1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG.  Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/Analysis/LoopInfoImpl.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/IRPrintingPasses.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/PassManager.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
41 template class llvm::LoopBase<BasicBlock, Loop>;
42 template class llvm::LoopInfoBase<BasicBlock, Loop>;
43 
44 // Always verify loopinfo if expensive checking is enabled.
45 #ifdef EXPENSIVE_CHECKS
46 bool llvm::VerifyLoopInfo = true;
47 #else
48 bool llvm::VerifyLoopInfo = false;
49 #endif
50 static cl::opt<bool, true>
51     VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
52                     cl::Hidden, cl::desc("Verify loop info (time consuming)"));
53 
54 //===----------------------------------------------------------------------===//
55 // Loop implementation
56 //
57 
58 bool Loop::isLoopInvariant(const Value *V) const {
59   if (const Instruction *I = dyn_cast<Instruction>(V))
60     return !contains(I);
61   return true; // All non-instructions are loop invariant
62 }
63 
64 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
65   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
66 }
67 
68 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
69                              Instruction *InsertPt) const {
70   if (Instruction *I = dyn_cast<Instruction>(V))
71     return makeLoopInvariant(I, Changed, InsertPt);
72   return true; // All non-instructions are loop-invariant.
73 }
74 
75 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
76                              Instruction *InsertPt) const {
77   // Test if the value is already loop-invariant.
78   if (isLoopInvariant(I))
79     return true;
80   if (!isSafeToSpeculativelyExecute(I))
81     return false;
82   if (I->mayReadFromMemory())
83     return false;
84   // EH block instructions are immobile.
85   if (I->isEHPad())
86     return false;
87   // Determine the insertion point, unless one was given.
88   if (!InsertPt) {
89     BasicBlock *Preheader = getLoopPreheader();
90     // Without a preheader, hoisting is not feasible.
91     if (!Preheader)
92       return false;
93     InsertPt = Preheader->getTerminator();
94   }
95   // Don't hoist instructions with loop-variant operands.
96   for (Value *Operand : I->operands())
97     if (!makeLoopInvariant(Operand, Changed, InsertPt))
98       return false;
99 
100   // Hoist.
101   I->moveBefore(InsertPt);
102 
103   // There is possibility of hoisting this instruction above some arbitrary
104   // condition. Any metadata defined on it can be control dependent on this
105   // condition. Conservatively strip it here so that we don't give any wrong
106   // information to the optimizer.
107   I->dropUnknownNonDebugMetadata();
108 
109   Changed = true;
110   return true;
111 }
112 
113 PHINode *Loop::getCanonicalInductionVariable() const {
114   BasicBlock *H = getHeader();
115 
116   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
117   pred_iterator PI = pred_begin(H);
118   assert(PI != pred_end(H) && "Loop must have at least one backedge!");
119   Backedge = *PI++;
120   if (PI == pred_end(H))
121     return nullptr; // dead loop
122   Incoming = *PI++;
123   if (PI != pred_end(H))
124     return nullptr; // multiple backedges?
125 
126   if (contains(Incoming)) {
127     if (contains(Backedge))
128       return nullptr;
129     std::swap(Incoming, Backedge);
130   } else if (!contains(Backedge))
131     return nullptr;
132 
133   // Loop over all of the PHI nodes, looking for a canonical indvar.
134   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
135     PHINode *PN = cast<PHINode>(I);
136     if (ConstantInt *CI =
137             dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
138       if (CI->isZero())
139         if (Instruction *Inc =
140                 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
141           if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
142             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
143               if (CI->isOne())
144                 return PN;
145   }
146   return nullptr;
147 }
148 
149 // Check that 'BB' doesn't have any uses outside of the 'L'
150 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
151                                DominatorTree &DT) {
152   for (const Instruction &I : BB) {
153     // Tokens can't be used in PHI nodes and live-out tokens prevent loop
154     // optimizations, so for the purposes of considered LCSSA form, we
155     // can ignore them.
156     if (I.getType()->isTokenTy())
157       continue;
158 
159     for (const Use &U : I.uses()) {
160       const Instruction *UI = cast<Instruction>(U.getUser());
161       const BasicBlock *UserBB = UI->getParent();
162       if (const PHINode *P = dyn_cast<PHINode>(UI))
163         UserBB = P->getIncomingBlock(U);
164 
165       // Check the current block, as a fast-path, before checking whether
166       // the use is anywhere in the loop.  Most values are used in the same
167       // block they are defined in.  Also, blocks not reachable from the
168       // entry are special; uses in them don't need to go through PHIs.
169       if (UserBB != &BB && !L.contains(UserBB) &&
170           DT.isReachableFromEntry(UserBB))
171         return false;
172     }
173   }
174   return true;
175 }
176 
177 bool Loop::isLCSSAForm(DominatorTree &DT) const {
178   // For each block we check that it doesn't have any uses outside of this loop.
179   return all_of(this->blocks(), [&](const BasicBlock *BB) {
180     return isBlockInLCSSAForm(*this, *BB, DT);
181   });
182 }
183 
184 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const {
185   // For each block we check that it doesn't have any uses outside of its
186   // innermost loop. This process will transitively guarantee that the current
187   // loop and all of the nested loops are in LCSSA form.
188   return all_of(this->blocks(), [&](const BasicBlock *BB) {
189     return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
190   });
191 }
192 
193 bool Loop::isLoopSimplifyForm() const {
194   // Normal-form loops have a preheader, a single backedge, and all of their
195   // exits have all their predecessors inside the loop.
196   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
197 }
198 
199 // Routines that reform the loop CFG and split edges often fail on indirectbr.
200 bool Loop::isSafeToClone() const {
201   // Return false if any loop blocks contain indirectbrs, or there are any calls
202   // to noduplicate functions.
203   for (BasicBlock *BB : this->blocks()) {
204     if (isa<IndirectBrInst>(BB->getTerminator()))
205       return false;
206 
207     for (Instruction &I : *BB)
208       if (auto CS = CallSite(&I))
209         if (CS.cannotDuplicate())
210           return false;
211   }
212   return true;
213 }
214 
215 MDNode *Loop::getLoopID() const {
216   MDNode *LoopID = nullptr;
217 
218   // Go through the latch blocks and check the terminator for the metadata.
219   SmallVector<BasicBlock *, 4> LatchesBlocks;
220   getLoopLatches(LatchesBlocks);
221   for (BasicBlock *BB : LatchesBlocks) {
222     Instruction *TI = BB->getTerminator();
223     MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);
224 
225     if (!MD)
226       return nullptr;
227 
228     if (!LoopID)
229       LoopID = MD;
230     else if (MD != LoopID)
231       return nullptr;
232   }
233   if (!LoopID || LoopID->getNumOperands() == 0 ||
234       LoopID->getOperand(0) != LoopID)
235     return nullptr;
236   return LoopID;
237 }
238 
239 void Loop::setLoopID(MDNode *LoopID) const {
240   assert((!LoopID || LoopID->getNumOperands() > 0) &&
241          "Loop ID needs at least one operand");
242   assert((!LoopID || LoopID->getOperand(0) == LoopID) &&
243          "Loop ID should refer to itself");
244 
245   BasicBlock *H = getHeader();
246   for (BasicBlock *BB : this->blocks()) {
247     Instruction *TI = BB->getTerminator();
248     for (BasicBlock *Successor : successors(TI)) {
249       if (Successor == H) {
250         TI->setMetadata(LLVMContext::MD_loop, LoopID);
251         break;
252       }
253     }
254   }
255 }
256 
257 void Loop::setLoopAlreadyUnrolled() {
258   MDNode *LoopID = getLoopID();
259   // First remove any existing loop unrolling metadata.
260   SmallVector<Metadata *, 4> MDs;
261   // Reserve first location for self reference to the LoopID metadata node.
262   MDs.push_back(nullptr);
263 
264   if (LoopID) {
265     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
266       bool IsUnrollMetadata = false;
267       MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
268       if (MD) {
269         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
270         IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
271       }
272       if (!IsUnrollMetadata)
273         MDs.push_back(LoopID->getOperand(i));
274     }
275   }
276 
277   // Add unroll(disable) metadata to disable future unrolling.
278   LLVMContext &Context = getHeader()->getContext();
279   SmallVector<Metadata *, 1> DisableOperands;
280   DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
281   MDNode *DisableNode = MDNode::get(Context, DisableOperands);
282   MDs.push_back(DisableNode);
283 
284   MDNode *NewLoopID = MDNode::get(Context, MDs);
285   // Set operand 0 to refer to the loop id itself.
286   NewLoopID->replaceOperandWith(0, NewLoopID);
287   setLoopID(NewLoopID);
288 }
289 
290 bool Loop::isAnnotatedParallel() const {
291   MDNode *DesiredLoopIdMetadata = getLoopID();
292 
293   if (!DesiredLoopIdMetadata)
294     return false;
295 
296   // The loop branch contains the parallel loop metadata. In order to ensure
297   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
298   // dependencies (thus converted the loop back to a sequential loop), check
299   // that all the memory instructions in the loop contain parallelism metadata
300   // that point to the same unique "loop id metadata" the loop branch does.
301   for (BasicBlock *BB : this->blocks()) {
302     for (Instruction &I : *BB) {
303       if (!I.mayReadOrWriteMemory())
304         continue;
305 
306       // The memory instruction can refer to the loop identifier metadata
307       // directly or indirectly through another list metadata (in case of
308       // nested parallel loops). The loop identifier metadata refers to
309       // itself so we can check both cases with the same routine.
310       MDNode *LoopIdMD =
311           I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
312 
313       if (!LoopIdMD)
314         return false;
315 
316       bool LoopIdMDFound = false;
317       for (const MDOperand &MDOp : LoopIdMD->operands()) {
318         if (MDOp == DesiredLoopIdMetadata) {
319           LoopIdMDFound = true;
320           break;
321         }
322       }
323 
324       if (!LoopIdMDFound)
325         return false;
326     }
327   }
328   return true;
329 }
330 
331 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
332 
333 Loop::LocRange Loop::getLocRange() const {
334   // If we have a debug location in the loop ID, then use it.
335   if (MDNode *LoopID = getLoopID()) {
336     DebugLoc Start;
337     // We use the first DebugLoc in the header as the start location of the loop
338     // and if there is a second DebugLoc in the header we use it as end location
339     // of the loop.
340     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
341       if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
342         if (!Start)
343           Start = DebugLoc(L);
344         else
345           return LocRange(Start, DebugLoc(L));
346       }
347     }
348 
349     if (Start)
350       return LocRange(Start);
351   }
352 
353   // Try the pre-header first.
354   if (BasicBlock *PHeadBB = getLoopPreheader())
355     if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
356       return LocRange(DL);
357 
358   // If we have no pre-header or there are no instructions with debug
359   // info in it, try the header.
360   if (BasicBlock *HeadBB = getHeader())
361     return LocRange(HeadBB->getTerminator()->getDebugLoc());
362 
363   return LocRange();
364 }
365 
366 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
367 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
368 
369 LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
370   print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
371 }
372 #endif
373 
374 //===----------------------------------------------------------------------===//
375 // UnloopUpdater implementation
376 //
377 
378 namespace {
379 /// Find the new parent loop for all blocks within the "unloop" whose last
380 /// backedges has just been removed.
381 class UnloopUpdater {
382   Loop &Unloop;
383   LoopInfo *LI;
384 
385   LoopBlocksDFS DFS;
386 
387   // Map unloop's immediate subloops to their nearest reachable parents. Nested
388   // loops within these subloops will not change parents. However, an immediate
389   // subloop's new parent will be the nearest loop reachable from either its own
390   // exits *or* any of its nested loop's exits.
391   DenseMap<Loop *, Loop *> SubloopParents;
392 
393   // Flag the presence of an irreducible backedge whose destination is a block
394   // directly contained by the original unloop.
395   bool FoundIB;
396 
397 public:
398   UnloopUpdater(Loop *UL, LoopInfo *LInfo)
399       : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
400 
401   void updateBlockParents();
402 
403   void removeBlocksFromAncestors();
404 
405   void updateSubloopParents();
406 
407 protected:
408   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
409 };
410 } // end anonymous namespace
411 
412 /// Update the parent loop for all blocks that are directly contained within the
413 /// original "unloop".
414 void UnloopUpdater::updateBlockParents() {
415   if (Unloop.getNumBlocks()) {
416     // Perform a post order CFG traversal of all blocks within this loop,
417     // propagating the nearest loop from successors to predecessors.
418     LoopBlocksTraversal Traversal(DFS, LI);
419     for (BasicBlock *POI : Traversal) {
420 
421       Loop *L = LI->getLoopFor(POI);
422       Loop *NL = getNearestLoop(POI, L);
423 
424       if (NL != L) {
425         // For reducible loops, NL is now an ancestor of Unloop.
426         assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
427                "uninitialized successor");
428         LI->changeLoopFor(POI, NL);
429       } else {
430         // Or the current block is part of a subloop, in which case its parent
431         // is unchanged.
432         assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
433       }
434     }
435   }
436   // Each irreducible loop within the unloop induces a round of iteration using
437   // the DFS result cached by Traversal.
438   bool Changed = FoundIB;
439   for (unsigned NIters = 0; Changed; ++NIters) {
440     assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
441 
442     // Iterate over the postorder list of blocks, propagating the nearest loop
443     // from successors to predecessors as before.
444     Changed = false;
445     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
446                                    POE = DFS.endPostorder();
447          POI != POE; ++POI) {
448 
449       Loop *L = LI->getLoopFor(*POI);
450       Loop *NL = getNearestLoop(*POI, L);
451       if (NL != L) {
452         assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
453                "uninitialized successor");
454         LI->changeLoopFor(*POI, NL);
455         Changed = true;
456       }
457     }
458   }
459 }
460 
461 /// Remove unloop's blocks from all ancestors below their new parents.
462 void UnloopUpdater::removeBlocksFromAncestors() {
463   // Remove all unloop's blocks (including those in nested subloops) from
464   // ancestors below the new parent loop.
465   for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end();
466        BI != BE; ++BI) {
467     Loop *OuterParent = LI->getLoopFor(*BI);
468     if (Unloop.contains(OuterParent)) {
469       while (OuterParent->getParentLoop() != &Unloop)
470         OuterParent = OuterParent->getParentLoop();
471       OuterParent = SubloopParents[OuterParent];
472     }
473     // Remove blocks from former Ancestors except Unloop itself which will be
474     // deleted.
475     for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
476          OldParent = OldParent->getParentLoop()) {
477       assert(OldParent && "new loop is not an ancestor of the original");
478       OldParent->removeBlockFromLoop(*BI);
479     }
480   }
481 }
482 
483 /// Update the parent loop for all subloops directly nested within unloop.
484 void UnloopUpdater::updateSubloopParents() {
485   while (!Unloop.empty()) {
486     Loop *Subloop = *std::prev(Unloop.end());
487     Unloop.removeChildLoop(std::prev(Unloop.end()));
488 
489     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
490     if (Loop *Parent = SubloopParents[Subloop])
491       Parent->addChildLoop(Subloop);
492     else
493       LI->addTopLevelLoop(Subloop);
494   }
495 }
496 
497 /// Return the nearest parent loop among this block's successors. If a successor
498 /// is a subloop header, consider its parent to be the nearest parent of the
499 /// subloop's exits.
500 ///
501 /// For subloop blocks, simply update SubloopParents and return NULL.
502 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
503 
504   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
505   // is considered uninitialized.
506   Loop *NearLoop = BBLoop;
507 
508   Loop *Subloop = nullptr;
509   if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
510     Subloop = NearLoop;
511     // Find the subloop ancestor that is directly contained within Unloop.
512     while (Subloop->getParentLoop() != &Unloop) {
513       Subloop = Subloop->getParentLoop();
514       assert(Subloop && "subloop is not an ancestor of the original loop");
515     }
516     // Get the current nearest parent of the Subloop exits, initially Unloop.
517     NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
518   }
519 
520   succ_iterator I = succ_begin(BB), E = succ_end(BB);
521   if (I == E) {
522     assert(!Subloop && "subloop blocks must have a successor");
523     NearLoop = nullptr; // unloop blocks may now exit the function.
524   }
525   for (; I != E; ++I) {
526     if (*I == BB)
527       continue; // self loops are uninteresting
528 
529     Loop *L = LI->getLoopFor(*I);
530     if (L == &Unloop) {
531       // This successor has not been processed. This path must lead to an
532       // irreducible backedge.
533       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
534       FoundIB = true;
535     }
536     if (L != &Unloop && Unloop.contains(L)) {
537       // Successor is in a subloop.
538       if (Subloop)
539         continue; // Branching within subloops. Ignore it.
540 
541       // BB branches from the original into a subloop header.
542       assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
543 
544       // Get the current nearest parent of the Subloop's exits.
545       L = SubloopParents[L];
546       // L could be Unloop if the only exit was an irreducible backedge.
547     }
548     if (L == &Unloop) {
549       continue;
550     }
551     // Handle critical edges from Unloop into a sibling loop.
552     if (L && !L->contains(&Unloop)) {
553       L = L->getParentLoop();
554     }
555     // Remember the nearest parent loop among successors or subloop exits.
556     if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
557       NearLoop = L;
558   }
559   if (Subloop) {
560     SubloopParents[Subloop] = NearLoop;
561     return BBLoop;
562   }
563   return NearLoop;
564 }
565 
566 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
567 
568 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
569                           FunctionAnalysisManager::Invalidator &) {
570   // Check whether the analysis, all analyses on functions, or the function's
571   // CFG have been preserved.
572   auto PAC = PA.getChecker<LoopAnalysis>();
573   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
574            PAC.preservedSet<CFGAnalyses>());
575 }
576 
577 void LoopInfo::erase(Loop *Unloop) {
578   assert(!Unloop->isInvalid() && "Loop has already been erased!");
579 
580   auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
581 
582   // First handle the special case of no parent loop to simplify the algorithm.
583   if (!Unloop->getParentLoop()) {
584     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
585     for (Loop::block_iterator I = Unloop->block_begin(),
586                               E = Unloop->block_end();
587          I != E; ++I) {
588 
589       // Don't reparent blocks in subloops.
590       if (getLoopFor(*I) != Unloop)
591         continue;
592 
593       // Blocks no longer have a parent but are still referenced by Unloop until
594       // the Unloop object is deleted.
595       changeLoopFor(*I, nullptr);
596     }
597 
598     // Remove the loop from the top-level LoopInfo object.
599     for (iterator I = begin();; ++I) {
600       assert(I != end() && "Couldn't find loop");
601       if (*I == Unloop) {
602         removeLoop(I);
603         break;
604       }
605     }
606 
607     // Move all of the subloops to the top-level.
608     while (!Unloop->empty())
609       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
610 
611     return;
612   }
613 
614   // Update the parent loop for all blocks within the loop. Blocks within
615   // subloops will not change parents.
616   UnloopUpdater Updater(Unloop, this);
617   Updater.updateBlockParents();
618 
619   // Remove blocks from former ancestor loops.
620   Updater.removeBlocksFromAncestors();
621 
622   // Add direct subloops as children in their new parent loop.
623   Updater.updateSubloopParents();
624 
625   // Remove unloop from its parent loop.
626   Loop *ParentLoop = Unloop->getParentLoop();
627   for (Loop::iterator I = ParentLoop->begin();; ++I) {
628     assert(I != ParentLoop->end() && "Couldn't find loop");
629     if (*I == Unloop) {
630       ParentLoop->removeChildLoop(I);
631       break;
632     }
633   }
634 }
635 
636 AnalysisKey LoopAnalysis::Key;
637 
638 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
639   // FIXME: Currently we create a LoopInfo from scratch for every function.
640   // This may prove to be too wasteful due to deallocating and re-allocating
641   // memory each time for the underlying map and vector datastructures. At some
642   // point it may prove worthwhile to use a freelist and recycle LoopInfo
643   // objects. I don't want to add that kind of complexity until the scope of
644   // the problem is better understood.
645   LoopInfo LI;
646   LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
647   return LI;
648 }
649 
650 PreservedAnalyses LoopPrinterPass::run(Function &F,
651                                        FunctionAnalysisManager &AM) {
652   AM.getResult<LoopAnalysis>(F).print(OS);
653   return PreservedAnalyses::all();
654 }
655 
656 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
657 
658   if (forcePrintModuleIR()) {
659     // handling -print-module-scope
660     OS << Banner << " (loop: ";
661     L.getHeader()->printAsOperand(OS, false);
662     OS << ")\n";
663 
664     // printing whole module
665     OS << *L.getHeader()->getModule();
666     return;
667   }
668 
669   OS << Banner;
670 
671   auto *PreHeader = L.getLoopPreheader();
672   if (PreHeader) {
673     OS << "\n; Preheader:";
674     PreHeader->print(OS);
675     OS << "\n; Loop:";
676   }
677 
678   for (auto *Block : L.blocks())
679     if (Block)
680       Block->print(OS);
681     else
682       OS << "Printing <null> block";
683 
684   SmallVector<BasicBlock *, 8> ExitBlocks;
685   L.getExitBlocks(ExitBlocks);
686   if (!ExitBlocks.empty()) {
687     OS << "\n; Exit blocks";
688     for (auto *Block : ExitBlocks)
689       if (Block)
690         Block->print(OS);
691       else
692         OS << "Printing <null> block";
693   }
694 }
695 
696 //===----------------------------------------------------------------------===//
697 // LoopInfo implementation
698 //
699 
700 char LoopInfoWrapperPass::ID = 0;
701 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
702                       true, true)
703 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
704 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
705                     true, true)
706 
707 bool LoopInfoWrapperPass::runOnFunction(Function &) {
708   releaseMemory();
709   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
710   return false;
711 }
712 
713 void LoopInfoWrapperPass::verifyAnalysis() const {
714   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
715   // function each time verifyAnalysis is called is very expensive. The
716   // -verify-loop-info option can enable this. In order to perform some
717   // checking by default, LoopPass has been taught to call verifyLoop manually
718   // during loop pass sequences.
719   if (VerifyLoopInfo) {
720     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
721     LI.verify(DT);
722   }
723 }
724 
725 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
726   AU.setPreservesAll();
727   AU.addRequired<DominatorTreeWrapperPass>();
728 }
729 
730 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
731   LI.print(OS);
732 }
733 
734 PreservedAnalyses LoopVerifierPass::run(Function &F,
735                                         FunctionAnalysisManager &AM) {
736   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
737   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
738   LI.verify(DT);
739   return PreservedAnalyses::all();
740 }
741 
742 //===----------------------------------------------------------------------===//
743 // LoopBlocksDFS implementation
744 //
745 
746 /// Traverse the loop blocks and store the DFS result.
747 /// Useful for clients that just want the final DFS result and don't need to
748 /// visit blocks during the initial traversal.
749 void LoopBlocksDFS::perform(LoopInfo *LI) {
750   LoopBlocksTraversal Traversal(*this, LI);
751   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
752                                         POE = Traversal.end();
753        POI != POE; ++POI)
754     ;
755 }
756