1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG.  Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/Analysis/LoopInfoImpl.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugLoc.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/PassManager.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 using namespace llvm;
37 
38 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
39 template class llvm::LoopBase<BasicBlock, Loop>;
40 template class llvm::LoopInfoBase<BasicBlock, Loop>;
41 
42 // Always verify loopinfo if expensive checking is enabled.
43 #ifdef EXPENSIVE_CHECKS
44 bool llvm::VerifyLoopInfo = true;
45 #else
46 bool llvm::VerifyLoopInfo = false;
47 #endif
48 static cl::opt<bool, true>
49     VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
50                     cl::desc("Verify loop info (time consuming)"));
51 
52 //===----------------------------------------------------------------------===//
53 // Loop implementation
54 //
55 
56 bool Loop::isLoopInvariant(const Value *V) const {
57   if (const Instruction *I = dyn_cast<Instruction>(V))
58     return !contains(I);
59   return true; // All non-instructions are loop invariant
60 }
61 
62 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
63   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
64 }
65 
66 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
67                              Instruction *InsertPt) const {
68   if (Instruction *I = dyn_cast<Instruction>(V))
69     return makeLoopInvariant(I, Changed, InsertPt);
70   return true; // All non-instructions are loop-invariant.
71 }
72 
73 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
74                              Instruction *InsertPt) const {
75   // Test if the value is already loop-invariant.
76   if (isLoopInvariant(I))
77     return true;
78   if (!isSafeToSpeculativelyExecute(I))
79     return false;
80   if (I->mayReadFromMemory())
81     return false;
82   // EH block instructions are immobile.
83   if (I->isEHPad())
84     return false;
85   // Determine the insertion point, unless one was given.
86   if (!InsertPt) {
87     BasicBlock *Preheader = getLoopPreheader();
88     // Without a preheader, hoisting is not feasible.
89     if (!Preheader)
90       return false;
91     InsertPt = Preheader->getTerminator();
92   }
93   // Don't hoist instructions with loop-variant operands.
94   for (Value *Operand : I->operands())
95     if (!makeLoopInvariant(Operand, Changed, InsertPt))
96       return false;
97 
98   // Hoist.
99   I->moveBefore(InsertPt);
100 
101   // There is possibility of hoisting this instruction above some arbitrary
102   // condition. Any metadata defined on it can be control dependent on this
103   // condition. Conservatively strip it here so that we don't give any wrong
104   // information to the optimizer.
105   I->dropUnknownNonDebugMetadata();
106 
107   Changed = true;
108   return true;
109 }
110 
111 PHINode *Loop::getCanonicalInductionVariable() const {
112   BasicBlock *H = getHeader();
113 
114   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
115   pred_iterator PI = pred_begin(H);
116   assert(PI != pred_end(H) && "Loop must have at least one backedge!");
117   Backedge = *PI++;
118   if (PI == pred_end(H))
119     return nullptr; // dead loop
120   Incoming = *PI++;
121   if (PI != pred_end(H))
122     return nullptr; // multiple backedges?
123 
124   if (contains(Incoming)) {
125     if (contains(Backedge))
126       return nullptr;
127     std::swap(Incoming, Backedge);
128   } else if (!contains(Backedge))
129     return nullptr;
130 
131   // Loop over all of the PHI nodes, looking for a canonical indvar.
132   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
133     PHINode *PN = cast<PHINode>(I);
134     if (ConstantInt *CI =
135             dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
136       if (CI->isZero())
137         if (Instruction *Inc =
138                 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
139           if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
140             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
141               if (CI->isOne())
142                 return PN;
143   }
144   return nullptr;
145 }
146 
147 // Check that 'BB' doesn't have any uses outside of the 'L'
148 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
149                                DominatorTree &DT) {
150   for (const Instruction &I : BB) {
151     // Tokens can't be used in PHI nodes and live-out tokens prevent loop
152     // optimizations, so for the purposes of considered LCSSA form, we
153     // can ignore them.
154     if (I.getType()->isTokenTy())
155       continue;
156 
157     for (const Use &U : I.uses()) {
158       const Instruction *UI = cast<Instruction>(U.getUser());
159       const BasicBlock *UserBB = UI->getParent();
160       if (const PHINode *P = dyn_cast<PHINode>(UI))
161         UserBB = P->getIncomingBlock(U);
162 
163       // Check the current block, as a fast-path, before checking whether
164       // the use is anywhere in the loop.  Most values are used in the same
165       // block they are defined in.  Also, blocks not reachable from the
166       // entry are special; uses in them don't need to go through PHIs.
167       if (UserBB != &BB && !L.contains(UserBB) &&
168           DT.isReachableFromEntry(UserBB))
169         return false;
170     }
171   }
172   return true;
173 }
174 
175 bool Loop::isLCSSAForm(DominatorTree &DT) const {
176   // For each block we check that it doesn't have any uses outside of this loop.
177   return all_of(this->blocks(), [&](const BasicBlock *BB) {
178     return isBlockInLCSSAForm(*this, *BB, DT);
179   });
180 }
181 
182 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const {
183   // For each block we check that it doesn't have any uses outside of its
184   // innermost loop. This process will transitively guarantee that the current
185   // loop and all of the nested loops are in LCSSA form.
186   return all_of(this->blocks(), [&](const BasicBlock *BB) {
187     return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
188   });
189 }
190 
191 bool Loop::isLoopSimplifyForm() const {
192   // Normal-form loops have a preheader, a single backedge, and all of their
193   // exits have all their predecessors inside the loop.
194   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
195 }
196 
197 // Routines that reform the loop CFG and split edges often fail on indirectbr.
198 bool Loop::isSafeToClone() const {
199   // Return false if any loop blocks contain indirectbrs, or there are any calls
200   // to noduplicate functions.
201   for (BasicBlock *BB : this->blocks()) {
202     if (isa<IndirectBrInst>(BB->getTerminator()))
203       return false;
204 
205     for (Instruction &I : *BB)
206       if (auto CS = CallSite(&I))
207         if (CS.cannotDuplicate())
208           return false;
209   }
210   return true;
211 }
212 
213 MDNode *Loop::getLoopID() const {
214   MDNode *LoopID = nullptr;
215   if (BasicBlock *Latch = getLoopLatch()) {
216     LoopID = Latch->getTerminator()->getMetadata(LLVMContext::MD_loop);
217   } else {
218     assert(!getLoopLatch() &&
219            "The loop should have no single latch at this point");
220     // Go through each predecessor of the loop header and check the
221     // terminator for the metadata.
222     BasicBlock *H = getHeader();
223     for (BasicBlock *BB : this->blocks()) {
224       TerminatorInst *TI = BB->getTerminator();
225       MDNode *MD = nullptr;
226 
227       // Check if this terminator branches to the loop header.
228       for (BasicBlock *Successor : TI->successors()) {
229         if (Successor == H) {
230           MD = TI->getMetadata(LLVMContext::MD_loop);
231           break;
232         }
233       }
234       if (!MD)
235         return nullptr;
236 
237       if (!LoopID)
238         LoopID = MD;
239       else if (MD != LoopID)
240         return nullptr;
241     }
242   }
243   if (!LoopID || LoopID->getNumOperands() == 0 ||
244       LoopID->getOperand(0) != LoopID)
245     return nullptr;
246   return LoopID;
247 }
248 
249 void Loop::setLoopID(MDNode *LoopID) const {
250   assert(LoopID && "Loop ID should not be null");
251   assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
252   assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
253 
254   if (BasicBlock *Latch = getLoopLatch()) {
255     Latch->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
256     return;
257   }
258 
259   assert(!getLoopLatch() &&
260          "The loop should have no single latch at this point");
261   BasicBlock *H = getHeader();
262   for (BasicBlock *BB : this->blocks()) {
263     TerminatorInst *TI = BB->getTerminator();
264     for (BasicBlock *Successor : TI->successors()) {
265       if (Successor == H)
266         TI->setMetadata(LLVMContext::MD_loop, LoopID);
267     }
268   }
269 }
270 
271 bool Loop::isAnnotatedParallel() const {
272   MDNode *DesiredLoopIdMetadata = getLoopID();
273 
274   if (!DesiredLoopIdMetadata)
275     return false;
276 
277   // The loop branch contains the parallel loop metadata. In order to ensure
278   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
279   // dependencies (thus converted the loop back to a sequential loop), check
280   // that all the memory instructions in the loop contain parallelism metadata
281   // that point to the same unique "loop id metadata" the loop branch does.
282   for (BasicBlock *BB : this->blocks()) {
283     for (Instruction &I : *BB) {
284       if (!I.mayReadOrWriteMemory())
285         continue;
286 
287       // The memory instruction can refer to the loop identifier metadata
288       // directly or indirectly through another list metadata (in case of
289       // nested parallel loops). The loop identifier metadata refers to
290       // itself so we can check both cases with the same routine.
291       MDNode *LoopIdMD =
292           I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
293 
294       if (!LoopIdMD)
295         return false;
296 
297       bool LoopIdMDFound = false;
298       for (const MDOperand &MDOp : LoopIdMD->operands()) {
299         if (MDOp == DesiredLoopIdMetadata) {
300           LoopIdMDFound = true;
301           break;
302         }
303       }
304 
305       if (!LoopIdMDFound)
306         return false;
307     }
308   }
309   return true;
310 }
311 
312 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
313 
314 Loop::LocRange Loop::getLocRange() const {
315   // If we have a debug location in the loop ID, then use it.
316   if (MDNode *LoopID = getLoopID()) {
317     DebugLoc Start;
318     // We use the first DebugLoc in the header as the start location of the loop
319     // and if there is a second DebugLoc in the header we use it as end location
320     // of the loop.
321     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
322       if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
323         if (!Start)
324           Start = DebugLoc(L);
325         else
326           return LocRange(Start, DebugLoc(L));
327       }
328     }
329 
330     if (Start)
331       return LocRange(Start);
332   }
333 
334   // Try the pre-header first.
335   if (BasicBlock *PHeadBB = getLoopPreheader())
336     if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
337       return LocRange(DL);
338 
339   // If we have no pre-header or there are no instructions with debug
340   // info in it, try the header.
341   if (BasicBlock *HeadBB = getHeader())
342     return LocRange(HeadBB->getTerminator()->getDebugLoc());
343 
344   return LocRange();
345 }
346 
347 bool Loop::hasDedicatedExits() const {
348   // Each predecessor of each exit block of a normal loop is contained
349   // within the loop.
350   SmallVector<BasicBlock *, 4> ExitBlocks;
351   getExitBlocks(ExitBlocks);
352   for (BasicBlock *BB : ExitBlocks)
353     for (BasicBlock *Predecessor : predecessors(BB))
354       if (!contains(Predecessor))
355         return false;
356   // All the requirements are met.
357   return true;
358 }
359 
360 void Loop::getUniqueExitBlocks(
361     SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
362   assert(hasDedicatedExits() &&
363          "getUniqueExitBlocks assumes the loop has canonical form exits!");
364 
365   SmallVector<BasicBlock *, 32> SwitchExitBlocks;
366   for (BasicBlock *BB : this->blocks()) {
367     SwitchExitBlocks.clear();
368     for (BasicBlock *Successor : successors(BB)) {
369       // If block is inside the loop then it is not an exit block.
370       if (contains(Successor))
371         continue;
372 
373       pred_iterator PI = pred_begin(Successor);
374       BasicBlock *FirstPred = *PI;
375 
376       // If current basic block is this exit block's first predecessor
377       // then only insert exit block in to the output ExitBlocks vector.
378       // This ensures that same exit block is not inserted twice into
379       // ExitBlocks vector.
380       if (BB != FirstPred)
381         continue;
382 
383       // If a terminator has more then two successors, for example SwitchInst,
384       // then it is possible that there are multiple edges from current block
385       // to one exit block.
386       if (std::distance(succ_begin(BB), succ_end(BB)) <= 2) {
387         ExitBlocks.push_back(Successor);
388         continue;
389       }
390 
391       // In case of multiple edges from current block to exit block, collect
392       // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
393       // duplicate edges.
394       if (!is_contained(SwitchExitBlocks, Successor)) {
395         SwitchExitBlocks.push_back(Successor);
396         ExitBlocks.push_back(Successor);
397       }
398     }
399   }
400 }
401 
402 BasicBlock *Loop::getUniqueExitBlock() const {
403   SmallVector<BasicBlock *, 8> UniqueExitBlocks;
404   getUniqueExitBlocks(UniqueExitBlocks);
405   if (UniqueExitBlocks.size() == 1)
406     return UniqueExitBlocks[0];
407   return nullptr;
408 }
409 
410 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
411 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
412 
413 LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
414   print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
415 }
416 #endif
417 
418 //===----------------------------------------------------------------------===//
419 // UnloopUpdater implementation
420 //
421 
422 namespace {
423 /// Find the new parent loop for all blocks within the "unloop" whose last
424 /// backedges has just been removed.
425 class UnloopUpdater {
426   Loop &Unloop;
427   LoopInfo *LI;
428 
429   LoopBlocksDFS DFS;
430 
431   // Map unloop's immediate subloops to their nearest reachable parents. Nested
432   // loops within these subloops will not change parents. However, an immediate
433   // subloop's new parent will be the nearest loop reachable from either its own
434   // exits *or* any of its nested loop's exits.
435   DenseMap<Loop *, Loop *> SubloopParents;
436 
437   // Flag the presence of an irreducible backedge whose destination is a block
438   // directly contained by the original unloop.
439   bool FoundIB;
440 
441 public:
442   UnloopUpdater(Loop *UL, LoopInfo *LInfo)
443       : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
444 
445   void updateBlockParents();
446 
447   void removeBlocksFromAncestors();
448 
449   void updateSubloopParents();
450 
451 protected:
452   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
453 };
454 } // end anonymous namespace
455 
456 /// Update the parent loop for all blocks that are directly contained within the
457 /// original "unloop".
458 void UnloopUpdater::updateBlockParents() {
459   if (Unloop.getNumBlocks()) {
460     // Perform a post order CFG traversal of all blocks within this loop,
461     // propagating the nearest loop from successors to predecessors.
462     LoopBlocksTraversal Traversal(DFS, LI);
463     for (BasicBlock *POI : Traversal) {
464 
465       Loop *L = LI->getLoopFor(POI);
466       Loop *NL = getNearestLoop(POI, L);
467 
468       if (NL != L) {
469         // For reducible loops, NL is now an ancestor of Unloop.
470         assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
471                "uninitialized successor");
472         LI->changeLoopFor(POI, NL);
473       } else {
474         // Or the current block is part of a subloop, in which case its parent
475         // is unchanged.
476         assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
477       }
478     }
479   }
480   // Each irreducible loop within the unloop induces a round of iteration using
481   // the DFS result cached by Traversal.
482   bool Changed = FoundIB;
483   for (unsigned NIters = 0; Changed; ++NIters) {
484     assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
485 
486     // Iterate over the postorder list of blocks, propagating the nearest loop
487     // from successors to predecessors as before.
488     Changed = false;
489     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
490                                    POE = DFS.endPostorder();
491          POI != POE; ++POI) {
492 
493       Loop *L = LI->getLoopFor(*POI);
494       Loop *NL = getNearestLoop(*POI, L);
495       if (NL != L) {
496         assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
497                "uninitialized successor");
498         LI->changeLoopFor(*POI, NL);
499         Changed = true;
500       }
501     }
502   }
503 }
504 
505 /// Remove unloop's blocks from all ancestors below their new parents.
506 void UnloopUpdater::removeBlocksFromAncestors() {
507   // Remove all unloop's blocks (including those in nested subloops) from
508   // ancestors below the new parent loop.
509   for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end();
510        BI != BE; ++BI) {
511     Loop *OuterParent = LI->getLoopFor(*BI);
512     if (Unloop.contains(OuterParent)) {
513       while (OuterParent->getParentLoop() != &Unloop)
514         OuterParent = OuterParent->getParentLoop();
515       OuterParent = SubloopParents[OuterParent];
516     }
517     // Remove blocks from former Ancestors except Unloop itself which will be
518     // deleted.
519     for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
520          OldParent = OldParent->getParentLoop()) {
521       assert(OldParent && "new loop is not an ancestor of the original");
522       OldParent->removeBlockFromLoop(*BI);
523     }
524   }
525 }
526 
527 /// Update the parent loop for all subloops directly nested within unloop.
528 void UnloopUpdater::updateSubloopParents() {
529   while (!Unloop.empty()) {
530     Loop *Subloop = *std::prev(Unloop.end());
531     Unloop.removeChildLoop(std::prev(Unloop.end()));
532 
533     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
534     if (Loop *Parent = SubloopParents[Subloop])
535       Parent->addChildLoop(Subloop);
536     else
537       LI->addTopLevelLoop(Subloop);
538   }
539 }
540 
541 /// Return the nearest parent loop among this block's successors. If a successor
542 /// is a subloop header, consider its parent to be the nearest parent of the
543 /// subloop's exits.
544 ///
545 /// For subloop blocks, simply update SubloopParents and return NULL.
546 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
547 
548   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
549   // is considered uninitialized.
550   Loop *NearLoop = BBLoop;
551 
552   Loop *Subloop = nullptr;
553   if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
554     Subloop = NearLoop;
555     // Find the subloop ancestor that is directly contained within Unloop.
556     while (Subloop->getParentLoop() != &Unloop) {
557       Subloop = Subloop->getParentLoop();
558       assert(Subloop && "subloop is not an ancestor of the original loop");
559     }
560     // Get the current nearest parent of the Subloop exits, initially Unloop.
561     NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
562   }
563 
564   succ_iterator I = succ_begin(BB), E = succ_end(BB);
565   if (I == E) {
566     assert(!Subloop && "subloop blocks must have a successor");
567     NearLoop = nullptr; // unloop blocks may now exit the function.
568   }
569   for (; I != E; ++I) {
570     if (*I == BB)
571       continue; // self loops are uninteresting
572 
573     Loop *L = LI->getLoopFor(*I);
574     if (L == &Unloop) {
575       // This successor has not been processed. This path must lead to an
576       // irreducible backedge.
577       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
578       FoundIB = true;
579     }
580     if (L != &Unloop && Unloop.contains(L)) {
581       // Successor is in a subloop.
582       if (Subloop)
583         continue; // Branching within subloops. Ignore it.
584 
585       // BB branches from the original into a subloop header.
586       assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
587 
588       // Get the current nearest parent of the Subloop's exits.
589       L = SubloopParents[L];
590       // L could be Unloop if the only exit was an irreducible backedge.
591     }
592     if (L == &Unloop) {
593       continue;
594     }
595     // Handle critical edges from Unloop into a sibling loop.
596     if (L && !L->contains(&Unloop)) {
597       L = L->getParentLoop();
598     }
599     // Remember the nearest parent loop among successors or subloop exits.
600     if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
601       NearLoop = L;
602   }
603   if (Subloop) {
604     SubloopParents[Subloop] = NearLoop;
605     return BBLoop;
606   }
607   return NearLoop;
608 }
609 
610 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
611 
612 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
613                           FunctionAnalysisManager::Invalidator &) {
614   // Check whether the analysis, all analyses on functions, or the function's
615   // CFG have been preserved.
616   auto PAC = PA.getChecker<LoopAnalysis>();
617   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
618            PAC.preservedSet<CFGAnalyses>());
619 }
620 
621 void LoopInfo::erase(Loop *Unloop) {
622   assert(!Unloop->isInvalid() && "Loop has already been erased!");
623 
624   auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
625 
626   // First handle the special case of no parent loop to simplify the algorithm.
627   if (!Unloop->getParentLoop()) {
628     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
629     for (Loop::block_iterator I = Unloop->block_begin(),
630                               E = Unloop->block_end();
631          I != E; ++I) {
632 
633       // Don't reparent blocks in subloops.
634       if (getLoopFor(*I) != Unloop)
635         continue;
636 
637       // Blocks no longer have a parent but are still referenced by Unloop until
638       // the Unloop object is deleted.
639       changeLoopFor(*I, nullptr);
640     }
641 
642     // Remove the loop from the top-level LoopInfo object.
643     for (iterator I = begin();; ++I) {
644       assert(I != end() && "Couldn't find loop");
645       if (*I == Unloop) {
646         removeLoop(I);
647         break;
648       }
649     }
650 
651     // Move all of the subloops to the top-level.
652     while (!Unloop->empty())
653       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
654 
655     return;
656   }
657 
658   // Update the parent loop for all blocks within the loop. Blocks within
659   // subloops will not change parents.
660   UnloopUpdater Updater(Unloop, this);
661   Updater.updateBlockParents();
662 
663   // Remove blocks from former ancestor loops.
664   Updater.removeBlocksFromAncestors();
665 
666   // Add direct subloops as children in their new parent loop.
667   Updater.updateSubloopParents();
668 
669   // Remove unloop from its parent loop.
670   Loop *ParentLoop = Unloop->getParentLoop();
671   for (Loop::iterator I = ParentLoop->begin();; ++I) {
672     assert(I != ParentLoop->end() && "Couldn't find loop");
673     if (*I == Unloop) {
674       ParentLoop->removeChildLoop(I);
675       break;
676     }
677   }
678 }
679 
680 AnalysisKey LoopAnalysis::Key;
681 
682 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
683   // FIXME: Currently we create a LoopInfo from scratch for every function.
684   // This may prove to be too wasteful due to deallocating and re-allocating
685   // memory each time for the underlying map and vector datastructures. At some
686   // point it may prove worthwhile to use a freelist and recycle LoopInfo
687   // objects. I don't want to add that kind of complexity until the scope of
688   // the problem is better understood.
689   LoopInfo LI;
690   LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
691   return LI;
692 }
693 
694 PreservedAnalyses LoopPrinterPass::run(Function &F,
695                                        FunctionAnalysisManager &AM) {
696   AM.getResult<LoopAnalysis>(F).print(OS);
697   return PreservedAnalyses::all();
698 }
699 
700 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
701   OS << Banner;
702   for (auto *Block : L.blocks())
703     if (Block)
704       Block->print(OS);
705     else
706       OS << "Printing <null> block";
707 }
708 
709 //===----------------------------------------------------------------------===//
710 // LoopInfo implementation
711 //
712 
713 char LoopInfoWrapperPass::ID = 0;
714 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
715                       true, true)
716 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
717 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
718                     true, true)
719 
720 bool LoopInfoWrapperPass::runOnFunction(Function &) {
721   releaseMemory();
722   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
723   return false;
724 }
725 
726 void LoopInfoWrapperPass::verifyAnalysis() const {
727   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
728   // function each time verifyAnalysis is called is very expensive. The
729   // -verify-loop-info option can enable this. In order to perform some
730   // checking by default, LoopPass has been taught to call verifyLoop manually
731   // during loop pass sequences.
732   if (VerifyLoopInfo) {
733     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
734     LI.verify(DT);
735   }
736 }
737 
738 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
739   AU.setPreservesAll();
740   AU.addRequired<DominatorTreeWrapperPass>();
741 }
742 
743 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
744   LI.print(OS);
745 }
746 
747 PreservedAnalyses LoopVerifierPass::run(Function &F,
748                                         FunctionAnalysisManager &AM) {
749   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
750   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
751   LI.verify(DT);
752   return PreservedAnalyses::all();
753 }
754 
755 //===----------------------------------------------------------------------===//
756 // LoopBlocksDFS implementation
757 //
758 
759 /// Traverse the loop blocks and store the DFS result.
760 /// Useful for clients that just want the final DFS result and don't need to
761 /// visit blocks during the initial traversal.
762 void LoopBlocksDFS::perform(LoopInfo *LI) {
763   LoopBlocksTraversal Traversal(*this, LI);
764   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
765                                         POE = Traversal.end();
766        POI != POE; ++POI)
767     ;
768 }
769