BI->isConditional() && "Expecting conditional latch branch"); 234 235 ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition()); 236 assert(LatchCmpInst && 237 "Expecting the latch compare instruction to be a CmpInst"); 238 239 // Need to inverse the predicate when first successor is not the loop 240 // header 241 ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader()) 242 ? LatchCmpInst->getPredicate() 243 : LatchCmpInst->getInversePredicate(); 244 245 if (LatchCmpInst->getOperand(0) == &getFinalIVValue()) 246 Pred = ICmpInst::getSwappedPredicate(Pred); 247 248 // Need to flip strictness of the predicate when the latch compare instruction 249 // is not using StepInst 250 if (LatchCmpInst->getOperand(0) == &getStepInst() || 251 LatchCmpInst->getOperand(1) == &getStepInst()) 252 return Pred; 253 254 // Cannot flip strictness of NE and EQ 255 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 256 return ICmpInst::getFlippedStrictnessPredicate(Pred); 257 258 Direction D = getDirection(); 259 if (D == Direction::Increasing) 260 return ICmpInst::ICMP_SLT; 261 262 if (D == Direction::Decreasing) 263 return ICmpInst::ICMP_SGT; 264 265 // If cannot determine the direction, then unable to find the canonical 266 // predicate 267 return ICmpInst::BAD_ICMP_PREDICATE; 268 } 269 270 Direction Loop::LoopBounds::getDirection() const { 271 if (const SCEVAddRecExpr *StepAddRecExpr = 272 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst()))) 273 if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) { 274 if (SE.isKnownPositive(StepRecur)) 275 return Direction::Increasing; 276 if (SE.isKnownNegative(StepRecur)) 277 return Direction::Decreasing; 278 } 279 280 return Direction::Unknown; 281 } 282 283 Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const { 284 if (PHINode *IndVar = getInductionVariable(SE)) 285 return LoopBounds::getBounds(*this, *IndVar, SE); 286 287 return None; 288 } 289 290 PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const { 291 if (!isLoopSimplifyForm()) 292 return nullptr; 293 294 BasicBlock *Header = getHeader(); 295 assert(Header && "Expected a valid loop header"); 296 ICmpInst *CmpInst = getLatchCmpInst(*this); 297 if (!CmpInst) 298 return nullptr; 299 300 Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0)); 301 Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1)); 302 303 for (PHINode &IndVar : Header->phis()) { 304 InductionDescriptor IndDesc; 305 if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc)) 306 continue; 307 308 Instruction *StepInst = IndDesc.getInductionBinOp(); 309 310 // case 1: 311 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] 312 // StepInst = IndVar + step 313 // cmp = StepInst < FinalValue 314 if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1) 315 return &IndVar; 316 317 // case 2: 318 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] 319 // StepInst = IndVar + step 320 // cmp = IndVar < FinalValue 321 if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1) 322 return &IndVar; 323 } 324 325 return nullptr; 326 } 327 328 bool Loop::getInductionDescriptor(ScalarEvolution &SE, 329 InductionDescriptor &IndDesc) const { 330 if (PHINode *IndVar = getInductionVariable(SE)) 331 return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc); 332 333 return false; 334 } 335 336 bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar, 337 ScalarEvolution &SE) const { 338 // Located in the loop header 339 BasicBlock *Header = getHeader(); 340 if (AuxIndVar.getParent() != Header) 341 return false; 342 343 // No uses outside of the loop 344 for (User *U : AuxIndVar.users()) 345 if (const Instruction *I = dyn_cast<Instruction>(U)) 346 if (!contains(I)) 347 return false; 348 349 InductionDescriptor IndDesc; 350 if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc)) 351 return false; 352 353 // The step instruction opcode should be add or sub. 354 if (IndDesc.getInductionOpcode() != Instruction::Add && 355 IndDesc.getInductionOpcode() != Instruction::Sub) 356 return false; 357 358 // Incremented by a loop invariant step for each loop iteration 359 return SE.isLoopInvariant(IndDesc.getStep(), this); 360 } 361 362 BranchInst *Loop::getLoopGuardBranch() const { 363 assert(isLoopSimplifyForm() && "Only valid for loop in simplify form"); 364 BasicBlock *Preheader = getLoopPreheader(); 365 BasicBlock *Latch = getLoopLatch(); 366 assert(Preheader && Latch && 367 "Expecting a loop with valid preheader and latch"); 368 assert(isLoopExiting(Latch) && "Only valid for rotated loop"); 369 370 Instruction *LatchTI = Latch->getTerminator(); 371 if (!LatchTI || LatchTI->getNumSuccessors() != 2) 372 return nullptr; 373 374 BasicBlock *ExitFromLatch = (LatchTI->getSuccessor(0) == getHeader()) 375 ? LatchTI->getSuccessor(1) 376 : LatchTI->getSuccessor(0); 377 BasicBlock *ExitFromLatchSucc = ExitFromLatch->getUniqueSuccessor(); 378 if (!ExitFromLatchSucc) 379 return nullptr; 380 381 BasicBlock *GuardBB = Preheader->getUniquePredecessor(); 382 if (!GuardBB) 383 return nullptr; 384 385 assert(GuardBB->getTerminator() && "Expecting valid guard terminator"); 386 387 BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator()); 388 if (!GuardBI || GuardBI->isUnconditional()) 389 return nullptr; 390 391 BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader) 392 ? GuardBI->getSuccessor(1) 393 : GuardBI->getSuccessor(0); 394 return (GuardOtherSucc == ExitFromLatchSucc) ? GuardBI : nullptr; 395 } 396 397 bool Loop::isCanonical(ScalarEvolution &SE) const { 398 InductionDescriptor IndDesc; 399 if (!getInductionDescriptor(SE, IndDesc)) 400 return false; 401 402 ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue()); 403 if (!Init || !Init->isZero()) 404 return false; 405 406 if (IndDesc.getInductionOpcode() != Instruction::Add) 407 return false; 408 409 ConstantInt *Step = IndDesc.getConstIntStepValue(); 410 if (!Step || !Step->isOne()) 411 return false; 412 413 return true; 414 } 415 416 // Check that 'BB' doesn't have any uses outside of the 'L' 417 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, 418 DominatorTree &DT) { 419 for (const Instruction &I : BB) { 420 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 421 // optimizations, so for the purposes of considered LCSSA form, we 422 // can ignore them. 423 if (I.getType()->isTokenTy()) 424 continue; 425 426 for (const Use &U : I.uses()) { 427 const Instruction *UI = cast<Instruction>(U.getUser()); 428 const BasicBlock *UserBB = UI->getParent(); 429 if (const PHINode *P = dyn_cast<PHINode>(UI)) 430 UserBB = P->getIncomingBlock(U); 431 432 // Check the current block, as a fast-path, before checking whether 433 // the use is anywhere in the loop. Most values are used in the same 434 // block they are defined in. Also, blocks not reachable from the 435 // entry are special; uses in them don't need to go through PHIs. 436 if (UserBB != &BB && !L.contains(UserBB) && 437 DT.isReachableFromEntry(UserBB)) 438 return false; 439 } 440 } 441 return true; 442 } 443 444 bool Loop::isLCSSAForm(DominatorTree &DT) const { 445 // For each block we check that it doesn't have any uses outside of this loop. 446 return all_of(this->blocks(), [&](const BasicBlock *BB) { 447 return isBlockInLCSSAForm(*this, *BB, DT); 448 }); 449 } 450 451 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const { 452 // For each block we check that it doesn't have any uses outside of its 453 // innermost loop. This process will transitively guarantee that the current 454 // loop and all of the nested loops are in LCSSA form. 455 return all_of(this->blocks(), [&](const BasicBlock *BB) { 456 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT); 457 }); 458 } 459 460 bool Loop::isLoopSimplifyForm() const { 461 // Normal-form loops have a preheader, a single backedge, and all of their 462 // exits have all their predecessors inside the loop. 463 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 464 } 465 466 // Routines that reform the loop CFG and split edges often fail on indirectbr. 467 bool Loop::isSafeToClone() const { 468 // Return false if any loop blocks contain indirectbrs, or there are any calls 469 // to noduplicate functions. 470 // FIXME: it should be ok to clone CallBrInst's if we correctly update the 471 // operand list to reflect the newly cloned labels. 472 for (BasicBlock *BB : this->blocks()) { 473 if (isa<IndirectBrInst>(BB->getTerminator()) || 474 isa<CallBrInst>(BB->getTerminator())) 475 return false; 476 477 for (Instruction &I : *BB) 478 if (auto CS = CallSite(&I)) 479 if (CS.cannotDuplicate()) 480 return false; 481 } 482 return true; 483 } 484 485 MDNode *Loop::getLoopID() const { 486 MDNode *LoopID = nullptr; 487 488 // Go through the latch blocks and check the terminator for the metadata. 489 SmallVector<BasicBlock *, 4> LatchesBlocks; 490 getLoopLatches(LatchesBlocks); 491 for (BasicBlock *BB : LatchesBlocks) { 492 Instruction *TI = BB->getTerminator(); 493 MDNode *MD = TI->getMetadata(LLVMContext::MD_loop); 494 495 if (!MD) 496 return nullptr; 497 498 if (!LoopID) 499 LoopID = MD; 500 else if (MD != LoopID) 501 return nullptr; 502 } 503 if (!LoopID || LoopID->getNumOperands() == 0 || 504 LoopID->getOperand(0) != LoopID) 505 return nullptr; 506 return LoopID; 507 } 508 509 void Loop::setLoopID(MDNode *LoopID) const { 510 assert((!LoopID || LoopID->getNumOperands() > 0) && 511 "Loop ID needs at least one operand"); 512 assert((!LoopID || LoopID->getOperand(0) == LoopID) && 513 "Loop ID should refer to itself"); 514 515 SmallVector<BasicBlock *, 4> LoopLatches; 516 getLoopLatches(LoopLatches); 517 for (BasicBlock *BB : LoopLatches) 518 BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); 519 } 520 521 void Loop::setLoopAlreadyUnrolled() { 522 LLVMContext &Context = getHeader()->getContext(); 523 524 MDNode *DisableUnrollMD = 525 MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable")); 526 MDNode *LoopID = getLoopID(); 527 MDNode *NewLoopID = makePostTransformationMetadata( 528 Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD}); 529 setLoopID(NewLoopID); 530 } 531 532 bool Loop::isAnnotatedParallel() const { 533 MDNode *DesiredLoopIdMetadata = getLoopID(); 534 535 if (!DesiredLoopIdMetadata) 536 return false; 537 538 MDNode *ParallelAccesses = 539 findOptionMDForLoop(this, "llvm.loop.parallel_accesses"); 540 SmallPtrSet<MDNode *, 4> 541 ParallelAccessGroups; // For scalable 'contains' check. 542 if (ParallelAccesses) { 543 for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) { 544 MDNode *AccGroup = cast<MDNode>(MD.get()); 545 assert(isValidAsAccessGroup(AccGroup) && 546 "List item must be an access group"); 547 ParallelAccessGroups.insert(AccGroup); 548 } 549 } 550 551 // The loop branch contains the parallel loop metadata. In order to ensure 552 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 553 // dependencies (thus converted the loop back to a sequential loop), check 554 // that all the memory instructions in the loop belong to an access group that 555 // is parallel to this loop. 556 for (BasicBlock *BB : this->blocks()) { 557 for (Instruction &I : *BB) { 558 if (!I.mayReadOrWriteMemory()) 559 continue; 560 561 if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) { 562 auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool { 563 if (AG->getNumOperands() == 0) { 564 assert(isValidAsAccessGroup(AG) && "Item must be an access group"); 565 return ParallelAccessGroups.count(AG); 566 } 567 568 for (const MDOperand &AccessListItem : AG->operands()) { 569 MDNode *AccGroup = cast<MDNode>(AccessListItem.get()); 570 assert(isValidAsAccessGroup(AccGroup) && 571 "List item must be an access group"); 572 if (ParallelAccessGroups.count(AccGroup)) 573 return true; 574 } 575 return false; 576 }; 577 578 if (ContainsAccessGroup(AccessGroup)) 579 continue; 580 } 581 582 // The memory instruction can refer to the loop identifier metadata 583 // directly or indirectly through another list metadata (in case of 584 // nested parallel loops). The loop identifier metadata refers to 585 // itself so we can check both cases with the same routine. 586 MDNode *LoopIdMD = 587 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 588 589 if (!LoopIdMD) 590 return false; 591 592 bool LoopIdMDFound = false; 593 for (const MDOperand &MDOp : LoopIdMD->operands()) { 594 if (MDOp == DesiredLoopIdMetadata) { 595 LoopIdMDFound = true; 596 break; 597 } 598 } 599 600 if (!LoopIdMDFound) 601 return false; 602 } 603 } 604 return true; 605 } 606 607 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } 608 609 Loop::LocRange Loop::getLocRange() const { 610 // If we have a debug location in the loop ID, then use it. 611 if (MDNode *LoopID = getLoopID()) { 612 DebugLoc Start; 613 // We use the first DebugLoc in the header as the start location of the loop 614 // and if there is a second DebugLoc in the header we use it as end location 615 // of the loop. 616 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 617 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) { 618 if (!Start) 619 Start = DebugLoc(L); 620 else 621 return LocRange(Start, DebugLoc(L)); 622 } 623 } 624 625 if (Start) 626 return LocRange(Start); 627 } 628 629 // Try the pre-header first. 630 if (BasicBlock *PHeadBB = getLoopPreheader()) 631 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) 632 return LocRange(DL); 633 634 // If we have no pre-header or there are no instructions with debug 635 // info in it, try the header. 636 if (BasicBlock *HeadBB = getHeader()) 637 return LocRange(HeadBB->getTerminator()->getDebugLoc()); 638 639 return LocRange(); 640 } 641 642 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 643 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } 644 645 LLVM_DUMP_METHOD void Loop::dumpVerbose() const { 646 print(dbgs(), /*Depth=*/0, /*Verbose=*/true); 647 } 648 #endif 649 650 //===----------------------------------------------------------------------===// 651 // UnloopUpdater implementation 652 // 653 654 namespace { 655 /// Find the new parent loop for all blocks within the "unloop" whose last 656 /// backedges has just been removed. 657 class UnloopUpdater { 658 Loop &Unloop; 659 LoopInfo *LI; 660 661 LoopBlocksDFS DFS; 662 663 // Map unloop's immediate subloops to their nearest reachable parents. Nested 664 // loops within these subloops will not change parents. However, an immediate 665 // subloop's new parent will be the nearest loop reachable from either its own 666 // exits *or* any of its nested loop's exits. 667 DenseMap<Loop *, Loop *> SubloopParents; 668 669 // Flag the presence of an irreducible backedge whose destination is a block 670 // directly contained by the original unloop. 671 bool FoundIB; 672 673 public: 674 UnloopUpdater(Loop *UL, LoopInfo *LInfo) 675 : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} 676 677 void updateBlockParents(); 678 679 void removeBlocksFromAncestors(); 680 681 void updateSubloopParents(); 682 683 protected: 684 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 685 }; 686 } // end anonymous namespace 687 688 /// Update the parent loop for all blocks that are directly contained within the 689 /// original "unloop". 690 void UnloopUpdater::updateBlockParents() { 691 if (Unloop.getNumBlocks()) { 692 // Perform a post order CFG traversal of all blocks within this loop, 693 // propagating the nearest loop from successors to predecessors. 694 LoopBlocksTraversal Traversal(DFS, LI); 695 for (BasicBlock *POI : Traversal) { 696 697 Loop *L = LI->getLoopFor(POI); 698 Loop *NL = getNearestLoop(POI, L); 699 700 if (NL != L) { 701 // For reducible loops, NL is now an ancestor of Unloop. 702 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && 703 "uninitialized successor"); 704 LI->changeLoopFor(POI, NL); 705 } else { 706 // Or the current block is part of a subloop, in which case its parent 707 // is unchanged. 708 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); 709 } 710 } 711 } 712 // Each irreducible loop within the unloop induces a round of iteration using 713 // the DFS result cached by Traversal. 714 bool Changed = FoundIB; 715 for (unsigned NIters = 0; Changed; ++NIters) { 716 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); 717 718 // Iterate over the postorder list of blocks, propagating the nearest loop 719 // from successors to predecessors as before. 720 Changed = false; 721 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 722 POE = DFS.endPostorder(); 723 POI != POE; ++POI) { 724 725 Loop *L = LI->getLoopFor(*POI); 726 Loop *NL = getNearestLoop(*POI, L); 727 if (NL != L) { 728 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && 729 "uninitialized successor"); 730 LI->changeLoopFor(*POI, NL); 731 Changed = true; 732 } 733 } 734 } 735 } 736 737 /// Remove unloop's blocks from all ancestors below their new parents. 738 void UnloopUpdater::removeBlocksFromAncestors() { 739 // Remove all unloop's blocks (including those in nested subloops) from 740 // ancestors below the new parent loop. 741 for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end(); 742 BI != BE; ++BI) { 743 Loop *OuterParent = LI->getLoopFor(*BI); 744 if (Unloop.contains(OuterParent)) { 745 while (OuterParent->getParentLoop() != &Unloop) 746 OuterParent = OuterParent->getParentLoop(); 747 OuterParent = SubloopParents[OuterParent]; 748 } 749 // Remove blocks from former Ancestors except Unloop itself which will be 750 // deleted. 751 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; 752 OldParent = OldParent->getParentLoop()) { 753 assert(OldParent && "new loop is not an ancestor of the original"); 754 OldParent->removeBlockFromLoop(*BI); 755 } 756 } 757 } 758 759 /// Update the parent loop for all subloops directly nested within unloop. 760 void UnloopUpdater::updateSubloopParents() { 761 while (!Unloop.empty()) { 762 Loop *Subloop = *std::prev(Unloop.end()); 763 Unloop.removeChildLoop(std::prev(Unloop.end())); 764 765 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 766 if (Loop *Parent = SubloopParents[Subloop]) 767 Parent->addChildLoop(Subloop); 768 else 769 LI->addTopLevelLoop(Subloop); 770 } 771 } 772 773 /// Return the nearest parent loop among this block's successors. If a successor 774 /// is a subloop header, consider its parent to be the nearest parent of the 775 /// subloop's exits. 776 /// 777 /// For subloop blocks, simply update SubloopParents and return NULL. 778 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 779 780 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 781 // is considered uninitialized. 782 Loop *NearLoop = BBLoop; 783 784 Loop *Subloop = nullptr; 785 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { 786 Subloop = NearLoop; 787 // Find the subloop ancestor that is directly contained within Unloop. 788 while (Subloop->getParentLoop() != &Unloop) { 789 Subloop = Subloop->getParentLoop(); 790 assert(Subloop && "subloop is not an ancestor of the original loop"); 791 } 792 // Get the current nearest parent of the Subloop exits, initially Unloop. 793 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; 794 } 795 796 succ_iterator I = succ_begin(BB), E = succ_end(BB); 797 if (I == E) { 798 assert(!Subloop && "subloop blocks must have a successor"); 799 NearLoop = nullptr; // unloop blocks may now exit the function. 800 } 801 for (; I != E; ++I) { 802 if (*I == BB) 803 continue; // self loops are uninteresting 804 805 Loop *L = LI->getLoopFor(*I); 806 if (L == &Unloop) { 807 // This successor has not been processed. This path must lead to an 808 // irreducible backedge. 809 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 810 FoundIB = true; 811 } 812 if (L != &Unloop && Unloop.contains(L)) { 813 // Successor is in a subloop. 814 if (Subloop) 815 continue; // Branching within subloops. Ignore it. 816 817 // BB branches from the original into a subloop header. 818 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); 819 820 // Get the current nearest parent of the Subloop's exits. 821 L = SubloopParents[L]; 822 // L could be Unloop if the only exit was an irreducible backedge. 823 } 824 if (L == &Unloop) { 825 continue; 826 } 827 // Handle critical edges from Unloop into a sibling loop. 828 if (L && !L->contains(&Unloop)) { 829 L = L->getParentLoop(); 830 } 831 // Remember the nearest parent loop among successors or subloop exits. 832 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) 833 NearLoop = L; 834 } 835 if (Subloop) { 836 SubloopParents[Subloop] = NearLoop; 837 return BBLoop; 838 } 839 return NearLoop; 840 } 841 842 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); } 843 844 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, 845 FunctionAnalysisManager::Invalidator &) { 846 // Check whether the analysis, all analyses on functions, or the function's 847 // CFG have been preserved. 848 auto PAC = PA.getChecker<LoopAnalysis>(); 849 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 850 PAC.preservedSet<CFGAnalyses>()); 851 } 852 853 void LoopInfo::erase(Loop *Unloop) { 854 assert(!Unloop->isInvalid() && "Loop has already been erased!"); 855 856 auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); 857 858 // First handle the special case of no parent loop to simplify the algorithm. 859 if (!Unloop->getParentLoop()) { 860 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 861 for (Loop::block_iterator I = Unloop->block_begin(), 862 E = Unloop->block_end(); 863 I != E; ++I) { 864 865 // Don't reparent blocks in subloops. 866 if (getLoopFor(*I) != Unloop) 867 continue; 868 869 // Blocks no longer have a parent but are still referenced by Unloop until 870 // the Unloop object is deleted. 871 changeLoopFor(*I, nullptr); 872 } 873 874 // Remove the loop from the top-level LoopInfo object. 875 for (iterator I = begin();; ++I) { 876 assert(I != end() && "Couldn't find loop"); 877 if (*I == Unloop) { 878 removeLoop(I); 879 break; 880 } 881 } 882 883 // Move all of the subloops to the top-level. 884 while (!Unloop->empty()) 885 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 886 887 return; 888 } 889 890 // Update the parent loop for all blocks within the loop. Blocks within 891 // subloops will not change parents. 892 UnloopUpdater Updater(Unloop, this); 893 Updater.updateBlockParents(); 894 895 // Remove blocks from former ancestor loops. 896 Updater.removeBlocksFromAncestors(); 897 898 // Add direct subloops as children in their new parent loop. 899 Updater.updateSubloopParents(); 900 901 // Remove unloop from its parent loop. 902 Loop *ParentLoop = Unloop->getParentLoop(); 903 for (Loop::iterator I = ParentLoop->begin();; ++I) { 904 assert(I != ParentLoop->end() && "Couldn't find loop"); 905 if (*I == Unloop) { 906 ParentLoop->removeChildLoop(I); 907 break; 908 } 909 } 910 } 911 912 AnalysisKey LoopAnalysis::Key; 913 914 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 915 // FIXME: Currently we create a LoopInfo from scratch for every function. 916 // This may prove to be too wasteful due to deallocating and re-allocating 917 // memory each time for the underlying map and vector datastructures. At some 918 // point it may prove worthwhile to use a freelist and recycle LoopInfo 919 // objects. I don't want to add that kind of complexity until the scope of 920 // the problem is better understood. 921 LoopInfo LI; 922 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); 923 return LI; 924 } 925 926 PreservedAnalyses LoopPrinterPass::run(Function &F, 927 FunctionAnalysisManager &AM) { 928 AM.getResult<LoopAnalysis>(F).print(OS); 929 return PreservedAnalyses::all(); 930 } 931 932 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { 933 934 if (forcePrintModuleIR()) { 935 // handling -print-module-scope 936 OS << Banner << " (loop: "; 937 L.getHeader()->printAsOperand(OS, false); 938 OS << ")\n"; 939 940 // printing whole module 941 OS << *L.getHeader()->getModule(); 942 return; 943 } 944 945 OS << Banner; 946 947 auto *PreHeader = L.getLoopPreheader(); 948 if (PreHeader) { 949 OS << "\n; Preheader:"; 950 PreHeader->print(OS); 951 OS << "\n; Loop:"; 952 } 953 954 for (auto *Block : L.blocks()) 955 if (Block) 956 Block->print(OS); 957 else 958 OS << "Printing <null> block"; 959 960 SmallVector<BasicBlock *, 8> ExitBlocks; 961 L.getExitBlocks(ExitBlocks); 962 if (!ExitBlocks.empty()) { 963 OS << "\n; Exit blocks"; 964 for (auto *Block : ExitBlocks) 965 if (Block) 966 Block->print(OS); 967 else 968 OS << "Printing <null> block"; 969 } 970 } 971 972 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) { 973 // No loop metadata node, no loop properties. 974 if (!LoopID) 975 return nullptr; 976 977 // First operand should refer to the metadata node itself, for legacy reasons. 978 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 979 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 980 981 // Iterate over the metdata node operands and look for MDString metadata. 982 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 983 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 984 if (!MD || MD->getNumOperands() < 1) 985 continue; 986 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 987 if (!S) 988 continue; 989 // Return the operand node if MDString holds expected metadata. 990 if (Name.equals(S->getString())) 991 return MD; 992 } 993 994 // Loop property not found. 995 return nullptr; 996 } 997 998 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) { 999 return findOptionMDForLoopID(TheLoop->getLoopID(), Name); 1000 } 1001 1002 bool llvm::isValidAsAccessGroup(MDNode *Node) { 1003 return Node->getNumOperands() == 0 && Node->isDistinct(); 1004 } 1005 1006 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context, 1007 MDNode *OrigLoopID, 1008 ArrayRef<StringRef> RemovePrefixes, 1009 ArrayRef<MDNode *> AddAttrs) { 1010 // First remove any existing loop metadata related to this transformation. 1011 SmallVector<Metadata *, 4> MDs; 1012 1013 // Reserve first location for self reference to the LoopID metadata node. 1014 TempMDTuple TempNode = MDNode::getTemporary(Context, None); 1015 MDs.push_back(TempNode.get()); 1016 1017 // Remove metadata for the transformation that has been applied or that became 1018 // outdated. 1019 if (OrigLoopID) { 1020 for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) { 1021 bool IsVectorMetadata = false; 1022 Metadata *Op = OrigLoopID->getOperand(i); 1023 if (MDNode *MD = dyn_cast<MDNode>(Op)) { 1024 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1025 if (S) 1026 IsVectorMetadata = 1027 llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool { 1028 return S->getString().startswith(Prefix); 1029 }); 1030 } 1031 if (!IsVectorMetadata) 1032 MDs.push_back(Op); 1033 } 1034 } 1035 1036 // Add metadata to avoid reapplying a transformation, such as 1037 // llvm.loop.unroll.disable and llvm.loop.isvectorized. 1038 MDs.append(AddAttrs.begin(), AddAttrs.end()); 1039 1040 MDNode *NewLoopID = MDNode::getDistinct(Context, MDs); 1041 // Replace the temporary node with a self-reference. 1042 NewLoopID->replaceOperandWith(0, NewLoopID); 1043 return NewLoopID; 1044 } 1045 1046 //===----------------------------------------------------------------------===// 1047 // LoopInfo implementation 1048 // 1049 1050 char LoopInfoWrapperPass::ID = 0; 1051 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 1052 true, true) 1053 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1054 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 1055 true, true) 1056 1057 bool LoopInfoWrapperPass::runOnFunction(Function &) { 1058 releaseMemory(); 1059 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 1060 return false; 1061 } 1062 1063 void LoopInfoWrapperPass::verifyAnalysis() const { 1064 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 1065 // function each time verifyAnalysis is called is very expensive. The 1066 // -verify-loop-info option can enable this. In order to perform some 1067 // checking by default, LoopPass has been taught to call verifyLoop manually 1068 // during loop pass sequences. 1069 if (VerifyLoopInfo) { 1070 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1071 LI.verify(DT); 1072 } 1073 } 1074 1075 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1076 AU.setPreservesAll(); 1077 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1078 } 1079 1080 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 1081 LI.print(OS); 1082 } 1083 1084 PreservedAnalyses LoopVerifierPass::run(Function &F, 1085 FunctionAnalysisManager &AM) { 1086 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 1087 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1088 LI.verify(DT); 1089 return PreservedAnalyses::all(); 1090 } 1091 1092 //===----------------------------------------------------------------------===// 1093 // LoopBlocksDFS implementation 1094 // 1095 1096 /// Traverse the loop blocks and store the DFS result. 1097 /// Useful for clients that just want the final DFS result and don't need to 1098 /// visit blocks during the initial traversal. 1099 void LoopBlocksDFS::perform(LoopInfo *LI) { 1100 LoopBlocksTraversal Traversal(*this, LI); 1101 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 1102 POE = Traversal.end(); 1103 POI != POE; ++POI) 1104 ; 1105 } 1106