1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the LoopInfo class that is used to identify natural loops 11 // and determine the loop depth of various nodes of the CFG. Note that the 12 // loops identified may actually be several natural loops that share the same 13 // header node... not just a single natural loop. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/LoopInfoImpl.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/PassManager.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> 34 using namespace llvm; 35 36 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 37 template class llvm::LoopBase<BasicBlock, Loop>; 38 template class llvm::LoopInfoBase<BasicBlock, Loop>; 39 40 // Always verify loopinfo if expensive checking is enabled. 41 #ifdef XDEBUG 42 static bool VerifyLoopInfo = true; 43 #else 44 static bool VerifyLoopInfo = false; 45 #endif 46 static cl::opt<bool,true> 47 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 48 cl::desc("Verify loop info (time consuming)")); 49 50 // Loop identifier metadata name. 51 static const char *const LoopMDName = "llvm.loop"; 52 53 //===----------------------------------------------------------------------===// 54 // Loop implementation 55 // 56 57 /// isLoopInvariant - Return true if the specified value is loop invariant 58 /// 59 bool Loop::isLoopInvariant(const Value *V) const { 60 if (const Instruction *I = dyn_cast<Instruction>(V)) 61 return !contains(I); 62 return true; // All non-instructions are loop invariant 63 } 64 65 /// hasLoopInvariantOperands - Return true if all the operands of the 66 /// specified instruction are loop invariant. 67 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 68 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 69 } 70 71 /// makeLoopInvariant - If the given value is an instruciton inside of the 72 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 73 /// Return true if the value after any hoisting is loop invariant. This 74 /// function can be used as a slightly more aggressive replacement for 75 /// isLoopInvariant. 76 /// 77 /// If InsertPt is specified, it is the point to hoist instructions to. 78 /// If null, the terminator of the loop preheader is used. 79 /// 80 bool Loop::makeLoopInvariant(Value *V, bool &Changed, 81 Instruction *InsertPt) const { 82 if (Instruction *I = dyn_cast<Instruction>(V)) 83 return makeLoopInvariant(I, Changed, InsertPt); 84 return true; // All non-instructions are loop-invariant. 85 } 86 87 /// makeLoopInvariant - If the given instruction is inside of the 88 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 89 /// Return true if the instruction after any hoisting is loop invariant. This 90 /// function can be used as a slightly more aggressive replacement for 91 /// isLoopInvariant. 92 /// 93 /// If InsertPt is specified, it is the point to hoist instructions to. 94 /// If null, the terminator of the loop preheader is used. 95 /// 96 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 97 Instruction *InsertPt) const { 98 // Test if the value is already loop-invariant. 99 if (isLoopInvariant(I)) 100 return true; 101 if (!isSafeToSpeculativelyExecute(I)) 102 return false; 103 if (I->mayReadFromMemory()) 104 return false; 105 // EH block instructions are immobile. 106 if (I->isEHPad()) 107 return false; 108 // Determine the insertion point, unless one was given. 109 if (!InsertPt) { 110 BasicBlock *Preheader = getLoopPreheader(); 111 // Without a preheader, hoisting is not feasible. 112 if (!Preheader) 113 return false; 114 InsertPt = Preheader->getTerminator(); 115 } 116 // Don't hoist instructions with loop-variant operands. 117 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 118 if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt)) 119 return false; 120 121 // Hoist. 122 I->moveBefore(InsertPt); 123 Changed = true; 124 return true; 125 } 126 127 /// getCanonicalInductionVariable - Check to see if the loop has a canonical 128 /// induction variable: an integer recurrence that starts at 0 and increments 129 /// by one each time through the loop. If so, return the phi node that 130 /// corresponds to it. 131 /// 132 /// The IndVarSimplify pass transforms loops to have a canonical induction 133 /// variable. 134 /// 135 PHINode *Loop::getCanonicalInductionVariable() const { 136 BasicBlock *H = getHeader(); 137 138 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 139 pred_iterator PI = pred_begin(H); 140 assert(PI != pred_end(H) && 141 "Loop must have at least one backedge!"); 142 Backedge = *PI++; 143 if (PI == pred_end(H)) return nullptr; // dead loop 144 Incoming = *PI++; 145 if (PI != pred_end(H)) return nullptr; // multiple backedges? 146 147 if (contains(Incoming)) { 148 if (contains(Backedge)) 149 return nullptr; 150 std::swap(Incoming, Backedge); 151 } else if (!contains(Backedge)) 152 return nullptr; 153 154 // Loop over all of the PHI nodes, looking for a canonical indvar. 155 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 156 PHINode *PN = cast<PHINode>(I); 157 if (ConstantInt *CI = 158 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 159 if (CI->isNullValue()) 160 if (Instruction *Inc = 161 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 162 if (Inc->getOpcode() == Instruction::Add && 163 Inc->getOperand(0) == PN) 164 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 165 if (CI->equalsInt(1)) 166 return PN; 167 } 168 return nullptr; 169 } 170 171 /// isLCSSAForm - Return true if the Loop is in LCSSA form 172 bool Loop::isLCSSAForm(DominatorTree &DT) const { 173 for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { 174 BasicBlock *BB = *BI; 175 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I) 176 for (Use &U : I->uses()) { 177 Instruction *UI = cast<Instruction>(U.getUser()); 178 BasicBlock *UserBB = UI->getParent(); 179 if (PHINode *P = dyn_cast<PHINode>(UI)) 180 UserBB = P->getIncomingBlock(U); 181 182 // Check the current block, as a fast-path, before checking whether 183 // the use is anywhere in the loop. Most values are used in the same 184 // block they are defined in. Also, blocks not reachable from the 185 // entry are special; uses in them don't need to go through PHIs. 186 if (UserBB != BB && 187 !contains(UserBB) && 188 DT.isReachableFromEntry(UserBB)) 189 return false; 190 } 191 } 192 193 return true; 194 } 195 196 /// isLoopSimplifyForm - Return true if the Loop is in the form that 197 /// the LoopSimplify form transforms loops to, which is sometimes called 198 /// normal form. 199 bool Loop::isLoopSimplifyForm() const { 200 // Normal-form loops have a preheader, a single backedge, and all of their 201 // exits have all their predecessors inside the loop. 202 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 203 } 204 205 /// isSafeToClone - Return true if the loop body is safe to clone in practice. 206 /// Routines that reform the loop CFG and split edges often fail on indirectbr. 207 bool Loop::isSafeToClone() const { 208 // Return false if any loop blocks contain indirectbrs, or there are any calls 209 // to noduplicate functions. 210 for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) { 211 if (isa<IndirectBrInst>((*I)->getTerminator())) 212 return false; 213 214 if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator())) 215 if (II->cannotDuplicate()) 216 return false; 217 218 for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) { 219 if (const CallInst *CI = dyn_cast<CallInst>(BI)) { 220 if (CI->cannotDuplicate()) 221 return false; 222 } 223 if (BI->getType()->isTokenTy() && BI->isUsedOutsideOfBlock(*I)) 224 return false; 225 } 226 } 227 return true; 228 } 229 230 MDNode *Loop::getLoopID() const { 231 MDNode *LoopID = nullptr; 232 if (isLoopSimplifyForm()) { 233 LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName); 234 } else { 235 // Go through each predecessor of the loop header and check the 236 // terminator for the metadata. 237 BasicBlock *H = getHeader(); 238 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) { 239 TerminatorInst *TI = (*I)->getTerminator(); 240 MDNode *MD = nullptr; 241 242 // Check if this terminator branches to the loop header. 243 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) { 244 if (TI->getSuccessor(i) == H) { 245 MD = TI->getMetadata(LoopMDName); 246 break; 247 } 248 } 249 if (!MD) 250 return nullptr; 251 252 if (!LoopID) 253 LoopID = MD; 254 else if (MD != LoopID) 255 return nullptr; 256 } 257 } 258 if (!LoopID || LoopID->getNumOperands() == 0 || 259 LoopID->getOperand(0) != LoopID) 260 return nullptr; 261 return LoopID; 262 } 263 264 void Loop::setLoopID(MDNode *LoopID) const { 265 assert(LoopID && "Loop ID should not be null"); 266 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand"); 267 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself"); 268 269 if (isLoopSimplifyForm()) { 270 getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID); 271 return; 272 } 273 274 BasicBlock *H = getHeader(); 275 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) { 276 TerminatorInst *TI = (*I)->getTerminator(); 277 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) { 278 if (TI->getSuccessor(i) == H) 279 TI->setMetadata(LoopMDName, LoopID); 280 } 281 } 282 } 283 284 bool Loop::isAnnotatedParallel() const { 285 MDNode *desiredLoopIdMetadata = getLoopID(); 286 287 if (!desiredLoopIdMetadata) 288 return false; 289 290 // The loop branch contains the parallel loop metadata. In order to ensure 291 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 292 // dependencies (thus converted the loop back to a sequential loop), check 293 // that all the memory instructions in the loop contain parallelism metadata 294 // that point to the same unique "loop id metadata" the loop branch does. 295 for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) { 296 for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end(); 297 II != EE; II++) { 298 299 if (!II->mayReadOrWriteMemory()) 300 continue; 301 302 // The memory instruction can refer to the loop identifier metadata 303 // directly or indirectly through another list metadata (in case of 304 // nested parallel loops). The loop identifier metadata refers to 305 // itself so we can check both cases with the same routine. 306 MDNode *loopIdMD = 307 II->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 308 309 if (!loopIdMD) 310 return false; 311 312 bool loopIdMDFound = false; 313 for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) { 314 if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) { 315 loopIdMDFound = true; 316 break; 317 } 318 } 319 320 if (!loopIdMDFound) 321 return false; 322 } 323 } 324 return true; 325 } 326 327 328 /// hasDedicatedExits - Return true if no exit block for the loop 329 /// has a predecessor that is outside the loop. 330 bool Loop::hasDedicatedExits() const { 331 // Each predecessor of each exit block of a normal loop is contained 332 // within the loop. 333 SmallVector<BasicBlock *, 4> ExitBlocks; 334 getExitBlocks(ExitBlocks); 335 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 336 for (pred_iterator PI = pred_begin(ExitBlocks[i]), 337 PE = pred_end(ExitBlocks[i]); PI != PE; ++PI) 338 if (!contains(*PI)) 339 return false; 340 // All the requirements are met. 341 return true; 342 } 343 344 /// getUniqueExitBlocks - Return all unique successor blocks of this loop. 345 /// These are the blocks _outside of the current loop_ which are branched to. 346 /// This assumes that loop exits are in canonical form. 347 /// 348 void 349 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const { 350 assert(hasDedicatedExits() && 351 "getUniqueExitBlocks assumes the loop has canonical form exits!"); 352 353 SmallVector<BasicBlock *, 32> switchExitBlocks; 354 355 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) { 356 357 BasicBlock *current = *BI; 358 switchExitBlocks.clear(); 359 360 for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) { 361 // If block is inside the loop then it is not a exit block. 362 if (contains(*I)) 363 continue; 364 365 pred_iterator PI = pred_begin(*I); 366 BasicBlock *firstPred = *PI; 367 368 // If current basic block is this exit block's first predecessor 369 // then only insert exit block in to the output ExitBlocks vector. 370 // This ensures that same exit block is not inserted twice into 371 // ExitBlocks vector. 372 if (current != firstPred) 373 continue; 374 375 // If a terminator has more then two successors, for example SwitchInst, 376 // then it is possible that there are multiple edges from current block 377 // to one exit block. 378 if (std::distance(succ_begin(current), succ_end(current)) <= 2) { 379 ExitBlocks.push_back(*I); 380 continue; 381 } 382 383 // In case of multiple edges from current block to exit block, collect 384 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of 385 // duplicate edges. 386 if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) 387 == switchExitBlocks.end()) { 388 switchExitBlocks.push_back(*I); 389 ExitBlocks.push_back(*I); 390 } 391 } 392 } 393 } 394 395 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one 396 /// block, return that block. Otherwise return null. 397 BasicBlock *Loop::getUniqueExitBlock() const { 398 SmallVector<BasicBlock *, 8> UniqueExitBlocks; 399 getUniqueExitBlocks(UniqueExitBlocks); 400 if (UniqueExitBlocks.size() == 1) 401 return UniqueExitBlocks[0]; 402 return nullptr; 403 } 404 405 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 406 void Loop::dump() const { 407 print(dbgs()); 408 } 409 #endif 410 411 //===----------------------------------------------------------------------===// 412 // UnloopUpdater implementation 413 // 414 415 namespace { 416 /// Find the new parent loop for all blocks within the "unloop" whose last 417 /// backedges has just been removed. 418 class UnloopUpdater { 419 Loop *Unloop; 420 LoopInfo *LI; 421 422 LoopBlocksDFS DFS; 423 424 // Map unloop's immediate subloops to their nearest reachable parents. Nested 425 // loops within these subloops will not change parents. However, an immediate 426 // subloop's new parent will be the nearest loop reachable from either its own 427 // exits *or* any of its nested loop's exits. 428 DenseMap<Loop*, Loop*> SubloopParents; 429 430 // Flag the presence of an irreducible backedge whose destination is a block 431 // directly contained by the original unloop. 432 bool FoundIB; 433 434 public: 435 UnloopUpdater(Loop *UL, LoopInfo *LInfo) : 436 Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {} 437 438 void updateBlockParents(); 439 440 void removeBlocksFromAncestors(); 441 442 void updateSubloopParents(); 443 444 protected: 445 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 446 }; 447 } // end anonymous namespace 448 449 /// updateBlockParents - Update the parent loop for all blocks that are directly 450 /// contained within the original "unloop". 451 void UnloopUpdater::updateBlockParents() { 452 if (Unloop->getNumBlocks()) { 453 // Perform a post order CFG traversal of all blocks within this loop, 454 // propagating the nearest loop from sucessors to predecessors. 455 LoopBlocksTraversal Traversal(DFS, LI); 456 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 457 POE = Traversal.end(); POI != POE; ++POI) { 458 459 Loop *L = LI->getLoopFor(*POI); 460 Loop *NL = getNearestLoop(*POI, L); 461 462 if (NL != L) { 463 // For reducible loops, NL is now an ancestor of Unloop. 464 assert((NL != Unloop && (!NL || NL->contains(Unloop))) && 465 "uninitialized successor"); 466 LI->changeLoopFor(*POI, NL); 467 } 468 else { 469 // Or the current block is part of a subloop, in which case its parent 470 // is unchanged. 471 assert((FoundIB || Unloop->contains(L)) && "uninitialized successor"); 472 } 473 } 474 } 475 // Each irreducible loop within the unloop induces a round of iteration using 476 // the DFS result cached by Traversal. 477 bool Changed = FoundIB; 478 for (unsigned NIters = 0; Changed; ++NIters) { 479 assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm"); 480 481 // Iterate over the postorder list of blocks, propagating the nearest loop 482 // from successors to predecessors as before. 483 Changed = false; 484 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 485 POE = DFS.endPostorder(); POI != POE; ++POI) { 486 487 Loop *L = LI->getLoopFor(*POI); 488 Loop *NL = getNearestLoop(*POI, L); 489 if (NL != L) { 490 assert(NL != Unloop && (!NL || NL->contains(Unloop)) && 491 "uninitialized successor"); 492 LI->changeLoopFor(*POI, NL); 493 Changed = true; 494 } 495 } 496 } 497 } 498 499 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below 500 /// their new parents. 501 void UnloopUpdater::removeBlocksFromAncestors() { 502 // Remove all unloop's blocks (including those in nested subloops) from 503 // ancestors below the new parent loop. 504 for (Loop::block_iterator BI = Unloop->block_begin(), 505 BE = Unloop->block_end(); BI != BE; ++BI) { 506 Loop *OuterParent = LI->getLoopFor(*BI); 507 if (Unloop->contains(OuterParent)) { 508 while (OuterParent->getParentLoop() != Unloop) 509 OuterParent = OuterParent->getParentLoop(); 510 OuterParent = SubloopParents[OuterParent]; 511 } 512 // Remove blocks from former Ancestors except Unloop itself which will be 513 // deleted. 514 for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent; 515 OldParent = OldParent->getParentLoop()) { 516 assert(OldParent && "new loop is not an ancestor of the original"); 517 OldParent->removeBlockFromLoop(*BI); 518 } 519 } 520 } 521 522 /// updateSubloopParents - Update the parent loop for all subloops directly 523 /// nested within unloop. 524 void UnloopUpdater::updateSubloopParents() { 525 while (!Unloop->empty()) { 526 Loop *Subloop = *std::prev(Unloop->end()); 527 Unloop->removeChildLoop(std::prev(Unloop->end())); 528 529 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 530 if (Loop *Parent = SubloopParents[Subloop]) 531 Parent->addChildLoop(Subloop); 532 else 533 LI->addTopLevelLoop(Subloop); 534 } 535 } 536 537 /// getNearestLoop - Return the nearest parent loop among this block's 538 /// successors. If a successor is a subloop header, consider its parent to be 539 /// the nearest parent of the subloop's exits. 540 /// 541 /// For subloop blocks, simply update SubloopParents and return NULL. 542 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 543 544 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 545 // is considered uninitialized. 546 Loop *NearLoop = BBLoop; 547 548 Loop *Subloop = nullptr; 549 if (NearLoop != Unloop && Unloop->contains(NearLoop)) { 550 Subloop = NearLoop; 551 // Find the subloop ancestor that is directly contained within Unloop. 552 while (Subloop->getParentLoop() != Unloop) { 553 Subloop = Subloop->getParentLoop(); 554 assert(Subloop && "subloop is not an ancestor of the original loop"); 555 } 556 // Get the current nearest parent of the Subloop exits, initially Unloop. 557 NearLoop = 558 SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second; 559 } 560 561 succ_iterator I = succ_begin(BB), E = succ_end(BB); 562 if (I == E) { 563 assert(!Subloop && "subloop blocks must have a successor"); 564 NearLoop = nullptr; // unloop blocks may now exit the function. 565 } 566 for (; I != E; ++I) { 567 if (*I == BB) 568 continue; // self loops are uninteresting 569 570 Loop *L = LI->getLoopFor(*I); 571 if (L == Unloop) { 572 // This successor has not been processed. This path must lead to an 573 // irreducible backedge. 574 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 575 FoundIB = true; 576 } 577 if (L != Unloop && Unloop->contains(L)) { 578 // Successor is in a subloop. 579 if (Subloop) 580 continue; // Branching within subloops. Ignore it. 581 582 // BB branches from the original into a subloop header. 583 assert(L->getParentLoop() == Unloop && "cannot skip into nested loops"); 584 585 // Get the current nearest parent of the Subloop's exits. 586 L = SubloopParents[L]; 587 // L could be Unloop if the only exit was an irreducible backedge. 588 } 589 if (L == Unloop) { 590 continue; 591 } 592 // Handle critical edges from Unloop into a sibling loop. 593 if (L && !L->contains(Unloop)) { 594 L = L->getParentLoop(); 595 } 596 // Remember the nearest parent loop among successors or subloop exits. 597 if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L)) 598 NearLoop = L; 599 } 600 if (Subloop) { 601 SubloopParents[Subloop] = NearLoop; 602 return BBLoop; 603 } 604 return NearLoop; 605 } 606 607 LoopInfo::LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree) { 608 analyze(DomTree); 609 } 610 611 /// updateUnloop - The last backedge has been removed from a loop--now the 612 /// "unloop". Find a new parent for the blocks contained within unloop and 613 /// update the loop tree. We don't necessarily have valid dominators at this 614 /// point, but LoopInfo is still valid except for the removal of this loop. 615 /// 616 /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without 617 /// checking first is illegal. 618 void LoopInfo::updateUnloop(Loop *Unloop) { 619 620 // First handle the special case of no parent loop to simplify the algorithm. 621 if (!Unloop->getParentLoop()) { 622 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 623 for (Loop::block_iterator I = Unloop->block_begin(), 624 E = Unloop->block_end(); 625 I != E; ++I) { 626 627 // Don't reparent blocks in subloops. 628 if (getLoopFor(*I) != Unloop) 629 continue; 630 631 // Blocks no longer have a parent but are still referenced by Unloop until 632 // the Unloop object is deleted. 633 changeLoopFor(*I, nullptr); 634 } 635 636 // Remove the loop from the top-level LoopInfo object. 637 for (iterator I = begin();; ++I) { 638 assert(I != end() && "Couldn't find loop"); 639 if (*I == Unloop) { 640 removeLoop(I); 641 break; 642 } 643 } 644 645 // Move all of the subloops to the top-level. 646 while (!Unloop->empty()) 647 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 648 649 return; 650 } 651 652 // Update the parent loop for all blocks within the loop. Blocks within 653 // subloops will not change parents. 654 UnloopUpdater Updater(Unloop, this); 655 Updater.updateBlockParents(); 656 657 // Remove blocks from former ancestor loops. 658 Updater.removeBlocksFromAncestors(); 659 660 // Add direct subloops as children in their new parent loop. 661 Updater.updateSubloopParents(); 662 663 // Remove unloop from its parent loop. 664 Loop *ParentLoop = Unloop->getParentLoop(); 665 for (Loop::iterator I = ParentLoop->begin();; ++I) { 666 assert(I != ParentLoop->end() && "Couldn't find loop"); 667 if (*I == Unloop) { 668 ParentLoop->removeChildLoop(I); 669 break; 670 } 671 } 672 } 673 674 char LoopAnalysis::PassID; 675 676 LoopInfo LoopAnalysis::run(Function &F, AnalysisManager<Function> *AM) { 677 // FIXME: Currently we create a LoopInfo from scratch for every function. 678 // This may prove to be too wasteful due to deallocating and re-allocating 679 // memory each time for the underlying map and vector datastructures. At some 680 // point it may prove worthwhile to use a freelist and recycle LoopInfo 681 // objects. I don't want to add that kind of complexity until the scope of 682 // the problem is better understood. 683 LoopInfo LI; 684 LI.analyze(AM->getResult<DominatorTreeAnalysis>(F)); 685 return LI; 686 } 687 688 PreservedAnalyses LoopPrinterPass::run(Function &F, 689 AnalysisManager<Function> *AM) { 690 AM->getResult<LoopAnalysis>(F).print(OS); 691 return PreservedAnalyses::all(); 692 } 693 694 //===----------------------------------------------------------------------===// 695 // LoopInfo implementation 696 // 697 698 char LoopInfoWrapperPass::ID = 0; 699 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 700 true, true) 701 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 702 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 703 true, true) 704 705 bool LoopInfoWrapperPass::runOnFunction(Function &) { 706 releaseMemory(); 707 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 708 return false; 709 } 710 711 void LoopInfoWrapperPass::verifyAnalysis() const { 712 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 713 // function each time verifyAnalysis is called is very expensive. The 714 // -verify-loop-info option can enable this. In order to perform some 715 // checking by default, LoopPass has been taught to call verifyLoop manually 716 // during loop pass sequences. 717 if (VerifyLoopInfo) 718 LI.verify(); 719 } 720 721 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 722 AU.setPreservesAll(); 723 AU.addRequired<DominatorTreeWrapperPass>(); 724 } 725 726 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 727 LI.print(OS); 728 } 729 730 //===----------------------------------------------------------------------===// 731 // LoopBlocksDFS implementation 732 // 733 734 /// Traverse the loop blocks and store the DFS result. 735 /// Useful for clients that just want the final DFS result and don't need to 736 /// visit blocks during the initial traversal. 737 void LoopBlocksDFS::perform(LoopInfo *LI) { 738 LoopBlocksTraversal Traversal(*this, LI); 739 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 740 POE = Traversal.end(); POI != POE; ++POI) ; 741 } 742