1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the LoopInfo class that is used to identify natural loops 11 // and determine the loop depth of various nodes of the CFG. Note that the 12 // loops identified may actually be several natural loops that share the same 13 // header node... not just a single natural loop. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/Dominators.h" 21 #include "llvm/Analysis/LoopInfoImpl.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Assembly/Writer.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/Support/CFG.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include <algorithm> 31 using namespace llvm; 32 33 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 34 template class llvm::LoopBase<BasicBlock, Loop>; 35 template class llvm::LoopInfoBase<BasicBlock, Loop>; 36 37 // Always verify loopinfo if expensive checking is enabled. 38 #ifdef XDEBUG 39 static bool VerifyLoopInfo = true; 40 #else 41 static bool VerifyLoopInfo = false; 42 #endif 43 static cl::opt<bool,true> 44 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 45 cl::desc("Verify loop info (time consuming)")); 46 47 char LoopInfo::ID = 0; 48 INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true) 49 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 50 INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true) 51 52 //===----------------------------------------------------------------------===// 53 // Loop implementation 54 // 55 56 /// isLoopInvariant - Return true if the specified value is loop invariant 57 /// 58 bool Loop::isLoopInvariant(Value *V) const { 59 if (Instruction *I = dyn_cast<Instruction>(V)) 60 return !contains(I); 61 return true; // All non-instructions are loop invariant 62 } 63 64 /// hasLoopInvariantOperands - Return true if all the operands of the 65 /// specified instruction are loop invariant. 66 bool Loop::hasLoopInvariantOperands(Instruction *I) const { 67 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 68 if (!isLoopInvariant(I->getOperand(i))) 69 return false; 70 71 return true; 72 } 73 74 /// makeLoopInvariant - If the given value is an instruciton inside of the 75 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 76 /// Return true if the value after any hoisting is loop invariant. This 77 /// function can be used as a slightly more aggressive replacement for 78 /// isLoopInvariant. 79 /// 80 /// If InsertPt is specified, it is the point to hoist instructions to. 81 /// If null, the terminator of the loop preheader is used. 82 /// 83 bool Loop::makeLoopInvariant(Value *V, bool &Changed, 84 Instruction *InsertPt) const { 85 if (Instruction *I = dyn_cast<Instruction>(V)) 86 return makeLoopInvariant(I, Changed, InsertPt); 87 return true; // All non-instructions are loop-invariant. 88 } 89 90 /// makeLoopInvariant - If the given instruction is inside of the 91 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 92 /// Return true if the instruction after any hoisting is loop invariant. This 93 /// function can be used as a slightly more aggressive replacement for 94 /// isLoopInvariant. 95 /// 96 /// If InsertPt is specified, it is the point to hoist instructions to. 97 /// If null, the terminator of the loop preheader is used. 98 /// 99 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 100 Instruction *InsertPt) const { 101 // Test if the value is already loop-invariant. 102 if (isLoopInvariant(I)) 103 return true; 104 if (!isSafeToSpeculativelyExecute(I)) 105 return false; 106 if (I->mayReadFromMemory()) 107 return false; 108 // The landingpad instruction is immobile. 109 if (isa<LandingPadInst>(I)) 110 return false; 111 // Determine the insertion point, unless one was given. 112 if (!InsertPt) { 113 BasicBlock *Preheader = getLoopPreheader(); 114 // Without a preheader, hoisting is not feasible. 115 if (!Preheader) 116 return false; 117 InsertPt = Preheader->getTerminator(); 118 } 119 // Don't hoist instructions with loop-variant operands. 120 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 121 if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt)) 122 return false; 123 124 // Hoist. 125 I->moveBefore(InsertPt); 126 Changed = true; 127 return true; 128 } 129 130 /// getCanonicalInductionVariable - Check to see if the loop has a canonical 131 /// induction variable: an integer recurrence that starts at 0 and increments 132 /// by one each time through the loop. If so, return the phi node that 133 /// corresponds to it. 134 /// 135 /// The IndVarSimplify pass transforms loops to have a canonical induction 136 /// variable. 137 /// 138 PHINode *Loop::getCanonicalInductionVariable() const { 139 BasicBlock *H = getHeader(); 140 141 BasicBlock *Incoming = 0, *Backedge = 0; 142 pred_iterator PI = pred_begin(H); 143 assert(PI != pred_end(H) && 144 "Loop must have at least one backedge!"); 145 Backedge = *PI++; 146 if (PI == pred_end(H)) return 0; // dead loop 147 Incoming = *PI++; 148 if (PI != pred_end(H)) return 0; // multiple backedges? 149 150 if (contains(Incoming)) { 151 if (contains(Backedge)) 152 return 0; 153 std::swap(Incoming, Backedge); 154 } else if (!contains(Backedge)) 155 return 0; 156 157 // Loop over all of the PHI nodes, looking for a canonical indvar. 158 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 159 PHINode *PN = cast<PHINode>(I); 160 if (ConstantInt *CI = 161 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 162 if (CI->isNullValue()) 163 if (Instruction *Inc = 164 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 165 if (Inc->getOpcode() == Instruction::Add && 166 Inc->getOperand(0) == PN) 167 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 168 if (CI->equalsInt(1)) 169 return PN; 170 } 171 return 0; 172 } 173 174 /// isLCSSAForm - Return true if the Loop is in LCSSA form 175 bool Loop::isLCSSAForm(DominatorTree &DT) const { 176 // Sort the blocks vector so that we can use binary search to do quick 177 // lookups. 178 SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end()); 179 180 for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { 181 BasicBlock *BB = *BI; 182 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I) 183 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 184 ++UI) { 185 User *U = *UI; 186 BasicBlock *UserBB = cast<Instruction>(U)->getParent(); 187 if (PHINode *P = dyn_cast<PHINode>(U)) 188 UserBB = P->getIncomingBlock(UI); 189 190 // Check the current block, as a fast-path, before checking whether 191 // the use is anywhere in the loop. Most values are used in the same 192 // block they are defined in. Also, blocks not reachable from the 193 // entry are special; uses in them don't need to go through PHIs. 194 if (UserBB != BB && 195 !LoopBBs.count(UserBB) && 196 DT.isReachableFromEntry(UserBB)) 197 return false; 198 } 199 } 200 201 return true; 202 } 203 204 /// isLoopSimplifyForm - Return true if the Loop is in the form that 205 /// the LoopSimplify form transforms loops to, which is sometimes called 206 /// normal form. 207 bool Loop::isLoopSimplifyForm() const { 208 // Normal-form loops have a preheader, a single backedge, and all of their 209 // exits have all their predecessors inside the loop. 210 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 211 } 212 213 /// isSafeToClone - Return true if the loop body is safe to clone in practice. 214 /// Routines that reform the loop CFG and split edges often fail on indirectbr. 215 bool Loop::isSafeToClone() const { 216 // Return false if any loop blocks contain indirectbrs, or there are any calls 217 // to noduplicate functions. 218 for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) { 219 if (isa<IndirectBrInst>((*I)->getTerminator())) { 220 return false; 221 } else if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator())) { 222 if (II->hasFnAttr(Attribute::NoDuplicate)) 223 return false; 224 } 225 226 for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) { 227 if (const CallInst *CI = dyn_cast<CallInst>(BI)) { 228 if (CI->hasFnAttr(Attribute::NoDuplicate)) 229 return false; 230 } 231 } 232 } 233 return true; 234 } 235 236 /// hasDedicatedExits - Return true if no exit block for the loop 237 /// has a predecessor that is outside the loop. 238 bool Loop::hasDedicatedExits() const { 239 // Sort the blocks vector so that we can use binary search to do quick 240 // lookups. 241 SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end()); 242 // Each predecessor of each exit block of a normal loop is contained 243 // within the loop. 244 SmallVector<BasicBlock *, 4> ExitBlocks; 245 getExitBlocks(ExitBlocks); 246 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 247 for (pred_iterator PI = pred_begin(ExitBlocks[i]), 248 PE = pred_end(ExitBlocks[i]); PI != PE; ++PI) 249 if (!LoopBBs.count(*PI)) 250 return false; 251 // All the requirements are met. 252 return true; 253 } 254 255 /// getUniqueExitBlocks - Return all unique successor blocks of this loop. 256 /// These are the blocks _outside of the current loop_ which are branched to. 257 /// This assumes that loop exits are in canonical form. 258 /// 259 void 260 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const { 261 assert(hasDedicatedExits() && 262 "getUniqueExitBlocks assumes the loop has canonical form exits!"); 263 264 // Sort the blocks vector so that we can use binary search to do quick 265 // lookups. 266 SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end()); 267 std::sort(LoopBBs.begin(), LoopBBs.end()); 268 269 SmallVector<BasicBlock *, 32> switchExitBlocks; 270 271 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) { 272 273 BasicBlock *current = *BI; 274 switchExitBlocks.clear(); 275 276 for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) { 277 // If block is inside the loop then it is not a exit block. 278 if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) 279 continue; 280 281 pred_iterator PI = pred_begin(*I); 282 BasicBlock *firstPred = *PI; 283 284 // If current basic block is this exit block's first predecessor 285 // then only insert exit block in to the output ExitBlocks vector. 286 // This ensures that same exit block is not inserted twice into 287 // ExitBlocks vector. 288 if (current != firstPred) 289 continue; 290 291 // If a terminator has more then two successors, for example SwitchInst, 292 // then it is possible that there are multiple edges from current block 293 // to one exit block. 294 if (std::distance(succ_begin(current), succ_end(current)) <= 2) { 295 ExitBlocks.push_back(*I); 296 continue; 297 } 298 299 // In case of multiple edges from current block to exit block, collect 300 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of 301 // duplicate edges. 302 if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) 303 == switchExitBlocks.end()) { 304 switchExitBlocks.push_back(*I); 305 ExitBlocks.push_back(*I); 306 } 307 } 308 } 309 } 310 311 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one 312 /// block, return that block. Otherwise return null. 313 BasicBlock *Loop::getUniqueExitBlock() const { 314 SmallVector<BasicBlock *, 8> UniqueExitBlocks; 315 getUniqueExitBlocks(UniqueExitBlocks); 316 if (UniqueExitBlocks.size() == 1) 317 return UniqueExitBlocks[0]; 318 return 0; 319 } 320 321 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 322 void Loop::dump() const { 323 print(dbgs()); 324 } 325 #endif 326 327 //===----------------------------------------------------------------------===// 328 // UnloopUpdater implementation 329 // 330 331 namespace { 332 /// Find the new parent loop for all blocks within the "unloop" whose last 333 /// backedges has just been removed. 334 class UnloopUpdater { 335 Loop *Unloop; 336 LoopInfo *LI; 337 338 LoopBlocksDFS DFS; 339 340 // Map unloop's immediate subloops to their nearest reachable parents. Nested 341 // loops within these subloops will not change parents. However, an immediate 342 // subloop's new parent will be the nearest loop reachable from either its own 343 // exits *or* any of its nested loop's exits. 344 DenseMap<Loop*, Loop*> SubloopParents; 345 346 // Flag the presence of an irreducible backedge whose destination is a block 347 // directly contained by the original unloop. 348 bool FoundIB; 349 350 public: 351 UnloopUpdater(Loop *UL, LoopInfo *LInfo) : 352 Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {} 353 354 void updateBlockParents(); 355 356 void removeBlocksFromAncestors(); 357 358 void updateSubloopParents(); 359 360 protected: 361 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 362 }; 363 } // end anonymous namespace 364 365 /// updateBlockParents - Update the parent loop for all blocks that are directly 366 /// contained within the original "unloop". 367 void UnloopUpdater::updateBlockParents() { 368 if (Unloop->getNumBlocks()) { 369 // Perform a post order CFG traversal of all blocks within this loop, 370 // propagating the nearest loop from sucessors to predecessors. 371 LoopBlocksTraversal Traversal(DFS, LI); 372 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 373 POE = Traversal.end(); POI != POE; ++POI) { 374 375 Loop *L = LI->getLoopFor(*POI); 376 Loop *NL = getNearestLoop(*POI, L); 377 378 if (NL != L) { 379 // For reducible loops, NL is now an ancestor of Unloop. 380 assert((NL != Unloop && (!NL || NL->contains(Unloop))) && 381 "uninitialized successor"); 382 LI->changeLoopFor(*POI, NL); 383 } 384 else { 385 // Or the current block is part of a subloop, in which case its parent 386 // is unchanged. 387 assert((FoundIB || Unloop->contains(L)) && "uninitialized successor"); 388 } 389 } 390 } 391 // Each irreducible loop within the unloop induces a round of iteration using 392 // the DFS result cached by Traversal. 393 bool Changed = FoundIB; 394 for (unsigned NIters = 0; Changed; ++NIters) { 395 assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm"); 396 397 // Iterate over the postorder list of blocks, propagating the nearest loop 398 // from successors to predecessors as before. 399 Changed = false; 400 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 401 POE = DFS.endPostorder(); POI != POE; ++POI) { 402 403 Loop *L = LI->getLoopFor(*POI); 404 Loop *NL = getNearestLoop(*POI, L); 405 if (NL != L) { 406 assert(NL != Unloop && (!NL || NL->contains(Unloop)) && 407 "uninitialized successor"); 408 LI->changeLoopFor(*POI, NL); 409 Changed = true; 410 } 411 } 412 } 413 } 414 415 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below 416 /// their new parents. 417 void UnloopUpdater::removeBlocksFromAncestors() { 418 // Remove all unloop's blocks (including those in nested subloops) from 419 // ancestors below the new parent loop. 420 for (Loop::block_iterator BI = Unloop->block_begin(), 421 BE = Unloop->block_end(); BI != BE; ++BI) { 422 Loop *OuterParent = LI->getLoopFor(*BI); 423 if (Unloop->contains(OuterParent)) { 424 while (OuterParent->getParentLoop() != Unloop) 425 OuterParent = OuterParent->getParentLoop(); 426 OuterParent = SubloopParents[OuterParent]; 427 } 428 // Remove blocks from former Ancestors except Unloop itself which will be 429 // deleted. 430 for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent; 431 OldParent = OldParent->getParentLoop()) { 432 assert(OldParent && "new loop is not an ancestor of the original"); 433 OldParent->removeBlockFromLoop(*BI); 434 } 435 } 436 } 437 438 /// updateSubloopParents - Update the parent loop for all subloops directly 439 /// nested within unloop. 440 void UnloopUpdater::updateSubloopParents() { 441 while (!Unloop->empty()) { 442 Loop *Subloop = *llvm::prior(Unloop->end()); 443 Unloop->removeChildLoop(llvm::prior(Unloop->end())); 444 445 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 446 if (Loop *Parent = SubloopParents[Subloop]) 447 Parent->addChildLoop(Subloop); 448 else 449 LI->addTopLevelLoop(Subloop); 450 } 451 } 452 453 /// getNearestLoop - Return the nearest parent loop among this block's 454 /// successors. If a successor is a subloop header, consider its parent to be 455 /// the nearest parent of the subloop's exits. 456 /// 457 /// For subloop blocks, simply update SubloopParents and return NULL. 458 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 459 460 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 461 // is considered uninitialized. 462 Loop *NearLoop = BBLoop; 463 464 Loop *Subloop = 0; 465 if (NearLoop != Unloop && Unloop->contains(NearLoop)) { 466 Subloop = NearLoop; 467 // Find the subloop ancestor that is directly contained within Unloop. 468 while (Subloop->getParentLoop() != Unloop) { 469 Subloop = Subloop->getParentLoop(); 470 assert(Subloop && "subloop is not an ancestor of the original loop"); 471 } 472 // Get the current nearest parent of the Subloop exits, initially Unloop. 473 NearLoop = 474 SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second; 475 } 476 477 succ_iterator I = succ_begin(BB), E = succ_end(BB); 478 if (I == E) { 479 assert(!Subloop && "subloop blocks must have a successor"); 480 NearLoop = 0; // unloop blocks may now exit the function. 481 } 482 for (; I != E; ++I) { 483 if (*I == BB) 484 continue; // self loops are uninteresting 485 486 Loop *L = LI->getLoopFor(*I); 487 if (L == Unloop) { 488 // This successor has not been processed. This path must lead to an 489 // irreducible backedge. 490 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 491 FoundIB = true; 492 } 493 if (L != Unloop && Unloop->contains(L)) { 494 // Successor is in a subloop. 495 if (Subloop) 496 continue; // Branching within subloops. Ignore it. 497 498 // BB branches from the original into a subloop header. 499 assert(L->getParentLoop() == Unloop && "cannot skip into nested loops"); 500 501 // Get the current nearest parent of the Subloop's exits. 502 L = SubloopParents[L]; 503 // L could be Unloop if the only exit was an irreducible backedge. 504 } 505 if (L == Unloop) { 506 continue; 507 } 508 // Handle critical edges from Unloop into a sibling loop. 509 if (L && !L->contains(Unloop)) { 510 L = L->getParentLoop(); 511 } 512 // Remember the nearest parent loop among successors or subloop exits. 513 if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L)) 514 NearLoop = L; 515 } 516 if (Subloop) { 517 SubloopParents[Subloop] = NearLoop; 518 return BBLoop; 519 } 520 return NearLoop; 521 } 522 523 //===----------------------------------------------------------------------===// 524 // LoopInfo implementation 525 // 526 bool LoopInfo::runOnFunction(Function &) { 527 releaseMemory(); 528 LI.Analyze(getAnalysis<DominatorTree>().getBase()); 529 return false; 530 } 531 532 /// updateUnloop - The last backedge has been removed from a loop--now the 533 /// "unloop". Find a new parent for the blocks contained within unloop and 534 /// update the loop tree. We don't necessarily have valid dominators at this 535 /// point, but LoopInfo is still valid except for the removal of this loop. 536 /// 537 /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without 538 /// checking first is illegal. 539 void LoopInfo::updateUnloop(Loop *Unloop) { 540 541 // First handle the special case of no parent loop to simplify the algorithm. 542 if (!Unloop->getParentLoop()) { 543 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 544 for (Loop::block_iterator I = Unloop->block_begin(), 545 E = Unloop->block_end(); I != E; ++I) { 546 547 // Don't reparent blocks in subloops. 548 if (getLoopFor(*I) != Unloop) 549 continue; 550 551 // Blocks no longer have a parent but are still referenced by Unloop until 552 // the Unloop object is deleted. 553 LI.changeLoopFor(*I, 0); 554 } 555 556 // Remove the loop from the top-level LoopInfo object. 557 for (LoopInfo::iterator I = LI.begin();; ++I) { 558 assert(I != LI.end() && "Couldn't find loop"); 559 if (*I == Unloop) { 560 LI.removeLoop(I); 561 break; 562 } 563 } 564 565 // Move all of the subloops to the top-level. 566 while (!Unloop->empty()) 567 LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end()))); 568 569 return; 570 } 571 572 // Update the parent loop for all blocks within the loop. Blocks within 573 // subloops will not change parents. 574 UnloopUpdater Updater(Unloop, this); 575 Updater.updateBlockParents(); 576 577 // Remove blocks from former ancestor loops. 578 Updater.removeBlocksFromAncestors(); 579 580 // Add direct subloops as children in their new parent loop. 581 Updater.updateSubloopParents(); 582 583 // Remove unloop from its parent loop. 584 Loop *ParentLoop = Unloop->getParentLoop(); 585 for (Loop::iterator I = ParentLoop->begin();; ++I) { 586 assert(I != ParentLoop->end() && "Couldn't find loop"); 587 if (*I == Unloop) { 588 ParentLoop->removeChildLoop(I); 589 break; 590 } 591 } 592 } 593 594 void LoopInfo::verifyAnalysis() const { 595 // LoopInfo is a FunctionPass, but verifying every loop in the function 596 // each time verifyAnalysis is called is very expensive. The 597 // -verify-loop-info option can enable this. In order to perform some 598 // checking by default, LoopPass has been taught to call verifyLoop 599 // manually during loop pass sequences. 600 601 if (!VerifyLoopInfo) return; 602 603 DenseSet<const Loop*> Loops; 604 for (iterator I = begin(), E = end(); I != E; ++I) { 605 assert(!(*I)->getParentLoop() && "Top-level loop has a parent!"); 606 (*I)->verifyLoopNest(&Loops); 607 } 608 609 // Verify that blocks are mapped to valid loops. 610 for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(), 611 E = LI.BBMap.end(); I != E; ++I) { 612 assert(Loops.count(I->second) && "orphaned loop"); 613 assert(I->second->contains(I->first) && "orphaned block"); 614 } 615 } 616 617 void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { 618 AU.setPreservesAll(); 619 AU.addRequired<DominatorTree>(); 620 } 621 622 void LoopInfo::print(raw_ostream &OS, const Module*) const { 623 LI.print(OS); 624 } 625 626 //===----------------------------------------------------------------------===// 627 // LoopBlocksDFS implementation 628 // 629 630 /// Traverse the loop blocks and store the DFS result. 631 /// Useful for clients that just want the final DFS result and don't need to 632 /// visit blocks during the initial traversal. 633 void LoopBlocksDFS::perform(LoopInfo *LI) { 634 LoopBlocksTraversal Traversal(*this, LI); 635 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 636 POE = Traversal.end(); POI != POE; ++POI) ; 637 } 638