1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the LoopInfo class that is used to identify natural loops
10 // and determine the loop depth of various nodes of the CFG.  Note that the
11 // loops identified may actually be several natural loops that share the same
12 // header node... not just a single natural loop.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/LoopInfoImpl.h"
21 #include "llvm/Analysis/LoopIterator.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/Config/llvm-config.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugLoc.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/IRPrintingPasses.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PassManager.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 using namespace llvm;
38 
39 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
40 template class llvm::LoopBase<BasicBlock, Loop>;
41 template class llvm::LoopInfoBase<BasicBlock, Loop>;
42 
43 // Always verify loopinfo if expensive checking is enabled.
44 #ifdef EXPENSIVE_CHECKS
45 bool llvm::VerifyLoopInfo = true;
46 #else
47 bool llvm::VerifyLoopInfo = false;
48 #endif
49 static cl::opt<bool, true>
50     VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
51                     cl::Hidden, cl::desc("Verify loop info (time consuming)"));
52 
53 //===----------------------------------------------------------------------===//
54 // Loop implementation
55 //
56 
57 bool Loop::isLoopInvariant(const Value *V) const {
58   if (const Instruction *I = dyn_cast<Instruction>(V))
59     return !contains(I);
60   return true; // All non-instructions are loop invariant
61 }
62 
63 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
64   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
65 }
66 
67 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
68                              Instruction *InsertPt) const {
69   if (Instruction *I = dyn_cast<Instruction>(V))
70     return makeLoopInvariant(I, Changed, InsertPt);
71   return true; // All non-instructions are loop-invariant.
72 }
73 
74 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
75                              Instruction *InsertPt) const {
76   // Test if the value is already loop-invariant.
77   if (isLoopInvariant(I))
78     return true;
79   if (!isSafeToSpeculativelyExecute(I))
80     return false;
81   if (I->mayReadFromMemory())
82     return false;
83   // EH block instructions are immobile.
84   if (I->isEHPad())
85     return false;
86   // Determine the insertion point, unless one was given.
87   if (!InsertPt) {
88     BasicBlock *Preheader = getLoopPreheader();
89     // Without a preheader, hoisting is not feasible.
90     if (!Preheader)
91       return false;
92     InsertPt = Preheader->getTerminator();
93   }
94   // Don't hoist instructions with loop-variant operands.
95   for (Value *Operand : I->operands())
96     if (!makeLoopInvariant(Operand, Changed, InsertPt))
97       return false;
98 
99   // Hoist.
100   I->moveBefore(InsertPt);
101 
102   // There is possibility of hoisting this instruction above some arbitrary
103   // condition. Any metadata defined on it can be control dependent on this
104   // condition. Conservatively strip it here so that we don't give any wrong
105   // information to the optimizer.
106   I->dropUnknownNonDebugMetadata();
107 
108   Changed = true;
109   return true;
110 }
111 
112 PHINode *Loop::getCanonicalInductionVariable() const {
113   BasicBlock *H = getHeader();
114 
115   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
116   pred_iterator PI = pred_begin(H);
117   assert(PI != pred_end(H) && "Loop must have at least one backedge!");
118   Backedge = *PI++;
119   if (PI == pred_end(H))
120     return nullptr; // dead loop
121   Incoming = *PI++;
122   if (PI != pred_end(H))
123     return nullptr; // multiple backedges?
124 
125   if (contains(Incoming)) {
126     if (contains(Backedge))
127       return nullptr;
128     std::swap(Incoming, Backedge);
129   } else if (!contains(Backedge))
130     return nullptr;
131 
132   // Loop over all of the PHI nodes, looking for a canonical indvar.
133   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
134     PHINode *PN = cast<PHINode>(I);
135     if (ConstantInt *CI =
136             dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
137       if (CI->isZero())
138         if (Instruction *Inc =
139                 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
140           if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
141             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
142               if (CI->isOne())
143                 return PN;
144   }
145   return nullptr;
146 }
147 
148 // Check that 'BB' doesn't have any uses outside of the 'L'
149 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
150                                DominatorTree &DT) {
151   for (const Instruction &I : BB) {
152     // Tokens can't be used in PHI nodes and live-out tokens prevent loop
153     // optimizations, so for the purposes of considered LCSSA form, we
154     // can ignore them.
155     if (I.getType()->isTokenTy())
156       continue;
157 
158     for (const Use &U : I.uses()) {
159       const Instruction *UI = cast<Instruction>(U.getUser());
160       const BasicBlock *UserBB = UI->getParent();
161       if (const PHINode *P = dyn_cast<PHINode>(UI))
162         UserBB = P->getIncomingBlock(U);
163 
164       // Check the current block, as a fast-path, before checking whether
165       // the use is anywhere in the loop.  Most values are used in the same
166       // block they are defined in.  Also, blocks not reachable from the
167       // entry are special; uses in them don't need to go through PHIs.
168       if (UserBB != &BB && !L.contains(UserBB) &&
169           DT.isReachableFromEntry(UserBB))
170         return false;
171     }
172   }
173   return true;
174 }
175 
176 bool Loop::isLCSSAForm(DominatorTree &DT) const {
177   // For each block we check that it doesn't have any uses outside of this loop.
178   return all_of(this->blocks(), [&](const BasicBlock *BB) {
179     return isBlockInLCSSAForm(*this, *BB, DT);
180   });
181 }
182 
183 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const {
184   // For each block we check that it doesn't have any uses outside of its
185   // innermost loop. This process will transitively guarantee that the current
186   // loop and all of the nested loops are in LCSSA form.
187   return all_of(this->blocks(), [&](const BasicBlock *BB) {
188     return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
189   });
190 }
191 
192 bool Loop::isLoopSimplifyForm() const {
193   // Normal-form loops have a preheader, a single backedge, and all of their
194   // exits have all their predecessors inside the loop.
195   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
196 }
197 
198 // Routines that reform the loop CFG and split edges often fail on indirectbr.
199 bool Loop::isSafeToClone() const {
200   // Return false if any loop blocks contain indirectbrs, or there are any calls
201   // to noduplicate functions.
202   for (BasicBlock *BB : this->blocks()) {
203     if (isa<IndirectBrInst>(BB->getTerminator()))
204       return false;
205 
206     for (Instruction &I : *BB)
207       if (auto CS = CallSite(&I))
208         if (CS.cannotDuplicate())
209           return false;
210   }
211   return true;
212 }
213 
214 MDNode *Loop::getLoopID() const {
215   MDNode *LoopID = nullptr;
216 
217   // Go through the latch blocks and check the terminator for the metadata.
218   SmallVector<BasicBlock *, 4> LatchesBlocks;
219   getLoopLatches(LatchesBlocks);
220   for (BasicBlock *BB : LatchesBlocks) {
221     Instruction *TI = BB->getTerminator();
222     MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);
223 
224     if (!MD)
225       return nullptr;
226 
227     if (!LoopID)
228       LoopID = MD;
229     else if (MD != LoopID)
230       return nullptr;
231   }
232   if (!LoopID || LoopID->getNumOperands() == 0 ||
233       LoopID->getOperand(0) != LoopID)
234     return nullptr;
235   return LoopID;
236 }
237 
238 void Loop::setLoopID(MDNode *LoopID) const {
239   assert((!LoopID || LoopID->getNumOperands() > 0) &&
240          "Loop ID needs at least one operand");
241   assert((!LoopID || LoopID->getOperand(0) == LoopID) &&
242          "Loop ID should refer to itself");
243 
244   BasicBlock *H = getHeader();
245   for (BasicBlock *BB : this->blocks()) {
246     Instruction *TI = BB->getTerminator();
247     for (BasicBlock *Successor : successors(TI)) {
248       if (Successor == H) {
249         TI->setMetadata(LLVMContext::MD_loop, LoopID);
250         break;
251       }
252     }
253   }
254 }
255 
256 void Loop::setLoopAlreadyUnrolled() {
257   LLVMContext &Context = getHeader()->getContext();
258 
259   MDNode *DisableUnrollMD =
260       MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable"));
261   MDNode *LoopID = getLoopID();
262   MDNode *NewLoopID = makePostTransformationMetadata(
263       Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD});
264   setLoopID(NewLoopID);
265 }
266 
267 bool Loop::isAnnotatedParallel() const {
268   MDNode *DesiredLoopIdMetadata = getLoopID();
269 
270   if (!DesiredLoopIdMetadata)
271     return false;
272 
273   MDNode *ParallelAccesses =
274       findOptionMDForLoop(this, "llvm.loop.parallel_accesses");
275   SmallPtrSet<MDNode *, 4>
276       ParallelAccessGroups; // For scalable 'contains' check.
277   if (ParallelAccesses) {
278     for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) {
279       MDNode *AccGroup = cast<MDNode>(MD.get());
280       assert(isValidAsAccessGroup(AccGroup) &&
281              "List item must be an access group");
282       ParallelAccessGroups.insert(AccGroup);
283     }
284   }
285 
286   // The loop branch contains the parallel loop metadata. In order to ensure
287   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
288   // dependencies (thus converted the loop back to a sequential loop), check
289   // that all the memory instructions in the loop belong to an access group that
290   // is parallel to this loop.
291   for (BasicBlock *BB : this->blocks()) {
292     for (Instruction &I : *BB) {
293       if (!I.mayReadOrWriteMemory())
294         continue;
295 
296       if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) {
297         auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool {
298           if (AG->getNumOperands() == 0) {
299             assert(isValidAsAccessGroup(AG) && "Item must be an access group");
300             return ParallelAccessGroups.count(AG);
301           }
302 
303           for (const MDOperand &AccessListItem : AG->operands()) {
304             MDNode *AccGroup = cast<MDNode>(AccessListItem.get());
305             assert(isValidAsAccessGroup(AccGroup) &&
306                    "List item must be an access group");
307             if (ParallelAccessGroups.count(AccGroup))
308               return true;
309           }
310           return false;
311         };
312 
313         if (ContainsAccessGroup(AccessGroup))
314           continue;
315       }
316 
317       // The memory instruction can refer to the loop identifier metadata
318       // directly or indirectly through another list metadata (in case of
319       // nested parallel loops). The loop identifier metadata refers to
320       // itself so we can check both cases with the same routine.
321       MDNode *LoopIdMD =
322           I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
323 
324       if (!LoopIdMD)
325         return false;
326 
327       bool LoopIdMDFound = false;
328       for (const MDOperand &MDOp : LoopIdMD->operands()) {
329         if (MDOp == DesiredLoopIdMetadata) {
330           LoopIdMDFound = true;
331           break;
332         }
333       }
334 
335       if (!LoopIdMDFound)
336         return false;
337     }
338   }
339   return true;
340 }
341 
342 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
343 
344 Loop::LocRange Loop::getLocRange() const {
345   // If we have a debug location in the loop ID, then use it.
346   if (MDNode *LoopID = getLoopID()) {
347     DebugLoc Start;
348     // We use the first DebugLoc in the header as the start location of the loop
349     // and if there is a second DebugLoc in the header we use it as end location
350     // of the loop.
351     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
352       if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
353         if (!Start)
354           Start = DebugLoc(L);
355         else
356           return LocRange(Start, DebugLoc(L));
357       }
358     }
359 
360     if (Start)
361       return LocRange(Start);
362   }
363 
364   // Try the pre-header first.
365   if (BasicBlock *PHeadBB = getLoopPreheader())
366     if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
367       return LocRange(DL);
368 
369   // If we have no pre-header or there are no instructions with debug
370   // info in it, try the header.
371   if (BasicBlock *HeadBB = getHeader())
372     return LocRange(HeadBB->getTerminator()->getDebugLoc());
373 
374   return LocRange();
375 }
376 
377 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
378 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
379 
380 LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
381   print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
382 }
383 #endif
384 
385 //===----------------------------------------------------------------------===//
386 // UnloopUpdater implementation
387 //
388 
389 namespace {
390 /// Find the new parent loop for all blocks within the "unloop" whose last
391 /// backedges has just been removed.
392 class UnloopUpdater {
393   Loop &Unloop;
394   LoopInfo *LI;
395 
396   LoopBlocksDFS DFS;
397 
398   // Map unloop's immediate subloops to their nearest reachable parents. Nested
399   // loops within these subloops will not change parents. However, an immediate
400   // subloop's new parent will be the nearest loop reachable from either its own
401   // exits *or* any of its nested loop's exits.
402   DenseMap<Loop *, Loop *> SubloopParents;
403 
404   // Flag the presence of an irreducible backedge whose destination is a block
405   // directly contained by the original unloop.
406   bool FoundIB;
407 
408 public:
409   UnloopUpdater(Loop *UL, LoopInfo *LInfo)
410       : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
411 
412   void updateBlockParents();
413 
414   void removeBlocksFromAncestors();
415 
416   void updateSubloopParents();
417 
418 protected:
419   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
420 };
421 } // end anonymous namespace
422 
423 /// Update the parent loop for all blocks that are directly contained within the
424 /// original "unloop".
425 void UnloopUpdater::updateBlockParents() {
426   if (Unloop.getNumBlocks()) {
427     // Perform a post order CFG traversal of all blocks within this loop,
428     // propagating the nearest loop from successors to predecessors.
429     LoopBlocksTraversal Traversal(DFS, LI);
430     for (BasicBlock *POI : Traversal) {
431 
432       Loop *L = LI->getLoopFor(POI);
433       Loop *NL = getNearestLoop(POI, L);
434 
435       if (NL != L) {
436         // For reducible loops, NL is now an ancestor of Unloop.
437         assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
438                "uninitialized successor");
439         LI->changeLoopFor(POI, NL);
440       } else {
441         // Or the current block is part of a subloop, in which case its parent
442         // is unchanged.
443         assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
444       }
445     }
446   }
447   // Each irreducible loop within the unloop induces a round of iteration using
448   // the DFS result cached by Traversal.
449   bool Changed = FoundIB;
450   for (unsigned NIters = 0; Changed; ++NIters) {
451     assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
452 
453     // Iterate over the postorder list of blocks, propagating the nearest loop
454     // from successors to predecessors as before.
455     Changed = false;
456     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
457                                    POE = DFS.endPostorder();
458          POI != POE; ++POI) {
459 
460       Loop *L = LI->getLoopFor(*POI);
461       Loop *NL = getNearestLoop(*POI, L);
462       if (NL != L) {
463         assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
464                "uninitialized successor");
465         LI->changeLoopFor(*POI, NL);
466         Changed = true;
467       }
468     }
469   }
470 }
471 
472 /// Remove unloop's blocks from all ancestors below their new parents.
473 void UnloopUpdater::removeBlocksFromAncestors() {
474   // Remove all unloop's blocks (including those in nested subloops) from
475   // ancestors below the new parent loop.
476   for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end();
477        BI != BE; ++BI) {
478     Loop *OuterParent = LI->getLoopFor(*BI);
479     if (Unloop.contains(OuterParent)) {
480       while (OuterParent->getParentLoop() != &Unloop)
481         OuterParent = OuterParent->getParentLoop();
482       OuterParent = SubloopParents[OuterParent];
483     }
484     // Remove blocks from former Ancestors except Unloop itself which will be
485     // deleted.
486     for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
487          OldParent = OldParent->getParentLoop()) {
488       assert(OldParent && "new loop is not an ancestor of the original");
489       OldParent->removeBlockFromLoop(*BI);
490     }
491   }
492 }
493 
494 /// Update the parent loop for all subloops directly nested within unloop.
495 void UnloopUpdater::updateSubloopParents() {
496   while (!Unloop.empty()) {
497     Loop *Subloop = *std::prev(Unloop.end());
498     Unloop.removeChildLoop(std::prev(Unloop.end()));
499 
500     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
501     if (Loop *Parent = SubloopParents[Subloop])
502       Parent->addChildLoop(Subloop);
503     else
504       LI->addTopLevelLoop(Subloop);
505   }
506 }
507 
508 /// Return the nearest parent loop among this block's successors. If a successor
509 /// is a subloop header, consider its parent to be the nearest parent of the
510 /// subloop's exits.
511 ///
512 /// For subloop blocks, simply update SubloopParents and return NULL.
513 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
514 
515   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
516   // is considered uninitialized.
517   Loop *NearLoop = BBLoop;
518 
519   Loop *Subloop = nullptr;
520   if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
521     Subloop = NearLoop;
522     // Find the subloop ancestor that is directly contained within Unloop.
523     while (Subloop->getParentLoop() != &Unloop) {
524       Subloop = Subloop->getParentLoop();
525       assert(Subloop && "subloop is not an ancestor of the original loop");
526     }
527     // Get the current nearest parent of the Subloop exits, initially Unloop.
528     NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
529   }
530 
531   succ_iterator I = succ_begin(BB), E = succ_end(BB);
532   if (I == E) {
533     assert(!Subloop && "subloop blocks must have a successor");
534     NearLoop = nullptr; // unloop blocks may now exit the function.
535   }
536   for (; I != E; ++I) {
537     if (*I == BB)
538       continue; // self loops are uninteresting
539 
540     Loop *L = LI->getLoopFor(*I);
541     if (L == &Unloop) {
542       // This successor has not been processed. This path must lead to an
543       // irreducible backedge.
544       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
545       FoundIB = true;
546     }
547     if (L != &Unloop && Unloop.contains(L)) {
548       // Successor is in a subloop.
549       if (Subloop)
550         continue; // Branching within subloops. Ignore it.
551 
552       // BB branches from the original into a subloop header.
553       assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
554 
555       // Get the current nearest parent of the Subloop's exits.
556       L = SubloopParents[L];
557       // L could be Unloop if the only exit was an irreducible backedge.
558     }
559     if (L == &Unloop) {
560       continue;
561     }
562     // Handle critical edges from Unloop into a sibling loop.
563     if (L && !L->contains(&Unloop)) {
564       L = L->getParentLoop();
565     }
566     // Remember the nearest parent loop among successors or subloop exits.
567     if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
568       NearLoop = L;
569   }
570   if (Subloop) {
571     SubloopParents[Subloop] = NearLoop;
572     return BBLoop;
573   }
574   return NearLoop;
575 }
576 
577 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
578 
579 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
580                           FunctionAnalysisManager::Invalidator &) {
581   // Check whether the analysis, all analyses on functions, or the function's
582   // CFG have been preserved.
583   auto PAC = PA.getChecker<LoopAnalysis>();
584   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
585            PAC.preservedSet<CFGAnalyses>());
586 }
587 
588 void LoopInfo::erase(Loop *Unloop) {
589   assert(!Unloop->isInvalid() && "Loop has already been erased!");
590 
591   auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
592 
593   // First handle the special case of no parent loop to simplify the algorithm.
594   if (!Unloop->getParentLoop()) {
595     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
596     for (Loop::block_iterator I = Unloop->block_begin(),
597                               E = Unloop->block_end();
598          I != E; ++I) {
599 
600       // Don't reparent blocks in subloops.
601       if (getLoopFor(*I) != Unloop)
602         continue;
603 
604       // Blocks no longer have a parent but are still referenced by Unloop until
605       // the Unloop object is deleted.
606       changeLoopFor(*I, nullptr);
607     }
608 
609     // Remove the loop from the top-level LoopInfo object.
610     for (iterator I = begin();; ++I) {
611       assert(I != end() && "Couldn't find loop");
612       if (*I == Unloop) {
613         removeLoop(I);
614         break;
615       }
616     }
617 
618     // Move all of the subloops to the top-level.
619     while (!Unloop->empty())
620       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
621 
622     return;
623   }
624 
625   // Update the parent loop for all blocks within the loop. Blocks within
626   // subloops will not change parents.
627   UnloopUpdater Updater(Unloop, this);
628   Updater.updateBlockParents();
629 
630   // Remove blocks from former ancestor loops.
631   Updater.removeBlocksFromAncestors();
632 
633   // Add direct subloops as children in their new parent loop.
634   Updater.updateSubloopParents();
635 
636   // Remove unloop from its parent loop.
637   Loop *ParentLoop = Unloop->getParentLoop();
638   for (Loop::iterator I = ParentLoop->begin();; ++I) {
639     assert(I != ParentLoop->end() && "Couldn't find loop");
640     if (*I == Unloop) {
641       ParentLoop->removeChildLoop(I);
642       break;
643     }
644   }
645 }
646 
647 AnalysisKey LoopAnalysis::Key;
648 
649 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
650   // FIXME: Currently we create a LoopInfo from scratch for every function.
651   // This may prove to be too wasteful due to deallocating and re-allocating
652   // memory each time for the underlying map and vector datastructures. At some
653   // point it may prove worthwhile to use a freelist and recycle LoopInfo
654   // objects. I don't want to add that kind of complexity until the scope of
655   // the problem is better understood.
656   LoopInfo LI;
657   LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
658   return LI;
659 }
660 
661 PreservedAnalyses LoopPrinterPass::run(Function &F,
662                                        FunctionAnalysisManager &AM) {
663   AM.getResult<LoopAnalysis>(F).print(OS);
664   return PreservedAnalyses::all();
665 }
666 
667 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
668 
669   if (forcePrintModuleIR()) {
670     // handling -print-module-scope
671     OS << Banner << " (loop: ";
672     L.getHeader()->printAsOperand(OS, false);
673     OS << ")\n";
674 
675     // printing whole module
676     OS << *L.getHeader()->getModule();
677     return;
678   }
679 
680   OS << Banner;
681 
682   auto *PreHeader = L.getLoopPreheader();
683   if (PreHeader) {
684     OS << "\n; Preheader:";
685     PreHeader->print(OS);
686     OS << "\n; Loop:";
687   }
688 
689   for (auto *Block : L.blocks())
690     if (Block)
691       Block->print(OS);
692     else
693       OS << "Printing <null> block";
694 
695   SmallVector<BasicBlock *, 8> ExitBlocks;
696   L.getExitBlocks(ExitBlocks);
697   if (!ExitBlocks.empty()) {
698     OS << "\n; Exit blocks";
699     for (auto *Block : ExitBlocks)
700       if (Block)
701         Block->print(OS);
702       else
703         OS << "Printing <null> block";
704   }
705 }
706 
707 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) {
708   // No loop metadata node, no loop properties.
709   if (!LoopID)
710     return nullptr;
711 
712   // First operand should refer to the metadata node itself, for legacy reasons.
713   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
714   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
715 
716   // Iterate over the metdata node operands and look for MDString metadata.
717   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
718     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
719     if (!MD || MD->getNumOperands() < 1)
720       continue;
721     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
722     if (!S)
723       continue;
724     // Return the operand node if MDString holds expected metadata.
725     if (Name.equals(S->getString()))
726       return MD;
727   }
728 
729   // Loop property not found.
730   return nullptr;
731 }
732 
733 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) {
734   return findOptionMDForLoopID(TheLoop->getLoopID(), Name);
735 }
736 
737 bool llvm::isValidAsAccessGroup(MDNode *Node) {
738   return Node->getNumOperands() == 0 && Node->isDistinct();
739 }
740 
741 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context,
742                                              MDNode *OrigLoopID,
743                                              ArrayRef<StringRef> RemovePrefixes,
744                                              ArrayRef<MDNode *> AddAttrs) {
745   // First remove any existing loop metadata related to this transformation.
746   SmallVector<Metadata *, 4> MDs;
747 
748   // Reserve first location for self reference to the LoopID metadata node.
749   TempMDTuple TempNode = MDNode::getTemporary(Context, None);
750   MDs.push_back(TempNode.get());
751 
752   // Remove metadata for the transformation that has been applied or that became
753   // outdated.
754   if (OrigLoopID) {
755     for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) {
756       bool IsVectorMetadata = false;
757       Metadata *Op = OrigLoopID->getOperand(i);
758       if (MDNode *MD = dyn_cast<MDNode>(Op)) {
759         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
760         if (S)
761           IsVectorMetadata =
762               llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool {
763                 return S->getString().startswith(Prefix);
764               });
765       }
766       if (!IsVectorMetadata)
767         MDs.push_back(Op);
768     }
769   }
770 
771   // Add metadata to avoid reapplying a transformation, such as
772   // llvm.loop.unroll.disable and llvm.loop.isvectorized.
773   MDs.append(AddAttrs.begin(), AddAttrs.end());
774 
775   MDNode *NewLoopID = MDNode::getDistinct(Context, MDs);
776   // Replace the temporary node with a self-reference.
777   NewLoopID->replaceOperandWith(0, NewLoopID);
778   return NewLoopID;
779 }
780 
781 //===----------------------------------------------------------------------===//
782 // LoopInfo implementation
783 //
784 
785 char LoopInfoWrapperPass::ID = 0;
786 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
787                       true, true)
788 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
789 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
790                     true, true)
791 
792 bool LoopInfoWrapperPass::runOnFunction(Function &) {
793   releaseMemory();
794   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
795   return false;
796 }
797 
798 void LoopInfoWrapperPass::verifyAnalysis() const {
799   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
800   // function each time verifyAnalysis is called is very expensive. The
801   // -verify-loop-info option can enable this. In order to perform some
802   // checking by default, LoopPass has been taught to call verifyLoop manually
803   // during loop pass sequences.
804   if (VerifyLoopInfo) {
805     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
806     LI.verify(DT);
807   }
808 }
809 
810 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
811   AU.setPreservesAll();
812   AU.addRequired<DominatorTreeWrapperPass>();
813 }
814 
815 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
816   LI.print(OS);
817 }
818 
819 PreservedAnalyses LoopVerifierPass::run(Function &F,
820                                         FunctionAnalysisManager &AM) {
821   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
822   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
823   LI.verify(DT);
824   return PreservedAnalyses::all();
825 }
826 
827 //===----------------------------------------------------------------------===//
828 // LoopBlocksDFS implementation
829 //
830 
831 /// Traverse the loop blocks and store the DFS result.
832 /// Useful for clients that just want the final DFS result and don't need to
833 /// visit blocks during the initial traversal.
834 void LoopBlocksDFS::perform(LoopInfo *LI) {
835   LoopBlocksTraversal Traversal(*this, LI);
836   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
837                                         POE = Traversal.end();
838        POI != POE; ++POI)
839     ;
840 }
841