1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the LoopInfo class that is used to identify natural loops 11 // and determine the loop depth of various nodes of the CFG. Note that the 12 // loops identified may actually be several natural loops that share the same 13 // header node... not just a single natural loop. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/LoopInfoImpl.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/PassManager.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> 34 using namespace llvm; 35 36 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 37 template class llvm::LoopBase<BasicBlock, Loop>; 38 template class llvm::LoopInfoBase<BasicBlock, Loop>; 39 40 // Always verify loopinfo if expensive checking is enabled. 41 #ifdef XDEBUG 42 static bool VerifyLoopInfo = true; 43 #else 44 static bool VerifyLoopInfo = false; 45 #endif 46 static cl::opt<bool,true> 47 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 48 cl::desc("Verify loop info (time consuming)")); 49 50 // Loop identifier metadata name. 51 static const char *const LoopMDName = "llvm.loop"; 52 53 //===----------------------------------------------------------------------===// 54 // Loop implementation 55 // 56 57 bool Loop::isLoopInvariant(const Value *V) const { 58 if (const Instruction *I = dyn_cast<Instruction>(V)) 59 return !contains(I); 60 return true; // All non-instructions are loop invariant 61 } 62 63 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 64 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 65 } 66 67 bool Loop::makeLoopInvariant(Value *V, bool &Changed, 68 Instruction *InsertPt) const { 69 if (Instruction *I = dyn_cast<Instruction>(V)) 70 return makeLoopInvariant(I, Changed, InsertPt); 71 return true; // All non-instructions are loop-invariant. 72 } 73 74 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 75 Instruction *InsertPt) const { 76 // Test if the value is already loop-invariant. 77 if (isLoopInvariant(I)) 78 return true; 79 if (!isSafeToSpeculativelyExecute(I)) 80 return false; 81 if (I->mayReadFromMemory()) 82 return false; 83 // EH block instructions are immobile. 84 if (I->isEHPad()) 85 return false; 86 // Determine the insertion point, unless one was given. 87 if (!InsertPt) { 88 BasicBlock *Preheader = getLoopPreheader(); 89 // Without a preheader, hoisting is not feasible. 90 if (!Preheader) 91 return false; 92 InsertPt = Preheader->getTerminator(); 93 } 94 // Don't hoist instructions with loop-variant operands. 95 for (Value *Operand : I->operands()) 96 if (!makeLoopInvariant(Operand, Changed, InsertPt)) 97 return false; 98 99 // Hoist. 100 I->moveBefore(InsertPt); 101 102 // There is possibility of hoisting this instruction above some arbitrary 103 // condition. Any metadata defined on it can be control dependent on this 104 // condition. Conservatively strip it here so that we don't give any wrong 105 // information to the optimizer. 106 I->dropUnknownNonDebugMetadata(); 107 108 Changed = true; 109 return true; 110 } 111 112 PHINode *Loop::getCanonicalInductionVariable() const { 113 BasicBlock *H = getHeader(); 114 115 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 116 pred_iterator PI = pred_begin(H); 117 assert(PI != pred_end(H) && 118 "Loop must have at least one backedge!"); 119 Backedge = *PI++; 120 if (PI == pred_end(H)) return nullptr; // dead loop 121 Incoming = *PI++; 122 if (PI != pred_end(H)) return nullptr; // multiple backedges? 123 124 if (contains(Incoming)) { 125 if (contains(Backedge)) 126 return nullptr; 127 std::swap(Incoming, Backedge); 128 } else if (!contains(Backedge)) 129 return nullptr; 130 131 // Loop over all of the PHI nodes, looking for a canonical indvar. 132 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 133 PHINode *PN = cast<PHINode>(I); 134 if (ConstantInt *CI = 135 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 136 if (CI->isNullValue()) 137 if (Instruction *Inc = 138 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 139 if (Inc->getOpcode() == Instruction::Add && 140 Inc->getOperand(0) == PN) 141 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 142 if (CI->equalsInt(1)) 143 return PN; 144 } 145 return nullptr; 146 } 147 148 bool Loop::isLCSSAForm(DominatorTree &DT) const { 149 for (BasicBlock *BB : this->blocks()) { 150 for (Instruction &I : *BB) { 151 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 152 // optimizations, so for the purposes of considered LCSSA form, we 153 // can ignore them. 154 if (I.getType()->isTokenTy()) 155 continue; 156 157 for (Use &U : I.uses()) { 158 Instruction *UI = cast<Instruction>(U.getUser()); 159 BasicBlock *UserBB = UI->getParent(); 160 if (PHINode *P = dyn_cast<PHINode>(UI)) 161 UserBB = P->getIncomingBlock(U); 162 163 // Check the current block, as a fast-path, before checking whether 164 // the use is anywhere in the loop. Most values are used in the same 165 // block they are defined in. Also, blocks not reachable from the 166 // entry are special; uses in them don't need to go through PHIs. 167 if (UserBB != BB && 168 !contains(UserBB) && 169 DT.isReachableFromEntry(UserBB)) 170 return false; 171 } 172 } 173 } 174 175 return true; 176 } 177 178 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT) const { 179 if (!isLCSSAForm(DT)) 180 return false; 181 182 return std::all_of(begin(), end(), [&](const Loop *L) { 183 return L->isRecursivelyLCSSAForm(DT); 184 }); 185 } 186 187 bool Loop::isLoopSimplifyForm() const { 188 // Normal-form loops have a preheader, a single backedge, and all of their 189 // exits have all their predecessors inside the loop. 190 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 191 } 192 193 // Routines that reform the loop CFG and split edges often fail on indirectbr. 194 bool Loop::isSafeToClone() const { 195 // Return false if any loop blocks contain indirectbrs, or there are any calls 196 // to noduplicate functions. 197 for (BasicBlock *BB : this->blocks()) { 198 if (isa<IndirectBrInst>(BB->getTerminator())) 199 return false; 200 201 if (const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 202 if (II->cannotDuplicate()) 203 return false; 204 // Return false if any loop blocks contain invokes to EH-pads other than 205 // landingpads; we don't know how to split those edges yet. 206 auto *FirstNonPHI = II->getUnwindDest()->getFirstNonPHI(); 207 if (FirstNonPHI->isEHPad() && !isa<LandingPadInst>(FirstNonPHI)) 208 return false; 209 } 210 for (Instruction &I : *BB) { 211 if (const CallInst *CI = dyn_cast<CallInst>(&I)) { 212 if (CI->cannotDuplicate()) 213 return false; 214 } 215 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 216 return false; 217 } 218 } 219 return true; 220 } 221 222 MDNode *Loop::getLoopID() const { 223 MDNode *LoopID = nullptr; 224 if (isLoopSimplifyForm()) { 225 LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName); 226 } else { 227 // Go through each predecessor of the loop header and check the 228 // terminator for the metadata. 229 BasicBlock *H = getHeader(); 230 for (BasicBlock *BB : this->blocks()) { 231 TerminatorInst *TI = BB->getTerminator(); 232 MDNode *MD = nullptr; 233 234 // Check if this terminator branches to the loop header. 235 for (BasicBlock *Successor : TI->successors()) { 236 if (Successor == H) { 237 MD = TI->getMetadata(LoopMDName); 238 break; 239 } 240 } 241 if (!MD) 242 return nullptr; 243 244 if (!LoopID) 245 LoopID = MD; 246 else if (MD != LoopID) 247 return nullptr; 248 } 249 } 250 if (!LoopID || LoopID->getNumOperands() == 0 || 251 LoopID->getOperand(0) != LoopID) 252 return nullptr; 253 return LoopID; 254 } 255 256 void Loop::setLoopID(MDNode *LoopID) const { 257 assert(LoopID && "Loop ID should not be null"); 258 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand"); 259 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself"); 260 261 if (isLoopSimplifyForm()) { 262 getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID); 263 return; 264 } 265 266 BasicBlock *H = getHeader(); 267 for (BasicBlock *BB : this->blocks()) { 268 TerminatorInst *TI = BB->getTerminator(); 269 for (BasicBlock *Successor : TI->successors()) { 270 if (Successor == H) 271 TI->setMetadata(LoopMDName, LoopID); 272 } 273 } 274 } 275 276 bool Loop::isAnnotatedParallel() const { 277 MDNode *DesiredLoopIdMetadata = getLoopID(); 278 279 if (!DesiredLoopIdMetadata) 280 return false; 281 282 // The loop branch contains the parallel loop metadata. In order to ensure 283 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 284 // dependencies (thus converted the loop back to a sequential loop), check 285 // that all the memory instructions in the loop contain parallelism metadata 286 // that point to the same unique "loop id metadata" the loop branch does. 287 for (BasicBlock *BB : this->blocks()) { 288 for (Instruction &I : *BB) { 289 if (!I.mayReadOrWriteMemory()) 290 continue; 291 292 // The memory instruction can refer to the loop identifier metadata 293 // directly or indirectly through another list metadata (in case of 294 // nested parallel loops). The loop identifier metadata refers to 295 // itself so we can check both cases with the same routine. 296 MDNode *LoopIdMD = 297 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 298 299 if (!LoopIdMD) 300 return false; 301 302 bool LoopIdMDFound = false; 303 for (const MDOperand &MDOp : LoopIdMD->operands()) { 304 if (MDOp == DesiredLoopIdMetadata) { 305 LoopIdMDFound = true; 306 break; 307 } 308 } 309 310 if (!LoopIdMDFound) 311 return false; 312 } 313 } 314 return true; 315 } 316 317 bool Loop::hasDedicatedExits() const { 318 // Each predecessor of each exit block of a normal loop is contained 319 // within the loop. 320 SmallVector<BasicBlock *, 4> ExitBlocks; 321 getExitBlocks(ExitBlocks); 322 for (BasicBlock *BB : ExitBlocks) 323 for (BasicBlock *Predecessor : predecessors(BB)) 324 if (!contains(Predecessor)) 325 return false; 326 // All the requirements are met. 327 return true; 328 } 329 330 void 331 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const { 332 assert(hasDedicatedExits() && 333 "getUniqueExitBlocks assumes the loop has canonical form exits!"); 334 335 SmallVector<BasicBlock *, 32> SwitchExitBlocks; 336 for (BasicBlock *BB : this->blocks()) { 337 SwitchExitBlocks.clear(); 338 for (BasicBlock *Successor : successors(BB)) { 339 // If block is inside the loop then it is not an exit block. 340 if (contains(Successor)) 341 continue; 342 343 pred_iterator PI = pred_begin(Successor); 344 BasicBlock *FirstPred = *PI; 345 346 // If current basic block is this exit block's first predecessor 347 // then only insert exit block in to the output ExitBlocks vector. 348 // This ensures that same exit block is not inserted twice into 349 // ExitBlocks vector. 350 if (BB != FirstPred) 351 continue; 352 353 // If a terminator has more then two successors, for example SwitchInst, 354 // then it is possible that there are multiple edges from current block 355 // to one exit block. 356 if (std::distance(succ_begin(BB), succ_end(BB)) <= 2) { 357 ExitBlocks.push_back(Successor); 358 continue; 359 } 360 361 // In case of multiple edges from current block to exit block, collect 362 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of 363 // duplicate edges. 364 if (std::find(SwitchExitBlocks.begin(), SwitchExitBlocks.end(), Successor) 365 == SwitchExitBlocks.end()) { 366 SwitchExitBlocks.push_back(Successor); 367 ExitBlocks.push_back(Successor); 368 } 369 } 370 } 371 } 372 373 BasicBlock *Loop::getUniqueExitBlock() const { 374 SmallVector<BasicBlock *, 8> UniqueExitBlocks; 375 getUniqueExitBlocks(UniqueExitBlocks); 376 if (UniqueExitBlocks.size() == 1) 377 return UniqueExitBlocks[0]; 378 return nullptr; 379 } 380 381 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 382 LLVM_DUMP_METHOD void Loop::dump() const { 383 print(dbgs()); 384 } 385 #endif 386 387 //===----------------------------------------------------------------------===// 388 // UnloopUpdater implementation 389 // 390 391 namespace { 392 /// Find the new parent loop for all blocks within the "unloop" whose last 393 /// backedges has just been removed. 394 class UnloopUpdater { 395 Loop *Unloop; 396 LoopInfo *LI; 397 398 LoopBlocksDFS DFS; 399 400 // Map unloop's immediate subloops to their nearest reachable parents. Nested 401 // loops within these subloops will not change parents. However, an immediate 402 // subloop's new parent will be the nearest loop reachable from either its own 403 // exits *or* any of its nested loop's exits. 404 DenseMap<Loop*, Loop*> SubloopParents; 405 406 // Flag the presence of an irreducible backedge whose destination is a block 407 // directly contained by the original unloop. 408 bool FoundIB; 409 410 public: 411 UnloopUpdater(Loop *UL, LoopInfo *LInfo) : 412 Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {} 413 414 void updateBlockParents(); 415 416 void removeBlocksFromAncestors(); 417 418 void updateSubloopParents(); 419 420 protected: 421 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 422 }; 423 } // end anonymous namespace 424 425 /// Update the parent loop for all blocks that are directly contained within the 426 /// original "unloop". 427 void UnloopUpdater::updateBlockParents() { 428 if (Unloop->getNumBlocks()) { 429 // Perform a post order CFG traversal of all blocks within this loop, 430 // propagating the nearest loop from sucessors to predecessors. 431 LoopBlocksTraversal Traversal(DFS, LI); 432 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 433 POE = Traversal.end(); POI != POE; ++POI) { 434 435 Loop *L = LI->getLoopFor(*POI); 436 Loop *NL = getNearestLoop(*POI, L); 437 438 if (NL != L) { 439 // For reducible loops, NL is now an ancestor of Unloop. 440 assert((NL != Unloop && (!NL || NL->contains(Unloop))) && 441 "uninitialized successor"); 442 LI->changeLoopFor(*POI, NL); 443 } 444 else { 445 // Or the current block is part of a subloop, in which case its parent 446 // is unchanged. 447 assert((FoundIB || Unloop->contains(L)) && "uninitialized successor"); 448 } 449 } 450 } 451 // Each irreducible loop within the unloop induces a round of iteration using 452 // the DFS result cached by Traversal. 453 bool Changed = FoundIB; 454 for (unsigned NIters = 0; Changed; ++NIters) { 455 assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm"); 456 457 // Iterate over the postorder list of blocks, propagating the nearest loop 458 // from successors to predecessors as before. 459 Changed = false; 460 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 461 POE = DFS.endPostorder(); POI != POE; ++POI) { 462 463 Loop *L = LI->getLoopFor(*POI); 464 Loop *NL = getNearestLoop(*POI, L); 465 if (NL != L) { 466 assert(NL != Unloop && (!NL || NL->contains(Unloop)) && 467 "uninitialized successor"); 468 LI->changeLoopFor(*POI, NL); 469 Changed = true; 470 } 471 } 472 } 473 } 474 475 /// Remove unloop's blocks from all ancestors below their new parents. 476 void UnloopUpdater::removeBlocksFromAncestors() { 477 // Remove all unloop's blocks (including those in nested subloops) from 478 // ancestors below the new parent loop. 479 for (Loop::block_iterator BI = Unloop->block_begin(), 480 BE = Unloop->block_end(); BI != BE; ++BI) { 481 Loop *OuterParent = LI->getLoopFor(*BI); 482 if (Unloop->contains(OuterParent)) { 483 while (OuterParent->getParentLoop() != Unloop) 484 OuterParent = OuterParent->getParentLoop(); 485 OuterParent = SubloopParents[OuterParent]; 486 } 487 // Remove blocks from former Ancestors except Unloop itself which will be 488 // deleted. 489 for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent; 490 OldParent = OldParent->getParentLoop()) { 491 assert(OldParent && "new loop is not an ancestor of the original"); 492 OldParent->removeBlockFromLoop(*BI); 493 } 494 } 495 } 496 497 /// Update the parent loop for all subloops directly nested within unloop. 498 void UnloopUpdater::updateSubloopParents() { 499 while (!Unloop->empty()) { 500 Loop *Subloop = *std::prev(Unloop->end()); 501 Unloop->removeChildLoop(std::prev(Unloop->end())); 502 503 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 504 if (Loop *Parent = SubloopParents[Subloop]) 505 Parent->addChildLoop(Subloop); 506 else 507 LI->addTopLevelLoop(Subloop); 508 } 509 } 510 511 /// Return the nearest parent loop among this block's successors. If a successor 512 /// is a subloop header, consider its parent to be the nearest parent of the 513 /// subloop's exits. 514 /// 515 /// For subloop blocks, simply update SubloopParents and return NULL. 516 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 517 518 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 519 // is considered uninitialized. 520 Loop *NearLoop = BBLoop; 521 522 Loop *Subloop = nullptr; 523 if (NearLoop != Unloop && Unloop->contains(NearLoop)) { 524 Subloop = NearLoop; 525 // Find the subloop ancestor that is directly contained within Unloop. 526 while (Subloop->getParentLoop() != Unloop) { 527 Subloop = Subloop->getParentLoop(); 528 assert(Subloop && "subloop is not an ancestor of the original loop"); 529 } 530 // Get the current nearest parent of the Subloop exits, initially Unloop. 531 NearLoop = 532 SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second; 533 } 534 535 succ_iterator I = succ_begin(BB), E = succ_end(BB); 536 if (I == E) { 537 assert(!Subloop && "subloop blocks must have a successor"); 538 NearLoop = nullptr; // unloop blocks may now exit the function. 539 } 540 for (; I != E; ++I) { 541 if (*I == BB) 542 continue; // self loops are uninteresting 543 544 Loop *L = LI->getLoopFor(*I); 545 if (L == Unloop) { 546 // This successor has not been processed. This path must lead to an 547 // irreducible backedge. 548 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 549 FoundIB = true; 550 } 551 if (L != Unloop && Unloop->contains(L)) { 552 // Successor is in a subloop. 553 if (Subloop) 554 continue; // Branching within subloops. Ignore it. 555 556 // BB branches from the original into a subloop header. 557 assert(L->getParentLoop() == Unloop && "cannot skip into nested loops"); 558 559 // Get the current nearest parent of the Subloop's exits. 560 L = SubloopParents[L]; 561 // L could be Unloop if the only exit was an irreducible backedge. 562 } 563 if (L == Unloop) { 564 continue; 565 } 566 // Handle critical edges from Unloop into a sibling loop. 567 if (L && !L->contains(Unloop)) { 568 L = L->getParentLoop(); 569 } 570 // Remember the nearest parent loop among successors or subloop exits. 571 if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L)) 572 NearLoop = L; 573 } 574 if (Subloop) { 575 SubloopParents[Subloop] = NearLoop; 576 return BBLoop; 577 } 578 return NearLoop; 579 } 580 581 LoopInfo::LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree) { 582 analyze(DomTree); 583 } 584 585 void LoopInfo::markAsRemoved(Loop *Unloop) { 586 assert(!Unloop->isInvalid() && "Loop has already been removed"); 587 Unloop->invalidate(); 588 RemovedLoops.push_back(Unloop); 589 590 // First handle the special case of no parent loop to simplify the algorithm. 591 if (!Unloop->getParentLoop()) { 592 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 593 for (Loop::block_iterator I = Unloop->block_begin(), 594 E = Unloop->block_end(); 595 I != E; ++I) { 596 597 // Don't reparent blocks in subloops. 598 if (getLoopFor(*I) != Unloop) 599 continue; 600 601 // Blocks no longer have a parent but are still referenced by Unloop until 602 // the Unloop object is deleted. 603 changeLoopFor(*I, nullptr); 604 } 605 606 // Remove the loop from the top-level LoopInfo object. 607 for (iterator I = begin();; ++I) { 608 assert(I != end() && "Couldn't find loop"); 609 if (*I == Unloop) { 610 removeLoop(I); 611 break; 612 } 613 } 614 615 // Move all of the subloops to the top-level. 616 while (!Unloop->empty()) 617 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 618 619 return; 620 } 621 622 // Update the parent loop for all blocks within the loop. Blocks within 623 // subloops will not change parents. 624 UnloopUpdater Updater(Unloop, this); 625 Updater.updateBlockParents(); 626 627 // Remove blocks from former ancestor loops. 628 Updater.removeBlocksFromAncestors(); 629 630 // Add direct subloops as children in their new parent loop. 631 Updater.updateSubloopParents(); 632 633 // Remove unloop from its parent loop. 634 Loop *ParentLoop = Unloop->getParentLoop(); 635 for (Loop::iterator I = ParentLoop->begin();; ++I) { 636 assert(I != ParentLoop->end() && "Couldn't find loop"); 637 if (*I == Unloop) { 638 ParentLoop->removeChildLoop(I); 639 break; 640 } 641 } 642 } 643 644 char LoopAnalysis::PassID; 645 646 LoopInfo LoopAnalysis::run(Function &F, AnalysisManager<Function> *AM) { 647 // FIXME: Currently we create a LoopInfo from scratch for every function. 648 // This may prove to be too wasteful due to deallocating and re-allocating 649 // memory each time for the underlying map and vector datastructures. At some 650 // point it may prove worthwhile to use a freelist and recycle LoopInfo 651 // objects. I don't want to add that kind of complexity until the scope of 652 // the problem is better understood. 653 LoopInfo LI; 654 LI.analyze(AM->getResult<DominatorTreeAnalysis>(F)); 655 return LI; 656 } 657 658 PreservedAnalyses LoopPrinterPass::run(Function &F, 659 AnalysisManager<Function> *AM) { 660 AM->getResult<LoopAnalysis>(F).print(OS); 661 return PreservedAnalyses::all(); 662 } 663 664 PrintLoopPass::PrintLoopPass() : OS(dbgs()) {} 665 PrintLoopPass::PrintLoopPass(raw_ostream &OS, const std::string &Banner) 666 : OS(OS), Banner(Banner) {} 667 668 PreservedAnalyses PrintLoopPass::run(Loop &L) { 669 OS << Banner; 670 for (auto *Block : L.blocks()) 671 if (Block) 672 Block->print(OS); 673 else 674 OS << "Printing <null> block"; 675 return PreservedAnalyses::all(); 676 } 677 678 //===----------------------------------------------------------------------===// 679 // LoopInfo implementation 680 // 681 682 char LoopInfoWrapperPass::ID = 0; 683 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 684 true, true) 685 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 686 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 687 true, true) 688 689 bool LoopInfoWrapperPass::runOnFunction(Function &) { 690 releaseMemory(); 691 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 692 return false; 693 } 694 695 void LoopInfoWrapperPass::verifyAnalysis() const { 696 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 697 // function each time verifyAnalysis is called is very expensive. The 698 // -verify-loop-info option can enable this. In order to perform some 699 // checking by default, LoopPass has been taught to call verifyLoop manually 700 // during loop pass sequences. 701 if (VerifyLoopInfo) 702 LI.verify(); 703 } 704 705 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 706 AU.setPreservesAll(); 707 AU.addRequired<DominatorTreeWrapperPass>(); 708 } 709 710 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 711 LI.print(OS); 712 } 713 714 //===----------------------------------------------------------------------===// 715 // LoopBlocksDFS implementation 716 // 717 718 /// Traverse the loop blocks and store the DFS result. 719 /// Useful for clients that just want the final DFS result and don't need to 720 /// visit blocks during the initial traversal. 721 void LoopBlocksDFS::perform(LoopInfo *LI) { 722 LoopBlocksTraversal Traversal(*this, LI); 723 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 724 POE = Traversal.end(); POI != POE; ++POI) ; 725 } 726