1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG.  Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/LoopInfoImpl.h"
21 #include "llvm/Analysis/LoopIterator.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/IR/PassManager.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm>
34 using namespace llvm;
35 
36 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
37 template class llvm::LoopBase<BasicBlock, Loop>;
38 template class llvm::LoopInfoBase<BasicBlock, Loop>;
39 
40 // Always verify loopinfo if expensive checking is enabled.
41 #ifdef EXPENSIVE_CHECKS
42 static bool VerifyLoopInfo = true;
43 #else
44 static bool VerifyLoopInfo = false;
45 #endif
46 static cl::opt<bool,true>
47 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
48                 cl::desc("Verify loop info (time consuming)"));
49 
50 //===----------------------------------------------------------------------===//
51 // Loop implementation
52 //
53 
54 bool Loop::isLoopInvariant(const Value *V) const {
55   if (const Instruction *I = dyn_cast<Instruction>(V))
56     return !contains(I);
57   return true;  // All non-instructions are loop invariant
58 }
59 
60 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
61   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
62 }
63 
64 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
65                              Instruction *InsertPt) const {
66   if (Instruction *I = dyn_cast<Instruction>(V))
67     return makeLoopInvariant(I, Changed, InsertPt);
68   return true;  // All non-instructions are loop-invariant.
69 }
70 
71 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
72                              Instruction *InsertPt) const {
73   // Test if the value is already loop-invariant.
74   if (isLoopInvariant(I))
75     return true;
76   if (!isSafeToSpeculativelyExecute(I))
77     return false;
78   if (I->mayReadFromMemory())
79     return false;
80   // EH block instructions are immobile.
81   if (I->isEHPad())
82     return false;
83   // Determine the insertion point, unless one was given.
84   if (!InsertPt) {
85     BasicBlock *Preheader = getLoopPreheader();
86     // Without a preheader, hoisting is not feasible.
87     if (!Preheader)
88       return false;
89     InsertPt = Preheader->getTerminator();
90   }
91   // Don't hoist instructions with loop-variant operands.
92   for (Value *Operand : I->operands())
93     if (!makeLoopInvariant(Operand, Changed, InsertPt))
94       return false;
95 
96   // Hoist.
97   I->moveBefore(InsertPt);
98 
99   // There is possibility of hoisting this instruction above some arbitrary
100   // condition. Any metadata defined on it can be control dependent on this
101   // condition. Conservatively strip it here so that we don't give any wrong
102   // information to the optimizer.
103   I->dropUnknownNonDebugMetadata();
104 
105   Changed = true;
106   return true;
107 }
108 
109 PHINode *Loop::getCanonicalInductionVariable() const {
110   BasicBlock *H = getHeader();
111 
112   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
113   pred_iterator PI = pred_begin(H);
114   assert(PI != pred_end(H) &&
115          "Loop must have at least one backedge!");
116   Backedge = *PI++;
117   if (PI == pred_end(H)) return nullptr;  // dead loop
118   Incoming = *PI++;
119   if (PI != pred_end(H)) return nullptr;  // multiple backedges?
120 
121   if (contains(Incoming)) {
122     if (contains(Backedge))
123       return nullptr;
124     std::swap(Incoming, Backedge);
125   } else if (!contains(Backedge))
126     return nullptr;
127 
128   // Loop over all of the PHI nodes, looking for a canonical indvar.
129   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
130     PHINode *PN = cast<PHINode>(I);
131     if (ConstantInt *CI =
132         dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
133       if (CI->isNullValue())
134         if (Instruction *Inc =
135             dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
136           if (Inc->getOpcode() == Instruction::Add &&
137                 Inc->getOperand(0) == PN)
138             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
139               if (CI->equalsInt(1))
140                 return PN;
141   }
142   return nullptr;
143 }
144 
145 bool Loop::isLCSSAForm(DominatorTree &DT) const {
146   for (BasicBlock *BB : this->blocks()) {
147     for (Instruction &I : *BB) {
148       // Tokens can't be used in PHI nodes and live-out tokens prevent loop
149       // optimizations, so for the purposes of considered LCSSA form, we
150       // can ignore them.
151       if (I.getType()->isTokenTy())
152         continue;
153 
154       for (Use &U : I.uses()) {
155         Instruction *UI = cast<Instruction>(U.getUser());
156         BasicBlock *UserBB = UI->getParent();
157         if (PHINode *P = dyn_cast<PHINode>(UI))
158           UserBB = P->getIncomingBlock(U);
159 
160         // Check the current block, as a fast-path, before checking whether
161         // the use is anywhere in the loop.  Most values are used in the same
162         // block they are defined in.  Also, blocks not reachable from the
163         // entry are special; uses in them don't need to go through PHIs.
164         if (UserBB != BB &&
165             !contains(UserBB) &&
166             DT.isReachableFromEntry(UserBB))
167           return false;
168       }
169     }
170   }
171 
172   return true;
173 }
174 
175 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT) const {
176   if (!isLCSSAForm(DT))
177     return false;
178 
179   return std::all_of(begin(), end(), [&](const Loop *L) {
180     return L->isRecursivelyLCSSAForm(DT);
181   });
182 }
183 
184 bool Loop::isLoopSimplifyForm() const {
185   // Normal-form loops have a preheader, a single backedge, and all of their
186   // exits have all their predecessors inside the loop.
187   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
188 }
189 
190 // Routines that reform the loop CFG and split edges often fail on indirectbr.
191 bool Loop::isSafeToClone() const {
192   // Return false if any loop blocks contain indirectbrs, or there are any calls
193   // to noduplicate functions.
194   for (BasicBlock *BB : this->blocks()) {
195     if (isa<IndirectBrInst>(BB->getTerminator()))
196       return false;
197 
198     for (Instruction &I : *BB)
199       if (auto CS = CallSite(&I))
200         if (CS.cannotDuplicate())
201           return false;
202   }
203   return true;
204 }
205 
206 MDNode *Loop::getLoopID() const {
207   MDNode *LoopID = nullptr;
208   if (isLoopSimplifyForm()) {
209     LoopID = getLoopLatch()->getTerminator()->getMetadata(LLVMContext::MD_loop);
210   } else {
211     // Go through each predecessor of the loop header and check the
212     // terminator for the metadata.
213     BasicBlock *H = getHeader();
214     for (BasicBlock *BB : this->blocks()) {
215       TerminatorInst *TI = BB->getTerminator();
216       MDNode *MD = nullptr;
217 
218       // Check if this terminator branches to the loop header.
219       for (BasicBlock *Successor : TI->successors()) {
220         if (Successor == H) {
221           MD = TI->getMetadata(LLVMContext::MD_loop);
222           break;
223         }
224       }
225       if (!MD)
226         return nullptr;
227 
228       if (!LoopID)
229         LoopID = MD;
230       else if (MD != LoopID)
231         return nullptr;
232     }
233   }
234   if (!LoopID || LoopID->getNumOperands() == 0 ||
235       LoopID->getOperand(0) != LoopID)
236     return nullptr;
237   return LoopID;
238 }
239 
240 void Loop::setLoopID(MDNode *LoopID) const {
241   assert(LoopID && "Loop ID should not be null");
242   assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
243   assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
244 
245   if (isLoopSimplifyForm()) {
246     getLoopLatch()->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
247     return;
248   }
249 
250   BasicBlock *H = getHeader();
251   for (BasicBlock *BB : this->blocks()) {
252     TerminatorInst *TI = BB->getTerminator();
253     for (BasicBlock *Successor : TI->successors()) {
254       if (Successor == H)
255         TI->setMetadata(LLVMContext::MD_loop, LoopID);
256     }
257   }
258 }
259 
260 bool Loop::isAnnotatedParallel() const {
261   MDNode *DesiredLoopIdMetadata = getLoopID();
262 
263   if (!DesiredLoopIdMetadata)
264       return false;
265 
266   // The loop branch contains the parallel loop metadata. In order to ensure
267   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
268   // dependencies (thus converted the loop back to a sequential loop), check
269   // that all the memory instructions in the loop contain parallelism metadata
270   // that point to the same unique "loop id metadata" the loop branch does.
271   for (BasicBlock *BB : this->blocks()) {
272     for (Instruction &I : *BB) {
273       if (!I.mayReadOrWriteMemory())
274         continue;
275 
276       // The memory instruction can refer to the loop identifier metadata
277       // directly or indirectly through another list metadata (in case of
278       // nested parallel loops). The loop identifier metadata refers to
279       // itself so we can check both cases with the same routine.
280       MDNode *LoopIdMD =
281           I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
282 
283       if (!LoopIdMD)
284         return false;
285 
286       bool LoopIdMDFound = false;
287       for (const MDOperand &MDOp : LoopIdMD->operands()) {
288         if (MDOp == DesiredLoopIdMetadata) {
289           LoopIdMDFound = true;
290           break;
291         }
292       }
293 
294       if (!LoopIdMDFound)
295         return false;
296     }
297   }
298   return true;
299 }
300 
301 bool Loop::hasDedicatedExits() const {
302   // Each predecessor of each exit block of a normal loop is contained
303   // within the loop.
304   SmallVector<BasicBlock *, 4> ExitBlocks;
305   getExitBlocks(ExitBlocks);
306   for (BasicBlock *BB : ExitBlocks)
307     for (BasicBlock *Predecessor : predecessors(BB))
308       if (!contains(Predecessor))
309         return false;
310   // All the requirements are met.
311   return true;
312 }
313 
314 void
315 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
316   assert(hasDedicatedExits() &&
317          "getUniqueExitBlocks assumes the loop has canonical form exits!");
318 
319   SmallVector<BasicBlock *, 32> SwitchExitBlocks;
320   for (BasicBlock *BB : this->blocks()) {
321     SwitchExitBlocks.clear();
322     for (BasicBlock *Successor : successors(BB)) {
323       // If block is inside the loop then it is not an exit block.
324       if (contains(Successor))
325         continue;
326 
327       pred_iterator PI = pred_begin(Successor);
328       BasicBlock *FirstPred = *PI;
329 
330       // If current basic block is this exit block's first predecessor
331       // then only insert exit block in to the output ExitBlocks vector.
332       // This ensures that same exit block is not inserted twice into
333       // ExitBlocks vector.
334       if (BB != FirstPred)
335         continue;
336 
337       // If a terminator has more then two successors, for example SwitchInst,
338       // then it is possible that there are multiple edges from current block
339       // to one exit block.
340       if (std::distance(succ_begin(BB), succ_end(BB)) <= 2) {
341         ExitBlocks.push_back(Successor);
342         continue;
343       }
344 
345       // In case of multiple edges from current block to exit block, collect
346       // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
347       // duplicate edges.
348       if (std::find(SwitchExitBlocks.begin(), SwitchExitBlocks.end(), Successor)
349           == SwitchExitBlocks.end()) {
350         SwitchExitBlocks.push_back(Successor);
351         ExitBlocks.push_back(Successor);
352       }
353     }
354   }
355 }
356 
357 BasicBlock *Loop::getUniqueExitBlock() const {
358   SmallVector<BasicBlock *, 8> UniqueExitBlocks;
359   getUniqueExitBlocks(UniqueExitBlocks);
360   if (UniqueExitBlocks.size() == 1)
361     return UniqueExitBlocks[0];
362   return nullptr;
363 }
364 
365 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
366 LLVM_DUMP_METHOD void Loop::dump() const {
367   print(dbgs());
368 }
369 #endif
370 
371 //===----------------------------------------------------------------------===//
372 // UnloopUpdater implementation
373 //
374 
375 namespace {
376 /// Find the new parent loop for all blocks within the "unloop" whose last
377 /// backedges has just been removed.
378 class UnloopUpdater {
379   Loop *Unloop;
380   LoopInfo *LI;
381 
382   LoopBlocksDFS DFS;
383 
384   // Map unloop's immediate subloops to their nearest reachable parents. Nested
385   // loops within these subloops will not change parents. However, an immediate
386   // subloop's new parent will be the nearest loop reachable from either its own
387   // exits *or* any of its nested loop's exits.
388   DenseMap<Loop*, Loop*> SubloopParents;
389 
390   // Flag the presence of an irreducible backedge whose destination is a block
391   // directly contained by the original unloop.
392   bool FoundIB;
393 
394 public:
395   UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
396     Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
397 
398   void updateBlockParents();
399 
400   void removeBlocksFromAncestors();
401 
402   void updateSubloopParents();
403 
404 protected:
405   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
406 };
407 } // end anonymous namespace
408 
409 /// Update the parent loop for all blocks that are directly contained within the
410 /// original "unloop".
411 void UnloopUpdater::updateBlockParents() {
412   if (Unloop->getNumBlocks()) {
413     // Perform a post order CFG traversal of all blocks within this loop,
414     // propagating the nearest loop from sucessors to predecessors.
415     LoopBlocksTraversal Traversal(DFS, LI);
416     for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
417            POE = Traversal.end(); POI != POE; ++POI) {
418 
419       Loop *L = LI->getLoopFor(*POI);
420       Loop *NL = getNearestLoop(*POI, L);
421 
422       if (NL != L) {
423         // For reducible loops, NL is now an ancestor of Unloop.
424         assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
425                "uninitialized successor");
426         LI->changeLoopFor(*POI, NL);
427       }
428       else {
429         // Or the current block is part of a subloop, in which case its parent
430         // is unchanged.
431         assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
432       }
433     }
434   }
435   // Each irreducible loop within the unloop induces a round of iteration using
436   // the DFS result cached by Traversal.
437   bool Changed = FoundIB;
438   for (unsigned NIters = 0; Changed; ++NIters) {
439     assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
440 
441     // Iterate over the postorder list of blocks, propagating the nearest loop
442     // from successors to predecessors as before.
443     Changed = false;
444     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
445            POE = DFS.endPostorder(); POI != POE; ++POI) {
446 
447       Loop *L = LI->getLoopFor(*POI);
448       Loop *NL = getNearestLoop(*POI, L);
449       if (NL != L) {
450         assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
451                "uninitialized successor");
452         LI->changeLoopFor(*POI, NL);
453         Changed = true;
454       }
455     }
456   }
457 }
458 
459 /// Remove unloop's blocks from all ancestors below their new parents.
460 void UnloopUpdater::removeBlocksFromAncestors() {
461   // Remove all unloop's blocks (including those in nested subloops) from
462   // ancestors below the new parent loop.
463   for (Loop::block_iterator BI = Unloop->block_begin(),
464          BE = Unloop->block_end(); BI != BE; ++BI) {
465     Loop *OuterParent = LI->getLoopFor(*BI);
466     if (Unloop->contains(OuterParent)) {
467       while (OuterParent->getParentLoop() != Unloop)
468         OuterParent = OuterParent->getParentLoop();
469       OuterParent = SubloopParents[OuterParent];
470     }
471     // Remove blocks from former Ancestors except Unloop itself which will be
472     // deleted.
473     for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
474          OldParent = OldParent->getParentLoop()) {
475       assert(OldParent && "new loop is not an ancestor of the original");
476       OldParent->removeBlockFromLoop(*BI);
477     }
478   }
479 }
480 
481 /// Update the parent loop for all subloops directly nested within unloop.
482 void UnloopUpdater::updateSubloopParents() {
483   while (!Unloop->empty()) {
484     Loop *Subloop = *std::prev(Unloop->end());
485     Unloop->removeChildLoop(std::prev(Unloop->end()));
486 
487     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
488     if (Loop *Parent = SubloopParents[Subloop])
489       Parent->addChildLoop(Subloop);
490     else
491       LI->addTopLevelLoop(Subloop);
492   }
493 }
494 
495 /// Return the nearest parent loop among this block's successors. If a successor
496 /// is a subloop header, consider its parent to be the nearest parent of the
497 /// subloop's exits.
498 ///
499 /// For subloop blocks, simply update SubloopParents and return NULL.
500 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
501 
502   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
503   // is considered uninitialized.
504   Loop *NearLoop = BBLoop;
505 
506   Loop *Subloop = nullptr;
507   if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
508     Subloop = NearLoop;
509     // Find the subloop ancestor that is directly contained within Unloop.
510     while (Subloop->getParentLoop() != Unloop) {
511       Subloop = Subloop->getParentLoop();
512       assert(Subloop && "subloop is not an ancestor of the original loop");
513     }
514     // Get the current nearest parent of the Subloop exits, initially Unloop.
515     NearLoop =
516       SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
517   }
518 
519   succ_iterator I = succ_begin(BB), E = succ_end(BB);
520   if (I == E) {
521     assert(!Subloop && "subloop blocks must have a successor");
522     NearLoop = nullptr; // unloop blocks may now exit the function.
523   }
524   for (; I != E; ++I) {
525     if (*I == BB)
526       continue; // self loops are uninteresting
527 
528     Loop *L = LI->getLoopFor(*I);
529     if (L == Unloop) {
530       // This successor has not been processed. This path must lead to an
531       // irreducible backedge.
532       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
533       FoundIB = true;
534     }
535     if (L != Unloop && Unloop->contains(L)) {
536       // Successor is in a subloop.
537       if (Subloop)
538         continue; // Branching within subloops. Ignore it.
539 
540       // BB branches from the original into a subloop header.
541       assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
542 
543       // Get the current nearest parent of the Subloop's exits.
544       L = SubloopParents[L];
545       // L could be Unloop if the only exit was an irreducible backedge.
546     }
547     if (L == Unloop) {
548       continue;
549     }
550     // Handle critical edges from Unloop into a sibling loop.
551     if (L && !L->contains(Unloop)) {
552       L = L->getParentLoop();
553     }
554     // Remember the nearest parent loop among successors or subloop exits.
555     if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
556       NearLoop = L;
557   }
558   if (Subloop) {
559     SubloopParents[Subloop] = NearLoop;
560     return BBLoop;
561   }
562   return NearLoop;
563 }
564 
565 LoopInfo::LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree) {
566   analyze(DomTree);
567 }
568 
569 void LoopInfo::markAsRemoved(Loop *Unloop) {
570   assert(!Unloop->isInvalid() && "Loop has already been removed");
571   Unloop->invalidate();
572   RemovedLoops.push_back(Unloop);
573 
574   // First handle the special case of no parent loop to simplify the algorithm.
575   if (!Unloop->getParentLoop()) {
576     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
577     for (Loop::block_iterator I = Unloop->block_begin(),
578                               E = Unloop->block_end();
579          I != E; ++I) {
580 
581       // Don't reparent blocks in subloops.
582       if (getLoopFor(*I) != Unloop)
583         continue;
584 
585       // Blocks no longer have a parent but are still referenced by Unloop until
586       // the Unloop object is deleted.
587       changeLoopFor(*I, nullptr);
588     }
589 
590     // Remove the loop from the top-level LoopInfo object.
591     for (iterator I = begin();; ++I) {
592       assert(I != end() && "Couldn't find loop");
593       if (*I == Unloop) {
594         removeLoop(I);
595         break;
596       }
597     }
598 
599     // Move all of the subloops to the top-level.
600     while (!Unloop->empty())
601       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
602 
603     return;
604   }
605 
606   // Update the parent loop for all blocks within the loop. Blocks within
607   // subloops will not change parents.
608   UnloopUpdater Updater(Unloop, this);
609   Updater.updateBlockParents();
610 
611   // Remove blocks from former ancestor loops.
612   Updater.removeBlocksFromAncestors();
613 
614   // Add direct subloops as children in their new parent loop.
615   Updater.updateSubloopParents();
616 
617   // Remove unloop from its parent loop.
618   Loop *ParentLoop = Unloop->getParentLoop();
619   for (Loop::iterator I = ParentLoop->begin();; ++I) {
620     assert(I != ParentLoop->end() && "Couldn't find loop");
621     if (*I == Unloop) {
622       ParentLoop->removeChildLoop(I);
623       break;
624     }
625   }
626 }
627 
628 char LoopAnalysis::PassID;
629 
630 LoopInfo LoopAnalysis::run(Function &F, AnalysisManager<Function> &AM) {
631   // FIXME: Currently we create a LoopInfo from scratch for every function.
632   // This may prove to be too wasteful due to deallocating and re-allocating
633   // memory each time for the underlying map and vector datastructures. At some
634   // point it may prove worthwhile to use a freelist and recycle LoopInfo
635   // objects. I don't want to add that kind of complexity until the scope of
636   // the problem is better understood.
637   LoopInfo LI;
638   LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
639   return LI;
640 }
641 
642 PreservedAnalyses LoopPrinterPass::run(Function &F,
643                                        AnalysisManager<Function> &AM) {
644   AM.getResult<LoopAnalysis>(F).print(OS);
645   return PreservedAnalyses::all();
646 }
647 
648 PrintLoopPass::PrintLoopPass() : OS(dbgs()) {}
649 PrintLoopPass::PrintLoopPass(raw_ostream &OS, const std::string &Banner)
650     : OS(OS), Banner(Banner) {}
651 
652 PreservedAnalyses PrintLoopPass::run(Loop &L) {
653   OS << Banner;
654   for (auto *Block : L.blocks())
655     if (Block)
656       Block->print(OS);
657     else
658       OS << "Printing <null> block";
659   return PreservedAnalyses::all();
660 }
661 
662 //===----------------------------------------------------------------------===//
663 // LoopInfo implementation
664 //
665 
666 char LoopInfoWrapperPass::ID = 0;
667 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
668                       true, true)
669 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
670 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
671                     true, true)
672 
673 bool LoopInfoWrapperPass::runOnFunction(Function &) {
674   releaseMemory();
675   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
676   return false;
677 }
678 
679 void LoopInfoWrapperPass::verifyAnalysis() const {
680   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
681   // function each time verifyAnalysis is called is very expensive. The
682   // -verify-loop-info option can enable this. In order to perform some
683   // checking by default, LoopPass has been taught to call verifyLoop manually
684   // during loop pass sequences.
685   if (VerifyLoopInfo)
686     LI.verify();
687 }
688 
689 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
690   AU.setPreservesAll();
691   AU.addRequired<DominatorTreeWrapperPass>();
692 }
693 
694 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
695   LI.print(OS);
696 }
697 
698 //===----------------------------------------------------------------------===//
699 // LoopBlocksDFS implementation
700 //
701 
702 /// Traverse the loop blocks and store the DFS result.
703 /// Useful for clients that just want the final DFS result and don't need to
704 /// visit blocks during the initial traversal.
705 void LoopBlocksDFS::perform(LoopInfo *LI) {
706   LoopBlocksTraversal Traversal(*this, LI);
707   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
708          POE = Traversal.end(); POI != POE; ++POI) ;
709 }
710