1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the LoopInfo class that is used to identify natural loops 11 // and determine the loop depth of various nodes of the CFG. Note that the 12 // loops identified may actually be several natural loops that share the same 13 // header node... not just a single natural loop. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/Analysis/LoopInfoImpl.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/CFG.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugLoc.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/PassManager.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> 36 using namespace llvm; 37 38 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 39 template class llvm::LoopBase<BasicBlock, Loop>; 40 template class llvm::LoopInfoBase<BasicBlock, Loop>; 41 42 // Always verify loopinfo if expensive checking is enabled. 43 #ifdef EXPENSIVE_CHECKS 44 bool llvm::VerifyLoopInfo = true; 45 #else 46 bool llvm::VerifyLoopInfo = false; 47 #endif 48 static cl::opt<bool, true> 49 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 50 cl::desc("Verify loop info (time consuming)")); 51 52 //===----------------------------------------------------------------------===// 53 // Loop implementation 54 // 55 56 bool Loop::isLoopInvariant(const Value *V) const { 57 if (const Instruction *I = dyn_cast<Instruction>(V)) 58 return !contains(I); 59 return true; // All non-instructions are loop invariant 60 } 61 62 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 63 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 64 } 65 66 bool Loop::makeLoopInvariant(Value *V, bool &Changed, 67 Instruction *InsertPt) const { 68 if (Instruction *I = dyn_cast<Instruction>(V)) 69 return makeLoopInvariant(I, Changed, InsertPt); 70 return true; // All non-instructions are loop-invariant. 71 } 72 73 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 74 Instruction *InsertPt) const { 75 // Test if the value is already loop-invariant. 76 if (isLoopInvariant(I)) 77 return true; 78 if (!isSafeToSpeculativelyExecute(I)) 79 return false; 80 if (I->mayReadFromMemory()) 81 return false; 82 // EH block instructions are immobile. 83 if (I->isEHPad()) 84 return false; 85 // Determine the insertion point, unless one was given. 86 if (!InsertPt) { 87 BasicBlock *Preheader = getLoopPreheader(); 88 // Without a preheader, hoisting is not feasible. 89 if (!Preheader) 90 return false; 91 InsertPt = Preheader->getTerminator(); 92 } 93 // Don't hoist instructions with loop-variant operands. 94 for (Value *Operand : I->operands()) 95 if (!makeLoopInvariant(Operand, Changed, InsertPt)) 96 return false; 97 98 // Hoist. 99 I->moveBefore(InsertPt); 100 101 // There is possibility of hoisting this instruction above some arbitrary 102 // condition. Any metadata defined on it can be control dependent on this 103 // condition. Conservatively strip it here so that we don't give any wrong 104 // information to the optimizer. 105 I->dropUnknownNonDebugMetadata(); 106 107 Changed = true; 108 return true; 109 } 110 111 PHINode *Loop::getCanonicalInductionVariable() const { 112 BasicBlock *H = getHeader(); 113 114 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 115 pred_iterator PI = pred_begin(H); 116 assert(PI != pred_end(H) && "Loop must have at least one backedge!"); 117 Backedge = *PI++; 118 if (PI == pred_end(H)) 119 return nullptr; // dead loop 120 Incoming = *PI++; 121 if (PI != pred_end(H)) 122 return nullptr; // multiple backedges? 123 124 if (contains(Incoming)) { 125 if (contains(Backedge)) 126 return nullptr; 127 std::swap(Incoming, Backedge); 128 } else if (!contains(Backedge)) 129 return nullptr; 130 131 // Loop over all of the PHI nodes, looking for a canonical indvar. 132 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 133 PHINode *PN = cast<PHINode>(I); 134 if (ConstantInt *CI = 135 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 136 if (CI->isZero()) 137 if (Instruction *Inc = 138 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 139 if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) 140 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 141 if (CI->isOne()) 142 return PN; 143 } 144 return nullptr; 145 } 146 147 // Check that 'BB' doesn't have any uses outside of the 'L' 148 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, 149 DominatorTree &DT) { 150 for (const Instruction &I : BB) { 151 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 152 // optimizations, so for the purposes of considered LCSSA form, we 153 // can ignore them. 154 if (I.getType()->isTokenTy()) 155 continue; 156 157 for (const Use &U : I.uses()) { 158 const Instruction *UI = cast<Instruction>(U.getUser()); 159 const BasicBlock *UserBB = UI->getParent(); 160 if (const PHINode *P = dyn_cast<PHINode>(UI)) 161 UserBB = P->getIncomingBlock(U); 162 163 // Check the current block, as a fast-path, before checking whether 164 // the use is anywhere in the loop. Most values are used in the same 165 // block they are defined in. Also, blocks not reachable from the 166 // entry are special; uses in them don't need to go through PHIs. 167 if (UserBB != &BB && !L.contains(UserBB) && 168 DT.isReachableFromEntry(UserBB)) 169 return false; 170 } 171 } 172 return true; 173 } 174 175 bool Loop::isLCSSAForm(DominatorTree &DT) const { 176 // For each block we check that it doesn't have any uses outside of this loop. 177 return all_of(this->blocks(), [&](const BasicBlock *BB) { 178 return isBlockInLCSSAForm(*this, *BB, DT); 179 }); 180 } 181 182 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const { 183 // For each block we check that it doesn't have any uses outside of its 184 // innermost loop. This process will transitively guarantee that the current 185 // loop and all of the nested loops are in LCSSA form. 186 return all_of(this->blocks(), [&](const BasicBlock *BB) { 187 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT); 188 }); 189 } 190 191 bool Loop::isLoopSimplifyForm() const { 192 // Normal-form loops have a preheader, a single backedge, and all of their 193 // exits have all their predecessors inside the loop. 194 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 195 } 196 197 // Routines that reform the loop CFG and split edges often fail on indirectbr. 198 bool Loop::isSafeToClone() const { 199 // Return false if any loop blocks contain indirectbrs, or there are any calls 200 // to noduplicate functions. 201 for (BasicBlock *BB : this->blocks()) { 202 if (isa<IndirectBrInst>(BB->getTerminator())) 203 return false; 204 205 for (Instruction &I : *BB) 206 if (auto CS = CallSite(&I)) 207 if (CS.cannotDuplicate()) 208 return false; 209 } 210 return true; 211 } 212 213 MDNode *Loop::getLoopID() const { 214 MDNode *LoopID = nullptr; 215 if (BasicBlock *Latch = getLoopLatch()) { 216 LoopID = Latch->getTerminator()->getMetadata(LLVMContext::MD_loop); 217 } else { 218 assert(!getLoopLatch() && 219 "The loop should have no single latch at this point"); 220 // Go through each predecessor of the loop header and check the 221 // terminator for the metadata. 222 BasicBlock *H = getHeader(); 223 for (BasicBlock *BB : this->blocks()) { 224 TerminatorInst *TI = BB->getTerminator(); 225 MDNode *MD = nullptr; 226 227 // Check if this terminator branches to the loop header. 228 for (BasicBlock *Successor : TI->successors()) { 229 if (Successor == H) { 230 MD = TI->getMetadata(LLVMContext::MD_loop); 231 break; 232 } 233 } 234 if (!MD) 235 return nullptr; 236 237 if (!LoopID) 238 LoopID = MD; 239 else if (MD != LoopID) 240 return nullptr; 241 } 242 } 243 if (!LoopID || LoopID->getNumOperands() == 0 || 244 LoopID->getOperand(0) != LoopID) 245 return nullptr; 246 return LoopID; 247 } 248 249 void Loop::setLoopID(MDNode *LoopID) const { 250 assert(LoopID && "Loop ID should not be null"); 251 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand"); 252 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself"); 253 254 if (BasicBlock *Latch = getLoopLatch()) { 255 Latch->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); 256 return; 257 } 258 259 assert(!getLoopLatch() && 260 "The loop should have no single latch at this point"); 261 BasicBlock *H = getHeader(); 262 for (BasicBlock *BB : this->blocks()) { 263 TerminatorInst *TI = BB->getTerminator(); 264 for (BasicBlock *Successor : TI->successors()) { 265 if (Successor == H) 266 TI->setMetadata(LLVMContext::MD_loop, LoopID); 267 } 268 } 269 } 270 271 bool Loop::isAnnotatedParallel() const { 272 MDNode *DesiredLoopIdMetadata = getLoopID(); 273 274 if (!DesiredLoopIdMetadata) 275 return false; 276 277 // The loop branch contains the parallel loop metadata. In order to ensure 278 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 279 // dependencies (thus converted the loop back to a sequential loop), check 280 // that all the memory instructions in the loop contain parallelism metadata 281 // that point to the same unique "loop id metadata" the loop branch does. 282 for (BasicBlock *BB : this->blocks()) { 283 for (Instruction &I : *BB) { 284 if (!I.mayReadOrWriteMemory()) 285 continue; 286 287 // The memory instruction can refer to the loop identifier metadata 288 // directly or indirectly through another list metadata (in case of 289 // nested parallel loops). The loop identifier metadata refers to 290 // itself so we can check both cases with the same routine. 291 MDNode *LoopIdMD = 292 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 293 294 if (!LoopIdMD) 295 return false; 296 297 bool LoopIdMDFound = false; 298 for (const MDOperand &MDOp : LoopIdMD->operands()) { 299 if (MDOp == DesiredLoopIdMetadata) { 300 LoopIdMDFound = true; 301 break; 302 } 303 } 304 305 if (!LoopIdMDFound) 306 return false; 307 } 308 } 309 return true; 310 } 311 312 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } 313 314 Loop::LocRange Loop::getLocRange() const { 315 // If we have a debug location in the loop ID, then use it. 316 if (MDNode *LoopID = getLoopID()) { 317 DebugLoc Start; 318 // We use the first DebugLoc in the header as the start location of the loop 319 // and if there is a second DebugLoc in the header we use it as end location 320 // of the loop. 321 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 322 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) { 323 if (!Start) 324 Start = DebugLoc(L); 325 else 326 return LocRange(Start, DebugLoc(L)); 327 } 328 } 329 330 if (Start) 331 return LocRange(Start); 332 } 333 334 // Try the pre-header first. 335 if (BasicBlock *PHeadBB = getLoopPreheader()) 336 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) 337 return LocRange(DL); 338 339 // If we have no pre-header or there are no instructions with debug 340 // info in it, try the header. 341 if (BasicBlock *HeadBB = getHeader()) 342 return LocRange(HeadBB->getTerminator()->getDebugLoc()); 343 344 return LocRange(); 345 } 346 347 bool Loop::hasDedicatedExits() const { 348 // Each predecessor of each exit block of a normal loop is contained 349 // within the loop. 350 SmallVector<BasicBlock *, 4> ExitBlocks; 351 getExitBlocks(ExitBlocks); 352 for (BasicBlock *BB : ExitBlocks) 353 for (BasicBlock *Predecessor : predecessors(BB)) 354 if (!contains(Predecessor)) 355 return false; 356 // All the requirements are met. 357 return true; 358 } 359 360 void Loop::getUniqueExitBlocks( 361 SmallVectorImpl<BasicBlock *> &ExitBlocks) const { 362 assert(hasDedicatedExits() && 363 "getUniqueExitBlocks assumes the loop has canonical form exits!"); 364 365 SmallVector<BasicBlock *, 32> SwitchExitBlocks; 366 for (BasicBlock *BB : this->blocks()) { 367 SwitchExitBlocks.clear(); 368 for (BasicBlock *Successor : successors(BB)) { 369 // If block is inside the loop then it is not an exit block. 370 if (contains(Successor)) 371 continue; 372 373 pred_iterator PI = pred_begin(Successor); 374 BasicBlock *FirstPred = *PI; 375 376 // If current basic block is this exit block's first predecessor 377 // then only insert exit block in to the output ExitBlocks vector. 378 // This ensures that same exit block is not inserted twice into 379 // ExitBlocks vector. 380 if (BB != FirstPred) 381 continue; 382 383 // If a terminator has more then two successors, for example SwitchInst, 384 // then it is possible that there are multiple edges from current block 385 // to one exit block. 386 if (std::distance(succ_begin(BB), succ_end(BB)) <= 2) { 387 ExitBlocks.push_back(Successor); 388 continue; 389 } 390 391 // In case of multiple edges from current block to exit block, collect 392 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of 393 // duplicate edges. 394 if (!is_contained(SwitchExitBlocks, Successor)) { 395 SwitchExitBlocks.push_back(Successor); 396 ExitBlocks.push_back(Successor); 397 } 398 } 399 } 400 } 401 402 BasicBlock *Loop::getUniqueExitBlock() const { 403 SmallVector<BasicBlock *, 8> UniqueExitBlocks; 404 getUniqueExitBlocks(UniqueExitBlocks); 405 if (UniqueExitBlocks.size() == 1) 406 return UniqueExitBlocks[0]; 407 return nullptr; 408 } 409 410 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 411 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } 412 413 LLVM_DUMP_METHOD void Loop::dumpVerbose() const { 414 print(dbgs(), /*Depth=*/0, /*Verbose=*/true); 415 } 416 #endif 417 418 //===----------------------------------------------------------------------===// 419 // UnloopUpdater implementation 420 // 421 422 namespace { 423 /// Find the new parent loop for all blocks within the "unloop" whose last 424 /// backedges has just been removed. 425 class UnloopUpdater { 426 Loop &Unloop; 427 LoopInfo *LI; 428 429 LoopBlocksDFS DFS; 430 431 // Map unloop's immediate subloops to their nearest reachable parents. Nested 432 // loops within these subloops will not change parents. However, an immediate 433 // subloop's new parent will be the nearest loop reachable from either its own 434 // exits *or* any of its nested loop's exits. 435 DenseMap<Loop *, Loop *> SubloopParents; 436 437 // Flag the presence of an irreducible backedge whose destination is a block 438 // directly contained by the original unloop. 439 bool FoundIB; 440 441 public: 442 UnloopUpdater(Loop *UL, LoopInfo *LInfo) 443 : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} 444 445 void updateBlockParents(); 446 447 void removeBlocksFromAncestors(); 448 449 void updateSubloopParents(); 450 451 protected: 452 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 453 }; 454 } // end anonymous namespace 455 456 /// Update the parent loop for all blocks that are directly contained within the 457 /// original "unloop". 458 void UnloopUpdater::updateBlockParents() { 459 if (Unloop.getNumBlocks()) { 460 // Perform a post order CFG traversal of all blocks within this loop, 461 // propagating the nearest loop from successors to predecessors. 462 LoopBlocksTraversal Traversal(DFS, LI); 463 for (BasicBlock *POI : Traversal) { 464 465 Loop *L = LI->getLoopFor(POI); 466 Loop *NL = getNearestLoop(POI, L); 467 468 if (NL != L) { 469 // For reducible loops, NL is now an ancestor of Unloop. 470 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && 471 "uninitialized successor"); 472 LI->changeLoopFor(POI, NL); 473 } else { 474 // Or the current block is part of a subloop, in which case its parent 475 // is unchanged. 476 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); 477 } 478 } 479 } 480 // Each irreducible loop within the unloop induces a round of iteration using 481 // the DFS result cached by Traversal. 482 bool Changed = FoundIB; 483 for (unsigned NIters = 0; Changed; ++NIters) { 484 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); 485 486 // Iterate over the postorder list of blocks, propagating the nearest loop 487 // from successors to predecessors as before. 488 Changed = false; 489 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 490 POE = DFS.endPostorder(); 491 POI != POE; ++POI) { 492 493 Loop *L = LI->getLoopFor(*POI); 494 Loop *NL = getNearestLoop(*POI, L); 495 if (NL != L) { 496 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && 497 "uninitialized successor"); 498 LI->changeLoopFor(*POI, NL); 499 Changed = true; 500 } 501 } 502 } 503 } 504 505 /// Remove unloop's blocks from all ancestors below their new parents. 506 void UnloopUpdater::removeBlocksFromAncestors() { 507 // Remove all unloop's blocks (including those in nested subloops) from 508 // ancestors below the new parent loop. 509 for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end(); 510 BI != BE; ++BI) { 511 Loop *OuterParent = LI->getLoopFor(*BI); 512 if (Unloop.contains(OuterParent)) { 513 while (OuterParent->getParentLoop() != &Unloop) 514 OuterParent = OuterParent->getParentLoop(); 515 OuterParent = SubloopParents[OuterParent]; 516 } 517 // Remove blocks from former Ancestors except Unloop itself which will be 518 // deleted. 519 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; 520 OldParent = OldParent->getParentLoop()) { 521 assert(OldParent && "new loop is not an ancestor of the original"); 522 OldParent->removeBlockFromLoop(*BI); 523 } 524 } 525 } 526 527 /// Update the parent loop for all subloops directly nested within unloop. 528 void UnloopUpdater::updateSubloopParents() { 529 while (!Unloop.empty()) { 530 Loop *Subloop = *std::prev(Unloop.end()); 531 Unloop.removeChildLoop(std::prev(Unloop.end())); 532 533 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 534 if (Loop *Parent = SubloopParents[Subloop]) 535 Parent->addChildLoop(Subloop); 536 else 537 LI->addTopLevelLoop(Subloop); 538 } 539 } 540 541 /// Return the nearest parent loop among this block's successors. If a successor 542 /// is a subloop header, consider its parent to be the nearest parent of the 543 /// subloop's exits. 544 /// 545 /// For subloop blocks, simply update SubloopParents and return NULL. 546 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 547 548 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 549 // is considered uninitialized. 550 Loop *NearLoop = BBLoop; 551 552 Loop *Subloop = nullptr; 553 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { 554 Subloop = NearLoop; 555 // Find the subloop ancestor that is directly contained within Unloop. 556 while (Subloop->getParentLoop() != &Unloop) { 557 Subloop = Subloop->getParentLoop(); 558 assert(Subloop && "subloop is not an ancestor of the original loop"); 559 } 560 // Get the current nearest parent of the Subloop exits, initially Unloop. 561 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; 562 } 563 564 succ_iterator I = succ_begin(BB), E = succ_end(BB); 565 if (I == E) { 566 assert(!Subloop && "subloop blocks must have a successor"); 567 NearLoop = nullptr; // unloop blocks may now exit the function. 568 } 569 for (; I != E; ++I) { 570 if (*I == BB) 571 continue; // self loops are uninteresting 572 573 Loop *L = LI->getLoopFor(*I); 574 if (L == &Unloop) { 575 // This successor has not been processed. This path must lead to an 576 // irreducible backedge. 577 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 578 FoundIB = true; 579 } 580 if (L != &Unloop && Unloop.contains(L)) { 581 // Successor is in a subloop. 582 if (Subloop) 583 continue; // Branching within subloops. Ignore it. 584 585 // BB branches from the original into a subloop header. 586 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); 587 588 // Get the current nearest parent of the Subloop's exits. 589 L = SubloopParents[L]; 590 // L could be Unloop if the only exit was an irreducible backedge. 591 } 592 if (L == &Unloop) { 593 continue; 594 } 595 // Handle critical edges from Unloop into a sibling loop. 596 if (L && !L->contains(&Unloop)) { 597 L = L->getParentLoop(); 598 } 599 // Remember the nearest parent loop among successors or subloop exits. 600 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) 601 NearLoop = L; 602 } 603 if (Subloop) { 604 SubloopParents[Subloop] = NearLoop; 605 return BBLoop; 606 } 607 return NearLoop; 608 } 609 610 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); } 611 612 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, 613 FunctionAnalysisManager::Invalidator &) { 614 // Check whether the analysis, all analyses on functions, or the function's 615 // CFG have been preserved. 616 auto PAC = PA.getChecker<LoopAnalysis>(); 617 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 618 PAC.preservedSet<CFGAnalyses>()); 619 } 620 621 void LoopInfo::erase(Loop *Unloop) { 622 assert(!Unloop->isInvalid() && "Loop has already been erased!"); 623 624 auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); 625 626 // First handle the special case of no parent loop to simplify the algorithm. 627 if (!Unloop->getParentLoop()) { 628 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 629 for (Loop::block_iterator I = Unloop->block_begin(), 630 E = Unloop->block_end(); 631 I != E; ++I) { 632 633 // Don't reparent blocks in subloops. 634 if (getLoopFor(*I) != Unloop) 635 continue; 636 637 // Blocks no longer have a parent but are still referenced by Unloop until 638 // the Unloop object is deleted. 639 changeLoopFor(*I, nullptr); 640 } 641 642 // Remove the loop from the top-level LoopInfo object. 643 for (iterator I = begin();; ++I) { 644 assert(I != end() && "Couldn't find loop"); 645 if (*I == Unloop) { 646 removeLoop(I); 647 break; 648 } 649 } 650 651 // Move all of the subloops to the top-level. 652 while (!Unloop->empty()) 653 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 654 655 return; 656 } 657 658 // Update the parent loop for all blocks within the loop. Blocks within 659 // subloops will not change parents. 660 UnloopUpdater Updater(Unloop, this); 661 Updater.updateBlockParents(); 662 663 // Remove blocks from former ancestor loops. 664 Updater.removeBlocksFromAncestors(); 665 666 // Add direct subloops as children in their new parent loop. 667 Updater.updateSubloopParents(); 668 669 // Remove unloop from its parent loop. 670 Loop *ParentLoop = Unloop->getParentLoop(); 671 for (Loop::iterator I = ParentLoop->begin();; ++I) { 672 assert(I != ParentLoop->end() && "Couldn't find loop"); 673 if (*I == Unloop) { 674 ParentLoop->removeChildLoop(I); 675 break; 676 } 677 } 678 } 679 680 AnalysisKey LoopAnalysis::Key; 681 682 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 683 // FIXME: Currently we create a LoopInfo from scratch for every function. 684 // This may prove to be too wasteful due to deallocating and re-allocating 685 // memory each time for the underlying map and vector datastructures. At some 686 // point it may prove worthwhile to use a freelist and recycle LoopInfo 687 // objects. I don't want to add that kind of complexity until the scope of 688 // the problem is better understood. 689 LoopInfo LI; 690 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); 691 return LI; 692 } 693 694 PreservedAnalyses LoopPrinterPass::run(Function &F, 695 FunctionAnalysisManager &AM) { 696 AM.getResult<LoopAnalysis>(F).print(OS); 697 return PreservedAnalyses::all(); 698 } 699 700 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { 701 OS << Banner; 702 for (auto *Block : L.blocks()) 703 if (Block) 704 Block->print(OS); 705 else 706 OS << "Printing <null> block"; 707 } 708 709 //===----------------------------------------------------------------------===// 710 // LoopInfo implementation 711 // 712 713 char LoopInfoWrapperPass::ID = 0; 714 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 715 true, true) 716 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 717 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 718 true, true) 719 720 bool LoopInfoWrapperPass::runOnFunction(Function &) { 721 releaseMemory(); 722 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 723 return false; 724 } 725 726 void LoopInfoWrapperPass::verifyAnalysis() const { 727 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 728 // function each time verifyAnalysis is called is very expensive. The 729 // -verify-loop-info option can enable this. In order to perform some 730 // checking by default, LoopPass has been taught to call verifyLoop manually 731 // during loop pass sequences. 732 if (VerifyLoopInfo) { 733 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 734 LI.verify(DT); 735 } 736 } 737 738 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 739 AU.setPreservesAll(); 740 AU.addRequired<DominatorTreeWrapperPass>(); 741 } 742 743 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 744 LI.print(OS); 745 } 746 747 PreservedAnalyses LoopVerifierPass::run(Function &F, 748 FunctionAnalysisManager &AM) { 749 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 750 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 751 LI.verify(DT); 752 return PreservedAnalyses::all(); 753 } 754 755 //===----------------------------------------------------------------------===// 756 // LoopBlocksDFS implementation 757 // 758 759 /// Traverse the loop blocks and store the DFS result. 760 /// Useful for clients that just want the final DFS result and don't need to 761 /// visit blocks during the initial traversal. 762 void LoopBlocksDFS::perform(LoopInfo *LI) { 763 LoopBlocksTraversal Traversal(*this, LI); 764 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 765 POE = Traversal.end(); 766 POI != POE; ++POI) 767 ; 768 } 769