1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the LoopInfo class that is used to identify natural loops 11 // and determine the loop depth of various nodes of the CFG. Note that the 12 // loops identified may actually be several natural loops that share the same 13 // header node... not just a single natural loop. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/LoopInfoImpl.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/PassManager.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> 34 using namespace llvm; 35 36 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 37 template class llvm::LoopBase<BasicBlock, Loop>; 38 template class llvm::LoopInfoBase<BasicBlock, Loop>; 39 40 // Always verify loopinfo if expensive checking is enabled. 41 #ifdef XDEBUG 42 static bool VerifyLoopInfo = true; 43 #else 44 static bool VerifyLoopInfo = false; 45 #endif 46 static cl::opt<bool,true> 47 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 48 cl::desc("Verify loop info (time consuming)")); 49 50 // Loop identifier metadata name. 51 static const char *const LoopMDName = "llvm.loop"; 52 53 //===----------------------------------------------------------------------===// 54 // Loop implementation 55 // 56 57 /// isLoopInvariant - Return true if the specified value is loop invariant 58 /// 59 bool Loop::isLoopInvariant(const Value *V) const { 60 if (const Instruction *I = dyn_cast<Instruction>(V)) 61 return !contains(I); 62 return true; // All non-instructions are loop invariant 63 } 64 65 /// hasLoopInvariantOperands - Return true if all the operands of the 66 /// specified instruction are loop invariant. 67 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 68 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 69 } 70 71 /// makeLoopInvariant - If the given value is an instruciton inside of the 72 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 73 /// Return true if the value after any hoisting is loop invariant. This 74 /// function can be used as a slightly more aggressive replacement for 75 /// isLoopInvariant. 76 /// 77 /// If InsertPt is specified, it is the point to hoist instructions to. 78 /// If null, the terminator of the loop preheader is used. 79 /// 80 bool Loop::makeLoopInvariant(Value *V, bool &Changed, 81 Instruction *InsertPt) const { 82 if (Instruction *I = dyn_cast<Instruction>(V)) 83 return makeLoopInvariant(I, Changed, InsertPt); 84 return true; // All non-instructions are loop-invariant. 85 } 86 87 /// makeLoopInvariant - If the given instruction is inside of the 88 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 89 /// Return true if the instruction after any hoisting is loop invariant. This 90 /// function can be used as a slightly more aggressive replacement for 91 /// isLoopInvariant. 92 /// 93 /// If InsertPt is specified, it is the point to hoist instructions to. 94 /// If null, the terminator of the loop preheader is used. 95 /// 96 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 97 Instruction *InsertPt) const { 98 // Test if the value is already loop-invariant. 99 if (isLoopInvariant(I)) 100 return true; 101 if (!isSafeToSpeculativelyExecute(I)) 102 return false; 103 if (I->mayReadFromMemory()) 104 return false; 105 // EH block instructions are immobile. 106 if (I->isEHPad()) 107 return false; 108 // Determine the insertion point, unless one was given. 109 if (!InsertPt) { 110 BasicBlock *Preheader = getLoopPreheader(); 111 // Without a preheader, hoisting is not feasible. 112 if (!Preheader) 113 return false; 114 InsertPt = Preheader->getTerminator(); 115 } 116 // Don't hoist instructions with loop-variant operands. 117 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 118 if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt)) 119 return false; 120 121 // Hoist. 122 I->moveBefore(InsertPt); 123 124 // There is possibility of hoisting this instruction above some arbitrary 125 // condition. Any metadata defined on it can be control dependent on this 126 // condition. Conservatively strip it here so that we don't give any wrong 127 // information to the optimizer. 128 I->dropUnknownNonDebugMetadata(); 129 130 Changed = true; 131 return true; 132 } 133 134 /// getCanonicalInductionVariable - Check to see if the loop has a canonical 135 /// induction variable: an integer recurrence that starts at 0 and increments 136 /// by one each time through the loop. If so, return the phi node that 137 /// corresponds to it. 138 /// 139 /// The IndVarSimplify pass transforms loops to have a canonical induction 140 /// variable. 141 /// 142 PHINode *Loop::getCanonicalInductionVariable() const { 143 BasicBlock *H = getHeader(); 144 145 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 146 pred_iterator PI = pred_begin(H); 147 assert(PI != pred_end(H) && 148 "Loop must have at least one backedge!"); 149 Backedge = *PI++; 150 if (PI == pred_end(H)) return nullptr; // dead loop 151 Incoming = *PI++; 152 if (PI != pred_end(H)) return nullptr; // multiple backedges? 153 154 if (contains(Incoming)) { 155 if (contains(Backedge)) 156 return nullptr; 157 std::swap(Incoming, Backedge); 158 } else if (!contains(Backedge)) 159 return nullptr; 160 161 // Loop over all of the PHI nodes, looking for a canonical indvar. 162 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 163 PHINode *PN = cast<PHINode>(I); 164 if (ConstantInt *CI = 165 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 166 if (CI->isNullValue()) 167 if (Instruction *Inc = 168 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 169 if (Inc->getOpcode() == Instruction::Add && 170 Inc->getOperand(0) == PN) 171 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 172 if (CI->equalsInt(1)) 173 return PN; 174 } 175 return nullptr; 176 } 177 178 /// isLCSSAForm - Return true if the Loop is in LCSSA form 179 bool Loop::isLCSSAForm(DominatorTree &DT) const { 180 for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { 181 BasicBlock *BB = *BI; 182 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I) 183 for (Use &U : I->uses()) { 184 Instruction *UI = cast<Instruction>(U.getUser()); 185 BasicBlock *UserBB = UI->getParent(); 186 if (PHINode *P = dyn_cast<PHINode>(UI)) 187 UserBB = P->getIncomingBlock(U); 188 189 // Check the current block, as a fast-path, before checking whether 190 // the use is anywhere in the loop. Most values are used in the same 191 // block they are defined in. Also, blocks not reachable from the 192 // entry are special; uses in them don't need to go through PHIs. 193 if (UserBB != BB && 194 !contains(UserBB) && 195 DT.isReachableFromEntry(UserBB)) 196 return false; 197 } 198 } 199 200 return true; 201 } 202 203 /// isLoopSimplifyForm - Return true if the Loop is in the form that 204 /// the LoopSimplify form transforms loops to, which is sometimes called 205 /// normal form. 206 bool Loop::isLoopSimplifyForm() const { 207 // Normal-form loops have a preheader, a single backedge, and all of their 208 // exits have all their predecessors inside the loop. 209 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 210 } 211 212 /// isSafeToClone - Return true if the loop body is safe to clone in practice. 213 /// Routines that reform the loop CFG and split edges often fail on indirectbr. 214 bool Loop::isSafeToClone() const { 215 // Return false if any loop blocks contain indirectbrs, or there are any calls 216 // to noduplicate functions. 217 for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) { 218 if (isa<IndirectBrInst>((*I)->getTerminator())) 219 return false; 220 221 if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator())) 222 if (II->cannotDuplicate()) 223 return false; 224 225 for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) { 226 if (const CallInst *CI = dyn_cast<CallInst>(BI)) { 227 if (CI->cannotDuplicate()) 228 return false; 229 } 230 if (BI->getType()->isTokenTy() && BI->isUsedOutsideOfBlock(*I)) 231 return false; 232 } 233 } 234 return true; 235 } 236 237 MDNode *Loop::getLoopID() const { 238 MDNode *LoopID = nullptr; 239 if (isLoopSimplifyForm()) { 240 LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName); 241 } else { 242 // Go through each predecessor of the loop header and check the 243 // terminator for the metadata. 244 BasicBlock *H = getHeader(); 245 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) { 246 TerminatorInst *TI = (*I)->getTerminator(); 247 MDNode *MD = nullptr; 248 249 // Check if this terminator branches to the loop header. 250 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) { 251 if (TI->getSuccessor(i) == H) { 252 MD = TI->getMetadata(LoopMDName); 253 break; 254 } 255 } 256 if (!MD) 257 return nullptr; 258 259 if (!LoopID) 260 LoopID = MD; 261 else if (MD != LoopID) 262 return nullptr; 263 } 264 } 265 if (!LoopID || LoopID->getNumOperands() == 0 || 266 LoopID->getOperand(0) != LoopID) 267 return nullptr; 268 return LoopID; 269 } 270 271 void Loop::setLoopID(MDNode *LoopID) const { 272 assert(LoopID && "Loop ID should not be null"); 273 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand"); 274 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself"); 275 276 if (isLoopSimplifyForm()) { 277 getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID); 278 return; 279 } 280 281 BasicBlock *H = getHeader(); 282 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) { 283 TerminatorInst *TI = (*I)->getTerminator(); 284 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) { 285 if (TI->getSuccessor(i) == H) 286 TI->setMetadata(LoopMDName, LoopID); 287 } 288 } 289 } 290 291 bool Loop::isAnnotatedParallel() const { 292 MDNode *desiredLoopIdMetadata = getLoopID(); 293 294 if (!desiredLoopIdMetadata) 295 return false; 296 297 // The loop branch contains the parallel loop metadata. In order to ensure 298 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 299 // dependencies (thus converted the loop back to a sequential loop), check 300 // that all the memory instructions in the loop contain parallelism metadata 301 // that point to the same unique "loop id metadata" the loop branch does. 302 for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) { 303 for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end(); 304 II != EE; II++) { 305 306 if (!II->mayReadOrWriteMemory()) 307 continue; 308 309 // The memory instruction can refer to the loop identifier metadata 310 // directly or indirectly through another list metadata (in case of 311 // nested parallel loops). The loop identifier metadata refers to 312 // itself so we can check both cases with the same routine. 313 MDNode *loopIdMD = 314 II->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 315 316 if (!loopIdMD) 317 return false; 318 319 bool loopIdMDFound = false; 320 for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) { 321 if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) { 322 loopIdMDFound = true; 323 break; 324 } 325 } 326 327 if (!loopIdMDFound) 328 return false; 329 } 330 } 331 return true; 332 } 333 334 335 /// hasDedicatedExits - Return true if no exit block for the loop 336 /// has a predecessor that is outside the loop. 337 bool Loop::hasDedicatedExits() const { 338 // Each predecessor of each exit block of a normal loop is contained 339 // within the loop. 340 SmallVector<BasicBlock *, 4> ExitBlocks; 341 getExitBlocks(ExitBlocks); 342 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 343 for (pred_iterator PI = pred_begin(ExitBlocks[i]), 344 PE = pred_end(ExitBlocks[i]); PI != PE; ++PI) 345 if (!contains(*PI)) 346 return false; 347 // All the requirements are met. 348 return true; 349 } 350 351 /// getUniqueExitBlocks - Return all unique successor blocks of this loop. 352 /// These are the blocks _outside of the current loop_ which are branched to. 353 /// This assumes that loop exits are in canonical form. 354 /// 355 void 356 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const { 357 assert(hasDedicatedExits() && 358 "getUniqueExitBlocks assumes the loop has canonical form exits!"); 359 360 SmallVector<BasicBlock *, 32> switchExitBlocks; 361 362 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) { 363 364 BasicBlock *current = *BI; 365 switchExitBlocks.clear(); 366 367 for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) { 368 // If block is inside the loop then it is not a exit block. 369 if (contains(*I)) 370 continue; 371 372 pred_iterator PI = pred_begin(*I); 373 BasicBlock *firstPred = *PI; 374 375 // If current basic block is this exit block's first predecessor 376 // then only insert exit block in to the output ExitBlocks vector. 377 // This ensures that same exit block is not inserted twice into 378 // ExitBlocks vector. 379 if (current != firstPred) 380 continue; 381 382 // If a terminator has more then two successors, for example SwitchInst, 383 // then it is possible that there are multiple edges from current block 384 // to one exit block. 385 if (std::distance(succ_begin(current), succ_end(current)) <= 2) { 386 ExitBlocks.push_back(*I); 387 continue; 388 } 389 390 // In case of multiple edges from current block to exit block, collect 391 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of 392 // duplicate edges. 393 if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) 394 == switchExitBlocks.end()) { 395 switchExitBlocks.push_back(*I); 396 ExitBlocks.push_back(*I); 397 } 398 } 399 } 400 } 401 402 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one 403 /// block, return that block. Otherwise return null. 404 BasicBlock *Loop::getUniqueExitBlock() const { 405 SmallVector<BasicBlock *, 8> UniqueExitBlocks; 406 getUniqueExitBlocks(UniqueExitBlocks); 407 if (UniqueExitBlocks.size() == 1) 408 return UniqueExitBlocks[0]; 409 return nullptr; 410 } 411 412 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 413 void Loop::dump() const { 414 print(dbgs()); 415 } 416 #endif 417 418 //===----------------------------------------------------------------------===// 419 // UnloopUpdater implementation 420 // 421 422 namespace { 423 /// Find the new parent loop for all blocks within the "unloop" whose last 424 /// backedges has just been removed. 425 class UnloopUpdater { 426 Loop *Unloop; 427 LoopInfo *LI; 428 429 LoopBlocksDFS DFS; 430 431 // Map unloop's immediate subloops to their nearest reachable parents. Nested 432 // loops within these subloops will not change parents. However, an immediate 433 // subloop's new parent will be the nearest loop reachable from either its own 434 // exits *or* any of its nested loop's exits. 435 DenseMap<Loop*, Loop*> SubloopParents; 436 437 // Flag the presence of an irreducible backedge whose destination is a block 438 // directly contained by the original unloop. 439 bool FoundIB; 440 441 public: 442 UnloopUpdater(Loop *UL, LoopInfo *LInfo) : 443 Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {} 444 445 void updateBlockParents(); 446 447 void removeBlocksFromAncestors(); 448 449 void updateSubloopParents(); 450 451 protected: 452 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 453 }; 454 } // end anonymous namespace 455 456 /// updateBlockParents - Update the parent loop for all blocks that are directly 457 /// contained within the original "unloop". 458 void UnloopUpdater::updateBlockParents() { 459 if (Unloop->getNumBlocks()) { 460 // Perform a post order CFG traversal of all blocks within this loop, 461 // propagating the nearest loop from sucessors to predecessors. 462 LoopBlocksTraversal Traversal(DFS, LI); 463 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 464 POE = Traversal.end(); POI != POE; ++POI) { 465 466 Loop *L = LI->getLoopFor(*POI); 467 Loop *NL = getNearestLoop(*POI, L); 468 469 if (NL != L) { 470 // For reducible loops, NL is now an ancestor of Unloop. 471 assert((NL != Unloop && (!NL || NL->contains(Unloop))) && 472 "uninitialized successor"); 473 LI->changeLoopFor(*POI, NL); 474 } 475 else { 476 // Or the current block is part of a subloop, in which case its parent 477 // is unchanged. 478 assert((FoundIB || Unloop->contains(L)) && "uninitialized successor"); 479 } 480 } 481 } 482 // Each irreducible loop within the unloop induces a round of iteration using 483 // the DFS result cached by Traversal. 484 bool Changed = FoundIB; 485 for (unsigned NIters = 0; Changed; ++NIters) { 486 assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm"); 487 488 // Iterate over the postorder list of blocks, propagating the nearest loop 489 // from successors to predecessors as before. 490 Changed = false; 491 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 492 POE = DFS.endPostorder(); POI != POE; ++POI) { 493 494 Loop *L = LI->getLoopFor(*POI); 495 Loop *NL = getNearestLoop(*POI, L); 496 if (NL != L) { 497 assert(NL != Unloop && (!NL || NL->contains(Unloop)) && 498 "uninitialized successor"); 499 LI->changeLoopFor(*POI, NL); 500 Changed = true; 501 } 502 } 503 } 504 } 505 506 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below 507 /// their new parents. 508 void UnloopUpdater::removeBlocksFromAncestors() { 509 // Remove all unloop's blocks (including those in nested subloops) from 510 // ancestors below the new parent loop. 511 for (Loop::block_iterator BI = Unloop->block_begin(), 512 BE = Unloop->block_end(); BI != BE; ++BI) { 513 Loop *OuterParent = LI->getLoopFor(*BI); 514 if (Unloop->contains(OuterParent)) { 515 while (OuterParent->getParentLoop() != Unloop) 516 OuterParent = OuterParent->getParentLoop(); 517 OuterParent = SubloopParents[OuterParent]; 518 } 519 // Remove blocks from former Ancestors except Unloop itself which will be 520 // deleted. 521 for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent; 522 OldParent = OldParent->getParentLoop()) { 523 assert(OldParent && "new loop is not an ancestor of the original"); 524 OldParent->removeBlockFromLoop(*BI); 525 } 526 } 527 } 528 529 /// updateSubloopParents - Update the parent loop for all subloops directly 530 /// nested within unloop. 531 void UnloopUpdater::updateSubloopParents() { 532 while (!Unloop->empty()) { 533 Loop *Subloop = *std::prev(Unloop->end()); 534 Unloop->removeChildLoop(std::prev(Unloop->end())); 535 536 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 537 if (Loop *Parent = SubloopParents[Subloop]) 538 Parent->addChildLoop(Subloop); 539 else 540 LI->addTopLevelLoop(Subloop); 541 } 542 } 543 544 /// getNearestLoop - Return the nearest parent loop among this block's 545 /// successors. If a successor is a subloop header, consider its parent to be 546 /// the nearest parent of the subloop's exits. 547 /// 548 /// For subloop blocks, simply update SubloopParents and return NULL. 549 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 550 551 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 552 // is considered uninitialized. 553 Loop *NearLoop = BBLoop; 554 555 Loop *Subloop = nullptr; 556 if (NearLoop != Unloop && Unloop->contains(NearLoop)) { 557 Subloop = NearLoop; 558 // Find the subloop ancestor that is directly contained within Unloop. 559 while (Subloop->getParentLoop() != Unloop) { 560 Subloop = Subloop->getParentLoop(); 561 assert(Subloop && "subloop is not an ancestor of the original loop"); 562 } 563 // Get the current nearest parent of the Subloop exits, initially Unloop. 564 NearLoop = 565 SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second; 566 } 567 568 succ_iterator I = succ_begin(BB), E = succ_end(BB); 569 if (I == E) { 570 assert(!Subloop && "subloop blocks must have a successor"); 571 NearLoop = nullptr; // unloop blocks may now exit the function. 572 } 573 for (; I != E; ++I) { 574 if (*I == BB) 575 continue; // self loops are uninteresting 576 577 Loop *L = LI->getLoopFor(*I); 578 if (L == Unloop) { 579 // This successor has not been processed. This path must lead to an 580 // irreducible backedge. 581 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 582 FoundIB = true; 583 } 584 if (L != Unloop && Unloop->contains(L)) { 585 // Successor is in a subloop. 586 if (Subloop) 587 continue; // Branching within subloops. Ignore it. 588 589 // BB branches from the original into a subloop header. 590 assert(L->getParentLoop() == Unloop && "cannot skip into nested loops"); 591 592 // Get the current nearest parent of the Subloop's exits. 593 L = SubloopParents[L]; 594 // L could be Unloop if the only exit was an irreducible backedge. 595 } 596 if (L == Unloop) { 597 continue; 598 } 599 // Handle critical edges from Unloop into a sibling loop. 600 if (L && !L->contains(Unloop)) { 601 L = L->getParentLoop(); 602 } 603 // Remember the nearest parent loop among successors or subloop exits. 604 if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L)) 605 NearLoop = L; 606 } 607 if (Subloop) { 608 SubloopParents[Subloop] = NearLoop; 609 return BBLoop; 610 } 611 return NearLoop; 612 } 613 614 LoopInfo::LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree) { 615 analyze(DomTree); 616 } 617 618 /// updateUnloop - The last backedge has been removed from a loop--now the 619 /// "unloop". Find a new parent for the blocks contained within unloop and 620 /// update the loop tree. We don't necessarily have valid dominators at this 621 /// point, but LoopInfo is still valid except for the removal of this loop. 622 /// 623 /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without 624 /// checking first is illegal. 625 void LoopInfo::updateUnloop(Loop *Unloop) { 626 627 // First handle the special case of no parent loop to simplify the algorithm. 628 if (!Unloop->getParentLoop()) { 629 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 630 for (Loop::block_iterator I = Unloop->block_begin(), 631 E = Unloop->block_end(); 632 I != E; ++I) { 633 634 // Don't reparent blocks in subloops. 635 if (getLoopFor(*I) != Unloop) 636 continue; 637 638 // Blocks no longer have a parent but are still referenced by Unloop until 639 // the Unloop object is deleted. 640 changeLoopFor(*I, nullptr); 641 } 642 643 // Remove the loop from the top-level LoopInfo object. 644 for (iterator I = begin();; ++I) { 645 assert(I != end() && "Couldn't find loop"); 646 if (*I == Unloop) { 647 removeLoop(I); 648 break; 649 } 650 } 651 652 // Move all of the subloops to the top-level. 653 while (!Unloop->empty()) 654 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 655 656 return; 657 } 658 659 // Update the parent loop for all blocks within the loop. Blocks within 660 // subloops will not change parents. 661 UnloopUpdater Updater(Unloop, this); 662 Updater.updateBlockParents(); 663 664 // Remove blocks from former ancestor loops. 665 Updater.removeBlocksFromAncestors(); 666 667 // Add direct subloops as children in their new parent loop. 668 Updater.updateSubloopParents(); 669 670 // Remove unloop from its parent loop. 671 Loop *ParentLoop = Unloop->getParentLoop(); 672 for (Loop::iterator I = ParentLoop->begin();; ++I) { 673 assert(I != ParentLoop->end() && "Couldn't find loop"); 674 if (*I == Unloop) { 675 ParentLoop->removeChildLoop(I); 676 break; 677 } 678 } 679 } 680 681 char LoopAnalysis::PassID; 682 683 LoopInfo LoopAnalysis::run(Function &F, AnalysisManager<Function> *AM) { 684 // FIXME: Currently we create a LoopInfo from scratch for every function. 685 // This may prove to be too wasteful due to deallocating and re-allocating 686 // memory each time for the underlying map and vector datastructures. At some 687 // point it may prove worthwhile to use a freelist and recycle LoopInfo 688 // objects. I don't want to add that kind of complexity until the scope of 689 // the problem is better understood. 690 LoopInfo LI; 691 LI.analyze(AM->getResult<DominatorTreeAnalysis>(F)); 692 return LI; 693 } 694 695 PreservedAnalyses LoopPrinterPass::run(Function &F, 696 AnalysisManager<Function> *AM) { 697 AM->getResult<LoopAnalysis>(F).print(OS); 698 return PreservedAnalyses::all(); 699 } 700 701 PrintLoopPass::PrintLoopPass() : OS(dbgs()) {} 702 PrintLoopPass::PrintLoopPass(raw_ostream &OS, const std::string &Banner) 703 : OS(OS), Banner(Banner) {} 704 705 PreservedAnalyses PrintLoopPass::run(Loop &L) { 706 OS << Banner; 707 for (auto *Block : L.blocks()) 708 if (Block) 709 Block->print(OS); 710 else 711 OS << "Printing <null> block"; 712 return PreservedAnalyses::all(); 713 } 714 715 //===----------------------------------------------------------------------===// 716 // LoopInfo implementation 717 // 718 719 char LoopInfoWrapperPass::ID = 0; 720 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 721 true, true) 722 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 723 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 724 true, true) 725 726 bool LoopInfoWrapperPass::runOnFunction(Function &) { 727 releaseMemory(); 728 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 729 return false; 730 } 731 732 void LoopInfoWrapperPass::verifyAnalysis() const { 733 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 734 // function each time verifyAnalysis is called is very expensive. The 735 // -verify-loop-info option can enable this. In order to perform some 736 // checking by default, LoopPass has been taught to call verifyLoop manually 737 // during loop pass sequences. 738 if (VerifyLoopInfo) 739 LI.verify(); 740 } 741 742 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 743 AU.setPreservesAll(); 744 AU.addRequired<DominatorTreeWrapperPass>(); 745 } 746 747 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 748 LI.print(OS); 749 } 750 751 //===----------------------------------------------------------------------===// 752 // LoopBlocksDFS implementation 753 // 754 755 /// Traverse the loop blocks and store the DFS result. 756 /// Useful for clients that just want the final DFS result and don't need to 757 /// visit blocks during the initial traversal. 758 void LoopBlocksDFS::perform(LoopInfo *LI) { 759 LoopBlocksTraversal Traversal(*this, LI); 760 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 761 POE = Traversal.end(); POI != POE; ++POI) ; 762 } 763