1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the LoopInfo class that is used to identify natural loops 10 // and determine the loop depth of various nodes of the CFG. Note that the 11 // loops identified may actually be several natural loops that share the same 12 // header node... not just a single natural loop. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/LoopInfoImpl.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/Config/llvm-config.h" 24 #include "llvm/IR/CFG.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugLoc.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/IRPrintingPasses.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/PassManager.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 40 template class llvm::LoopBase<BasicBlock, Loop>; 41 template class llvm::LoopInfoBase<BasicBlock, Loop>; 42 43 // Always verify loopinfo if expensive checking is enabled. 44 #ifdef EXPENSIVE_CHECKS 45 bool llvm::VerifyLoopInfo = true; 46 #else 47 bool llvm::VerifyLoopInfo = false; 48 #endif 49 static cl::opt<bool, true> 50 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 51 cl::Hidden, cl::desc("Verify loop info (time consuming)")); 52 53 //===----------------------------------------------------------------------===// 54 // Loop implementation 55 // 56 57 bool Loop::isLoopInvariant(const Value *V) const { 58 if (const Instruction *I = dyn_cast<Instruction>(V)) 59 return !contains(I); 60 return true; // All non-instructions are loop invariant 61 } 62 63 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 64 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 65 } 66 67 bool Loop::makeLoopInvariant(Value *V, bool &Changed, 68 Instruction *InsertPt) const { 69 if (Instruction *I = dyn_cast<Instruction>(V)) 70 return makeLoopInvariant(I, Changed, InsertPt); 71 return true; // All non-instructions are loop-invariant. 72 } 73 74 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 75 Instruction *InsertPt) const { 76 // Test if the value is already loop-invariant. 77 if (isLoopInvariant(I)) 78 return true; 79 if (!isSafeToSpeculativelyExecute(I)) 80 return false; 81 if (I->mayReadFromMemory()) 82 return false; 83 // EH block instructions are immobile. 84 if (I->isEHPad()) 85 return false; 86 // Determine the insertion point, unless one was given. 87 if (!InsertPt) { 88 BasicBlock *Preheader = getLoopPreheader(); 89 // Without a preheader, hoisting is not feasible. 90 if (!Preheader) 91 return false; 92 InsertPt = Preheader->getTerminator(); 93 } 94 // Don't hoist instructions with loop-variant operands. 95 for (Value *Operand : I->operands()) 96 if (!makeLoopInvariant(Operand, Changed, InsertPt)) 97 return false; 98 99 // Hoist. 100 I->moveBefore(InsertPt); 101 102 // There is possibility of hoisting this instruction above some arbitrary 103 // condition. Any metadata defined on it can be control dependent on this 104 // condition. Conservatively strip it here so that we don't give any wrong 105 // information to the optimizer. 106 I->dropUnknownNonDebugMetadata(); 107 108 Changed = true; 109 return true; 110 } 111 112 PHINode *Loop::getCanonicalInductionVariable() const { 113 BasicBlock *H = getHeader(); 114 115 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 116 pred_iterator PI = pred_begin(H); 117 assert(PI != pred_end(H) && "Loop must have at least one backedge!"); 118 Backedge = *PI++; 119 if (PI == pred_end(H)) 120 return nullptr; // dead loop 121 Incoming = *PI++; 122 if (PI != pred_end(H)) 123 return nullptr; // multiple backedges? 124 125 if (contains(Incoming)) { 126 if (contains(Backedge)) 127 return nullptr; 128 std::swap(Incoming, Backedge); 129 } else if (!contains(Backedge)) 130 return nullptr; 131 132 // Loop over all of the PHI nodes, looking for a canonical indvar. 133 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 134 PHINode *PN = cast<PHINode>(I); 135 if (ConstantInt *CI = 136 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 137 if (CI->isZero()) 138 if (Instruction *Inc = 139 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 140 if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) 141 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 142 if (CI->isOne()) 143 return PN; 144 } 145 return nullptr; 146 } 147 148 // Check that 'BB' doesn't have any uses outside of the 'L' 149 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, 150 DominatorTree &DT) { 151 for (const Instruction &I : BB) { 152 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 153 // optimizations, so for the purposes of considered LCSSA form, we 154 // can ignore them. 155 if (I.getType()->isTokenTy()) 156 continue; 157 158 for (const Use &U : I.uses()) { 159 const Instruction *UI = cast<Instruction>(U.getUser()); 160 const BasicBlock *UserBB = UI->getParent(); 161 if (const PHINode *P = dyn_cast<PHINode>(UI)) 162 UserBB = P->getIncomingBlock(U); 163 164 // Check the current block, as a fast-path, before checking whether 165 // the use is anywhere in the loop. Most values are used in the same 166 // block they are defined in. Also, blocks not reachable from the 167 // entry are special; uses in them don't need to go through PHIs. 168 if (UserBB != &BB && !L.contains(UserBB) && 169 DT.isReachableFromEntry(UserBB)) 170 return false; 171 } 172 } 173 return true; 174 } 175 176 bool Loop::isLCSSAForm(DominatorTree &DT) const { 177 // For each block we check that it doesn't have any uses outside of this loop. 178 return all_of(this->blocks(), [&](const BasicBlock *BB) { 179 return isBlockInLCSSAForm(*this, *BB, DT); 180 }); 181 } 182 183 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const { 184 // For each block we check that it doesn't have any uses outside of its 185 // innermost loop. This process will transitively guarantee that the current 186 // loop and all of the nested loops are in LCSSA form. 187 return all_of(this->blocks(), [&](const BasicBlock *BB) { 188 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT); 189 }); 190 } 191 192 bool Loop::isLoopSimplifyForm() const { 193 // Normal-form loops have a preheader, a single backedge, and all of their 194 // exits have all their predecessors inside the loop. 195 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 196 } 197 198 // Routines that reform the loop CFG and split edges often fail on indirectbr. 199 bool Loop::isSafeToClone() const { 200 // Return false if any loop blocks contain indirectbrs, or there are any calls 201 // to noduplicate functions. 202 for (BasicBlock *BB : this->blocks()) { 203 if (isa<IndirectBrInst>(BB->getTerminator())) 204 return false; 205 206 for (Instruction &I : *BB) 207 if (auto CS = CallSite(&I)) 208 if (CS.cannotDuplicate()) 209 return false; 210 } 211 return true; 212 } 213 214 MDNode *Loop::getLoopID() const { 215 MDNode *LoopID = nullptr; 216 217 // Go through the latch blocks and check the terminator for the metadata. 218 SmallVector<BasicBlock *, 4> LatchesBlocks; 219 getLoopLatches(LatchesBlocks); 220 for (BasicBlock *BB : LatchesBlocks) { 221 Instruction *TI = BB->getTerminator(); 222 MDNode *MD = TI->getMetadata(LLVMContext::MD_loop); 223 224 if (!MD) 225 return nullptr; 226 227 if (!LoopID) 228 LoopID = MD; 229 else if (MD != LoopID) 230 return nullptr; 231 } 232 if (!LoopID || LoopID->getNumOperands() == 0 || 233 LoopID->getOperand(0) != LoopID) 234 return nullptr; 235 return LoopID; 236 } 237 238 void Loop::setLoopID(MDNode *LoopID) const { 239 assert((!LoopID || LoopID->getNumOperands() > 0) && 240 "Loop ID needs at least one operand"); 241 assert((!LoopID || LoopID->getOperand(0) == LoopID) && 242 "Loop ID should refer to itself"); 243 244 BasicBlock *H = getHeader(); 245 for (BasicBlock *BB : this->blocks()) { 246 Instruction *TI = BB->getTerminator(); 247 for (BasicBlock *Successor : successors(TI)) { 248 if (Successor == H) { 249 TI->setMetadata(LLVMContext::MD_loop, LoopID); 250 break; 251 } 252 } 253 } 254 } 255 256 void Loop::setLoopAlreadyUnrolled() { 257 LLVMContext &Context = getHeader()->getContext(); 258 259 MDNode *DisableUnrollMD = 260 MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable")); 261 MDNode *LoopID = getLoopID(); 262 MDNode *NewLoopID = makePostTransformationMetadata( 263 Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD}); 264 setLoopID(NewLoopID); 265 } 266 267 bool Loop::isAnnotatedParallel() const { 268 MDNode *DesiredLoopIdMetadata = getLoopID(); 269 270 if (!DesiredLoopIdMetadata) 271 return false; 272 273 MDNode *ParallelAccesses = 274 findOptionMDForLoop(this, "llvm.loop.parallel_accesses"); 275 SmallPtrSet<MDNode *, 4> 276 ParallelAccessGroups; // For scalable 'contains' check. 277 if (ParallelAccesses) { 278 for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) { 279 MDNode *AccGroup = cast<MDNode>(MD.get()); 280 assert(isValidAsAccessGroup(AccGroup) && 281 "List item must be an access group"); 282 ParallelAccessGroups.insert(AccGroup); 283 } 284 } 285 286 // The loop branch contains the parallel loop metadata. In order to ensure 287 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 288 // dependencies (thus converted the loop back to a sequential loop), check 289 // that all the memory instructions in the loop belong to an access group that 290 // is parallel to this loop. 291 for (BasicBlock *BB : this->blocks()) { 292 for (Instruction &I : *BB) { 293 if (!I.mayReadOrWriteMemory()) 294 continue; 295 296 if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) { 297 auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool { 298 if (AG->getNumOperands() == 0) { 299 assert(isValidAsAccessGroup(AG) && "Item must be an access group"); 300 return ParallelAccessGroups.count(AG); 301 } 302 303 for (const MDOperand &AccessListItem : AG->operands()) { 304 MDNode *AccGroup = cast<MDNode>(AccessListItem.get()); 305 assert(isValidAsAccessGroup(AccGroup) && 306 "List item must be an access group"); 307 if (ParallelAccessGroups.count(AccGroup)) 308 return true; 309 } 310 return false; 311 }; 312 313 if (ContainsAccessGroup(AccessGroup)) 314 continue; 315 } 316 317 // The memory instruction can refer to the loop identifier metadata 318 // directly or indirectly through another list metadata (in case of 319 // nested parallel loops). The loop identifier metadata refers to 320 // itself so we can check both cases with the same routine. 321 MDNode *LoopIdMD = 322 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 323 324 if (!LoopIdMD) 325 return false; 326 327 bool LoopIdMDFound = false; 328 for (const MDOperand &MDOp : LoopIdMD->operands()) { 329 if (MDOp == DesiredLoopIdMetadata) { 330 LoopIdMDFound = true; 331 break; 332 } 333 } 334 335 if (!LoopIdMDFound) 336 return false; 337 } 338 } 339 return true; 340 } 341 342 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } 343 344 Loop::LocRange Loop::getLocRange() const { 345 // If we have a debug location in the loop ID, then use it. 346 if (MDNode *LoopID = getLoopID()) { 347 DebugLoc Start; 348 // We use the first DebugLoc in the header as the start location of the loop 349 // and if there is a second DebugLoc in the header we use it as end location 350 // of the loop. 351 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 352 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) { 353 if (!Start) 354 Start = DebugLoc(L); 355 else 356 return LocRange(Start, DebugLoc(L)); 357 } 358 } 359 360 if (Start) 361 return LocRange(Start); 362 } 363 364 // Try the pre-header first. 365 if (BasicBlock *PHeadBB = getLoopPreheader()) 366 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) 367 return LocRange(DL); 368 369 // If we have no pre-header or there are no instructions with debug 370 // info in it, try the header. 371 if (BasicBlock *HeadBB = getHeader()) 372 return LocRange(HeadBB->getTerminator()->getDebugLoc()); 373 374 return LocRange(); 375 } 376 377 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 378 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } 379 380 LLVM_DUMP_METHOD void Loop::dumpVerbose() const { 381 print(dbgs(), /*Depth=*/0, /*Verbose=*/true); 382 } 383 #endif 384 385 //===----------------------------------------------------------------------===// 386 // UnloopUpdater implementation 387 // 388 389 namespace { 390 /// Find the new parent loop for all blocks within the "unloop" whose last 391 /// backedges has just been removed. 392 class UnloopUpdater { 393 Loop &Unloop; 394 LoopInfo *LI; 395 396 LoopBlocksDFS DFS; 397 398 // Map unloop's immediate subloops to their nearest reachable parents. Nested 399 // loops within these subloops will not change parents. However, an immediate 400 // subloop's new parent will be the nearest loop reachable from either its own 401 // exits *or* any of its nested loop's exits. 402 DenseMap<Loop *, Loop *> SubloopParents; 403 404 // Flag the presence of an irreducible backedge whose destination is a block 405 // directly contained by the original unloop. 406 bool FoundIB; 407 408 public: 409 UnloopUpdater(Loop *UL, LoopInfo *LInfo) 410 : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} 411 412 void updateBlockParents(); 413 414 void removeBlocksFromAncestors(); 415 416 void updateSubloopParents(); 417 418 protected: 419 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 420 }; 421 } // end anonymous namespace 422 423 /// Update the parent loop for all blocks that are directly contained within the 424 /// original "unloop". 425 void UnloopUpdater::updateBlockParents() { 426 if (Unloop.getNumBlocks()) { 427 // Perform a post order CFG traversal of all blocks within this loop, 428 // propagating the nearest loop from successors to predecessors. 429 LoopBlocksTraversal Traversal(DFS, LI); 430 for (BasicBlock *POI : Traversal) { 431 432 Loop *L = LI->getLoopFor(POI); 433 Loop *NL = getNearestLoop(POI, L); 434 435 if (NL != L) { 436 // For reducible loops, NL is now an ancestor of Unloop. 437 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && 438 "uninitialized successor"); 439 LI->changeLoopFor(POI, NL); 440 } else { 441 // Or the current block is part of a subloop, in which case its parent 442 // is unchanged. 443 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); 444 } 445 } 446 } 447 // Each irreducible loop within the unloop induces a round of iteration using 448 // the DFS result cached by Traversal. 449 bool Changed = FoundIB; 450 for (unsigned NIters = 0; Changed; ++NIters) { 451 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); 452 453 // Iterate over the postorder list of blocks, propagating the nearest loop 454 // from successors to predecessors as before. 455 Changed = false; 456 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 457 POE = DFS.endPostorder(); 458 POI != POE; ++POI) { 459 460 Loop *L = LI->getLoopFor(*POI); 461 Loop *NL = getNearestLoop(*POI, L); 462 if (NL != L) { 463 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && 464 "uninitialized successor"); 465 LI->changeLoopFor(*POI, NL); 466 Changed = true; 467 } 468 } 469 } 470 } 471 472 /// Remove unloop's blocks from all ancestors below their new parents. 473 void UnloopUpdater::removeBlocksFromAncestors() { 474 // Remove all unloop's blocks (including those in nested subloops) from 475 // ancestors below the new parent loop. 476 for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end(); 477 BI != BE; ++BI) { 478 Loop *OuterParent = LI->getLoopFor(*BI); 479 if (Unloop.contains(OuterParent)) { 480 while (OuterParent->getParentLoop() != &Unloop) 481 OuterParent = OuterParent->getParentLoop(); 482 OuterParent = SubloopParents[OuterParent]; 483 } 484 // Remove blocks from former Ancestors except Unloop itself which will be 485 // deleted. 486 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; 487 OldParent = OldParent->getParentLoop()) { 488 assert(OldParent && "new loop is not an ancestor of the original"); 489 OldParent->removeBlockFromLoop(*BI); 490 } 491 } 492 } 493 494 /// Update the parent loop for all subloops directly nested within unloop. 495 void UnloopUpdater::updateSubloopParents() { 496 while (!Unloop.empty()) { 497 Loop *Subloop = *std::prev(Unloop.end()); 498 Unloop.removeChildLoop(std::prev(Unloop.end())); 499 500 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 501 if (Loop *Parent = SubloopParents[Subloop]) 502 Parent->addChildLoop(Subloop); 503 else 504 LI->addTopLevelLoop(Subloop); 505 } 506 } 507 508 /// Return the nearest parent loop among this block's successors. If a successor 509 /// is a subloop header, consider its parent to be the nearest parent of the 510 /// subloop's exits. 511 /// 512 /// For subloop blocks, simply update SubloopParents and return NULL. 513 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 514 515 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 516 // is considered uninitialized. 517 Loop *NearLoop = BBLoop; 518 519 Loop *Subloop = nullptr; 520 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { 521 Subloop = NearLoop; 522 // Find the subloop ancestor that is directly contained within Unloop. 523 while (Subloop->getParentLoop() != &Unloop) { 524 Subloop = Subloop->getParentLoop(); 525 assert(Subloop && "subloop is not an ancestor of the original loop"); 526 } 527 // Get the current nearest parent of the Subloop exits, initially Unloop. 528 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; 529 } 530 531 succ_iterator I = succ_begin(BB), E = succ_end(BB); 532 if (I == E) { 533 assert(!Subloop && "subloop blocks must have a successor"); 534 NearLoop = nullptr; // unloop blocks may now exit the function. 535 } 536 for (; I != E; ++I) { 537 if (*I == BB) 538 continue; // self loops are uninteresting 539 540 Loop *L = LI->getLoopFor(*I); 541 if (L == &Unloop) { 542 // This successor has not been processed. This path must lead to an 543 // irreducible backedge. 544 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 545 FoundIB = true; 546 } 547 if (L != &Unloop && Unloop.contains(L)) { 548 // Successor is in a subloop. 549 if (Subloop) 550 continue; // Branching within subloops. Ignore it. 551 552 // BB branches from the original into a subloop header. 553 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); 554 555 // Get the current nearest parent of the Subloop's exits. 556 L = SubloopParents[L]; 557 // L could be Unloop if the only exit was an irreducible backedge. 558 } 559 if (L == &Unloop) { 560 continue; 561 } 562 // Handle critical edges from Unloop into a sibling loop. 563 if (L && !L->contains(&Unloop)) { 564 L = L->getParentLoop(); 565 } 566 // Remember the nearest parent loop among successors or subloop exits. 567 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) 568 NearLoop = L; 569 } 570 if (Subloop) { 571 SubloopParents[Subloop] = NearLoop; 572 return BBLoop; 573 } 574 return NearLoop; 575 } 576 577 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); } 578 579 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, 580 FunctionAnalysisManager::Invalidator &) { 581 // Check whether the analysis, all analyses on functions, or the function's 582 // CFG have been preserved. 583 auto PAC = PA.getChecker<LoopAnalysis>(); 584 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 585 PAC.preservedSet<CFGAnalyses>()); 586 } 587 588 void LoopInfo::erase(Loop *Unloop) { 589 assert(!Unloop->isInvalid() && "Loop has already been erased!"); 590 591 auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); 592 593 // First handle the special case of no parent loop to simplify the algorithm. 594 if (!Unloop->getParentLoop()) { 595 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 596 for (Loop::block_iterator I = Unloop->block_begin(), 597 E = Unloop->block_end(); 598 I != E; ++I) { 599 600 // Don't reparent blocks in subloops. 601 if (getLoopFor(*I) != Unloop) 602 continue; 603 604 // Blocks no longer have a parent but are still referenced by Unloop until 605 // the Unloop object is deleted. 606 changeLoopFor(*I, nullptr); 607 } 608 609 // Remove the loop from the top-level LoopInfo object. 610 for (iterator I = begin();; ++I) { 611 assert(I != end() && "Couldn't find loop"); 612 if (*I == Unloop) { 613 removeLoop(I); 614 break; 615 } 616 } 617 618 // Move all of the subloops to the top-level. 619 while (!Unloop->empty()) 620 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 621 622 return; 623 } 624 625 // Update the parent loop for all blocks within the loop. Blocks within 626 // subloops will not change parents. 627 UnloopUpdater Updater(Unloop, this); 628 Updater.updateBlockParents(); 629 630 // Remove blocks from former ancestor loops. 631 Updater.removeBlocksFromAncestors(); 632 633 // Add direct subloops as children in their new parent loop. 634 Updater.updateSubloopParents(); 635 636 // Remove unloop from its parent loop. 637 Loop *ParentLoop = Unloop->getParentLoop(); 638 for (Loop::iterator I = ParentLoop->begin();; ++I) { 639 assert(I != ParentLoop->end() && "Couldn't find loop"); 640 if (*I == Unloop) { 641 ParentLoop->removeChildLoop(I); 642 break; 643 } 644 } 645 } 646 647 AnalysisKey LoopAnalysis::Key; 648 649 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 650 // FIXME: Currently we create a LoopInfo from scratch for every function. 651 // This may prove to be too wasteful due to deallocating and re-allocating 652 // memory each time for the underlying map and vector datastructures. At some 653 // point it may prove worthwhile to use a freelist and recycle LoopInfo 654 // objects. I don't want to add that kind of complexity until the scope of 655 // the problem is better understood. 656 LoopInfo LI; 657 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); 658 return LI; 659 } 660 661 PreservedAnalyses LoopPrinterPass::run(Function &F, 662 FunctionAnalysisManager &AM) { 663 AM.getResult<LoopAnalysis>(F).print(OS); 664 return PreservedAnalyses::all(); 665 } 666 667 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { 668 669 if (forcePrintModuleIR()) { 670 // handling -print-module-scope 671 OS << Banner << " (loop: "; 672 L.getHeader()->printAsOperand(OS, false); 673 OS << ")\n"; 674 675 // printing whole module 676 OS << *L.getHeader()->getModule(); 677 return; 678 } 679 680 OS << Banner; 681 682 auto *PreHeader = L.getLoopPreheader(); 683 if (PreHeader) { 684 OS << "\n; Preheader:"; 685 PreHeader->print(OS); 686 OS << "\n; Loop:"; 687 } 688 689 for (auto *Block : L.blocks()) 690 if (Block) 691 Block->print(OS); 692 else 693 OS << "Printing <null> block"; 694 695 SmallVector<BasicBlock *, 8> ExitBlocks; 696 L.getExitBlocks(ExitBlocks); 697 if (!ExitBlocks.empty()) { 698 OS << "\n; Exit blocks"; 699 for (auto *Block : ExitBlocks) 700 if (Block) 701 Block->print(OS); 702 else 703 OS << "Printing <null> block"; 704 } 705 } 706 707 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) { 708 // No loop metadata node, no loop properties. 709 if (!LoopID) 710 return nullptr; 711 712 // First operand should refer to the metadata node itself, for legacy reasons. 713 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 714 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 715 716 // Iterate over the metdata node operands and look for MDString metadata. 717 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 718 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 719 if (!MD || MD->getNumOperands() < 1) 720 continue; 721 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 722 if (!S) 723 continue; 724 // Return the operand node if MDString holds expected metadata. 725 if (Name.equals(S->getString())) 726 return MD; 727 } 728 729 // Loop property not found. 730 return nullptr; 731 } 732 733 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) { 734 return findOptionMDForLoopID(TheLoop->getLoopID(), Name); 735 } 736 737 bool llvm::isValidAsAccessGroup(MDNode *Node) { 738 return Node->getNumOperands() == 0 && Node->isDistinct(); 739 } 740 741 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context, 742 MDNode *OrigLoopID, 743 ArrayRef<StringRef> RemovePrefixes, 744 ArrayRef<MDNode *> AddAttrs) { 745 // First remove any existing loop metadata related to this transformation. 746 SmallVector<Metadata *, 4> MDs; 747 748 // Reserve first location for self reference to the LoopID metadata node. 749 TempMDTuple TempNode = MDNode::getTemporary(Context, None); 750 MDs.push_back(TempNode.get()); 751 752 // Remove metadata for the transformation that has been applied or that became 753 // outdated. 754 if (OrigLoopID) { 755 for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) { 756 bool IsVectorMetadata = false; 757 Metadata *Op = OrigLoopID->getOperand(i); 758 if (MDNode *MD = dyn_cast<MDNode>(Op)) { 759 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 760 if (S) 761 IsVectorMetadata = 762 llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool { 763 return S->getString().startswith(Prefix); 764 }); 765 } 766 if (!IsVectorMetadata) 767 MDs.push_back(Op); 768 } 769 } 770 771 // Add metadata to avoid reapplying a transformation, such as 772 // llvm.loop.unroll.disable and llvm.loop.isvectorized. 773 MDs.append(AddAttrs.begin(), AddAttrs.end()); 774 775 MDNode *NewLoopID = MDNode::getDistinct(Context, MDs); 776 // Replace the temporary node with a self-reference. 777 NewLoopID->replaceOperandWith(0, NewLoopID); 778 return NewLoopID; 779 } 780 781 //===----------------------------------------------------------------------===// 782 // LoopInfo implementation 783 // 784 785 char LoopInfoWrapperPass::ID = 0; 786 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 787 true, true) 788 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 789 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 790 true, true) 791 792 bool LoopInfoWrapperPass::runOnFunction(Function &) { 793 releaseMemory(); 794 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 795 return false; 796 } 797 798 void LoopInfoWrapperPass::verifyAnalysis() const { 799 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 800 // function each time verifyAnalysis is called is very expensive. The 801 // -verify-loop-info option can enable this. In order to perform some 802 // checking by default, LoopPass has been taught to call verifyLoop manually 803 // during loop pass sequences. 804 if (VerifyLoopInfo) { 805 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 806 LI.verify(DT); 807 } 808 } 809 810 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 811 AU.setPreservesAll(); 812 AU.addRequired<DominatorTreeWrapperPass>(); 813 } 814 815 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 816 LI.print(OS); 817 } 818 819 PreservedAnalyses LoopVerifierPass::run(Function &F, 820 FunctionAnalysisManager &AM) { 821 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 822 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 823 LI.verify(DT); 824 return PreservedAnalyses::all(); 825 } 826 827 //===----------------------------------------------------------------------===// 828 // LoopBlocksDFS implementation 829 // 830 831 /// Traverse the loop blocks and store the DFS result. 832 /// Useful for clients that just want the final DFS result and don't need to 833 /// visit blocks during the initial traversal. 834 void LoopBlocksDFS::perform(LoopInfo *LI) { 835 LoopBlocksTraversal Traversal(*this, LI); 836 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 837 POE = Traversal.end(); 838 POI != POE; ++POI) 839 ; 840 } 841