1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the LoopInfo class that is used to identify natural loops 10 // and determine the loop depth of various nodes of the CFG. Note that the 11 // loops identified may actually be several natural loops that share the same 12 // header node... not just a single natural loop. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/IVDescriptors.h" 21 #include "llvm/Analysis/LoopInfoImpl.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include "llvm/Analysis/MemorySSA.h" 24 #include "llvm/Analysis/MemorySSAUpdater.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Config/llvm-config.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DebugLoc.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/InitializePasses.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 45 template class llvm::LoopBase<BasicBlock, Loop>; 46 template class llvm::LoopInfoBase<BasicBlock, Loop>; 47 48 // Always verify loopinfo if expensive checking is enabled. 49 #ifdef EXPENSIVE_CHECKS 50 bool llvm::VerifyLoopInfo = true; 51 #else 52 bool llvm::VerifyLoopInfo = false; 53 #endif 54 static cl::opt<bool, true> 55 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 56 cl::Hidden, cl::desc("Verify loop info (time consuming)")); 57 58 //===----------------------------------------------------------------------===// 59 // Loop implementation 60 // 61 62 bool Loop::isLoopInvariant(const Value *V) const { 63 if (const Instruction *I = dyn_cast<Instruction>(V)) 64 return !contains(I); 65 return true; // All non-instructions are loop invariant 66 } 67 68 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 69 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 70 } 71 72 bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt, 73 MemorySSAUpdater *MSSAU) const { 74 if (Instruction *I = dyn_cast<Instruction>(V)) 75 return makeLoopInvariant(I, Changed, InsertPt, MSSAU); 76 return true; // All non-instructions are loop-invariant. 77 } 78 79 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 80 Instruction *InsertPt, 81 MemorySSAUpdater *MSSAU) const { 82 // Test if the value is already loop-invariant. 83 if (isLoopInvariant(I)) 84 return true; 85 if (!isSafeToSpeculativelyExecute(I)) 86 return false; 87 if (I->mayReadFromMemory()) 88 return false; 89 // EH block instructions are immobile. 90 if (I->isEHPad()) 91 return false; 92 // Determine the insertion point, unless one was given. 93 if (!InsertPt) { 94 BasicBlock *Preheader = getLoopPreheader(); 95 // Without a preheader, hoisting is not feasible. 96 if (!Preheader) 97 return false; 98 InsertPt = Preheader->getTerminator(); 99 } 100 // Don't hoist instructions with loop-variant operands. 101 for (Value *Operand : I->operands()) 102 if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU)) 103 return false; 104 105 // Hoist. 106 I->moveBefore(InsertPt); 107 if (MSSAU) 108 if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I)) 109 MSSAU->moveToPlace(MUD, InsertPt->getParent(), 110 MemorySSA::BeforeTerminator); 111 112 // There is possibility of hoisting this instruction above some arbitrary 113 // condition. Any metadata defined on it can be control dependent on this 114 // condition. Conservatively strip it here so that we don't give any wrong 115 // information to the optimizer. 116 I->dropUnknownNonDebugMetadata(); 117 118 Changed = true; 119 return true; 120 } 121 122 bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming, 123 BasicBlock *&Backedge) const { 124 BasicBlock *H = getHeader(); 125 126 Incoming = nullptr; 127 Backedge = nullptr; 128 pred_iterator PI = pred_begin(H); 129 assert(PI != pred_end(H) && "Loop must have at least one backedge!"); 130 Backedge = *PI++; 131 if (PI == pred_end(H)) 132 return false; // dead loop 133 Incoming = *PI++; 134 if (PI != pred_end(H)) 135 return false; // multiple backedges? 136 137 if (contains(Incoming)) { 138 if (contains(Backedge)) 139 return false; 140 std::swap(Incoming, Backedge); 141 } else if (!contains(Backedge)) 142 return false; 143 144 assert(Incoming && Backedge && "expected non-null incoming and backedges"); 145 return true; 146 } 147 148 PHINode *Loop::getCanonicalInductionVariable() const { 149 BasicBlock *H = getHeader(); 150 151 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 152 if (!getIncomingAndBackEdge(Incoming, Backedge)) 153 return nullptr; 154 155 // Loop over all of the PHI nodes, looking for a canonical indvar. 156 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 157 PHINode *PN = cast<PHINode>(I); 158 if (ConstantInt *CI = 159 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 160 if (CI->isZero()) 161 if (Instruction *Inc = 162 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 163 if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) 164 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 165 if (CI->isOne()) 166 return PN; 167 } 168 return nullptr; 169 } 170 171 /// Get the latch condition instruction. 172 static ICmpInst *getLatchCmpInst(const Loop &L) { 173 if (BasicBlock *Latch = L.getLoopLatch()) 174 if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator())) 175 if (BI->isConditional()) 176 return dyn_cast<ICmpInst>(BI->getCondition()); 177 178 return nullptr; 179 } 180 181 /// Return the final value of the loop induction variable if found. 182 static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar, 183 const Instruction &StepInst) { 184 ICmpInst *LatchCmpInst = getLatchCmpInst(L); 185 if (!LatchCmpInst) 186 return nullptr; 187 188 Value *Op0 = LatchCmpInst->getOperand(0); 189 Value *Op1 = LatchCmpInst->getOperand(1); 190 if (Op0 == &IndVar || Op0 == &StepInst) 191 return Op1; 192 193 if (Op1 == &IndVar || Op1 == &StepInst) 194 return Op0; 195 196 return nullptr; 197 } 198 199 Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L, 200 PHINode &IndVar, 201 ScalarEvolution &SE) { 202 InductionDescriptor IndDesc; 203 if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc)) 204 return None; 205 206 Value *InitialIVValue = IndDesc.getStartValue(); 207 Instruction *StepInst = IndDesc.getInductionBinOp(); 208 if (!InitialIVValue || !StepInst) 209 return None; 210 211 const SCEV *Step = IndDesc.getStep(); 212 Value *StepInstOp1 = StepInst->getOperand(1); 213 Value *StepInstOp0 = StepInst->getOperand(0); 214 Value *StepValue = nullptr; 215 if (SE.getSCEV(StepInstOp1) == Step) 216 StepValue = StepInstOp1; 217 else if (SE.getSCEV(StepInstOp0) == Step) 218 StepValue = StepInstOp0; 219 220 Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst); 221 if (!FinalIVValue) 222 return None; 223 224 return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue, 225 SE); 226 } 227 228 using Direction = Loop::LoopBounds::Direction; 229 230 ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const { 231 BasicBlock *Latch = L.getLoopLatch(); 232 assert(Latch && "Expecting valid latch"); 233 234 BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()); 235 assert(BI && BI->isConditional() && "Expecting conditional latch branch"); 236 237 ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition()); 238 assert(LatchCmpInst && 239 "Expecting the latch compare instruction to be a CmpInst"); 240 241 // Need to inverse the predicate when first successor is not the loop 242 // header 243 ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader()) 244 ? LatchCmpInst->getPredicate() 245 : LatchCmpInst->getInversePredicate(); 246 247 if (LatchCmpInst->getOperand(0) == &getFinalIVValue()) 248 Pred = ICmpInst::getSwappedPredicate(Pred); 249 250 // Need to flip strictness of the predicate when the latch compare instruction 251 // is not using StepInst 252 if (LatchCmpInst->getOperand(0) == &getStepInst() || 253 LatchCmpInst->getOperand(1) == &getStepInst()) 254 return Pred; 255 256 // Cannot flip strictness of NE and EQ 257 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 258 return ICmpInst::getFlippedStrictnessPredicate(Pred); 259 260 Direction D = getDirection(); 261 if (D == Direction::Increasing) 262 return ICmpInst::ICMP_SLT; 263 264 if (D == Direction::Decreasing) 265 return ICmpInst::ICMP_SGT; 266 267 // If cannot determine the direction, then unable to find the canonical 268 // predicate 269 return ICmpInst::BAD_ICMP_PREDICATE; 270 } 271 272 Direction Loop::LoopBounds::getDirection() const { 273 if (const SCEVAddRecExpr *StepAddRecExpr = 274 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst()))) 275 if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) { 276 if (SE.isKnownPositive(StepRecur)) 277 return Direction::Increasing; 278 if (SE.isKnownNegative(StepRecur)) 279 return Direction::Decreasing; 280 } 281 282 return Direction::Unknown; 283 } 284 285 Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const { 286 if (PHINode *IndVar = getInductionVariable(SE)) 287 return LoopBounds::getBounds(*this, *IndVar, SE); 288 289 return None; 290 } 291 292 PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const { 293 if (!isLoopSimplifyForm()) 294 return nullptr; 295 296 BasicBlock *Header = getHeader(); 297 assert(Header && "Expected a valid loop header"); 298 ICmpInst *CmpInst = getLatchCmpInst(*this); 299 if (!CmpInst) 300 return nullptr; 301 302 Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0)); 303 Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1)); 304 305 for (PHINode &IndVar : Header->phis()) { 306 InductionDescriptor IndDesc; 307 if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc)) 308 continue; 309 310 Instruction *StepInst = IndDesc.getInductionBinOp(); 311 312 // case 1: 313 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] 314 // StepInst = IndVar + step 315 // cmp = StepInst < FinalValue 316 if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1) 317 return &IndVar; 318 319 // case 2: 320 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] 321 // StepInst = IndVar + step 322 // cmp = IndVar < FinalValue 323 if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1) 324 return &IndVar; 325 } 326 327 return nullptr; 328 } 329 330 bool Loop::getInductionDescriptor(ScalarEvolution &SE, 331 InductionDescriptor &IndDesc) const { 332 if (PHINode *IndVar = getInductionVariable(SE)) 333 return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc); 334 335 return false; 336 } 337 338 bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar, 339 ScalarEvolution &SE) const { 340 // Located in the loop header 341 BasicBlock *Header = getHeader(); 342 if (AuxIndVar.getParent() != Header) 343 return false; 344 345 // No uses outside of the loop 346 for (User *U : AuxIndVar.users()) 347 if (const Instruction *I = dyn_cast<Instruction>(U)) 348 if (!contains(I)) 349 return false; 350 351 InductionDescriptor IndDesc; 352 if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc)) 353 return false; 354 355 // The step instruction opcode should be add or sub. 356 if (IndDesc.getInductionOpcode() != Instruction::Add && 357 IndDesc.getInductionOpcode() != Instruction::Sub) 358 return false; 359 360 // Incremented by a loop invariant step for each loop iteration 361 return SE.isLoopInvariant(IndDesc.getStep(), this); 362 } 363 364 BranchInst *Loop::getLoopGuardBranch() const { 365 if (!isLoopSimplifyForm()) 366 return nullptr; 367 368 BasicBlock *Preheader = getLoopPreheader(); 369 assert(Preheader && getLoopLatch() && 370 "Expecting a loop with valid preheader and latch"); 371 372 // Loop should be in rotate form. 373 if (!isRotatedForm()) 374 return nullptr; 375 376 // Disallow loops with more than one unique exit block, as we do not verify 377 // that GuardOtherSucc post dominates all exit blocks. 378 BasicBlock *ExitFromLatch = getUniqueExitBlock(); 379 if (!ExitFromLatch) 380 return nullptr; 381 382 BasicBlock *ExitFromLatchSucc = ExitFromLatch->getUniqueSuccessor(); 383 if (!ExitFromLatchSucc) 384 return nullptr; 385 386 BasicBlock *GuardBB = Preheader->getUniquePredecessor(); 387 if (!GuardBB) 388 return nullptr; 389 390 assert(GuardBB->getTerminator() && "Expecting valid guard terminator"); 391 392 BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator()); 393 if (!GuardBI || GuardBI->isUnconditional()) 394 return nullptr; 395 396 BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader) 397 ? GuardBI->getSuccessor(1) 398 : GuardBI->getSuccessor(0); 399 return (GuardOtherSucc == ExitFromLatchSucc) ? GuardBI : nullptr; 400 } 401 402 bool Loop::isCanonical(ScalarEvolution &SE) const { 403 InductionDescriptor IndDesc; 404 if (!getInductionDescriptor(SE, IndDesc)) 405 return false; 406 407 ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue()); 408 if (!Init || !Init->isZero()) 409 return false; 410 411 if (IndDesc.getInductionOpcode() != Instruction::Add) 412 return false; 413 414 ConstantInt *Step = IndDesc.getConstIntStepValue(); 415 if (!Step || !Step->isOne()) 416 return false; 417 418 return true; 419 } 420 421 // Check that 'BB' doesn't have any uses outside of the 'L' 422 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, 423 const DominatorTree &DT) { 424 for (const Instruction &I : BB) { 425 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 426 // optimizations, so for the purposes of considered LCSSA form, we 427 // can ignore them. 428 if (I.getType()->isTokenTy()) 429 continue; 430 431 for (const Use &U : I.uses()) { 432 const Instruction *UI = cast<Instruction>(U.getUser()); 433 const BasicBlock *UserBB = UI->getParent(); 434 435 // For practical purposes, we consider that the use in a PHI 436 // occurs in the respective predecessor block. For more info, 437 // see the `phi` doc in LangRef and the LCSSA doc. 438 if (const PHINode *P = dyn_cast<PHINode>(UI)) 439 UserBB = P->getIncomingBlock(U); 440 441 // Check the current block, as a fast-path, before checking whether 442 // the use is anywhere in the loop. Most values are used in the same 443 // block they are defined in. Also, blocks not reachable from the 444 // entry are special; uses in them don't need to go through PHIs. 445 if (UserBB != &BB && !L.contains(UserBB) && 446 DT.isReachableFromEntry(UserBB)) 447 return false; 448 } 449 } 450 return true; 451 } 452 453 bool Loop::isLCSSAForm(const DominatorTree &DT) const { 454 // For each block we check that it doesn't have any uses outside of this loop. 455 return all_of(this->blocks(), [&](const BasicBlock *BB) { 456 return isBlockInLCSSAForm(*this, *BB, DT); 457 }); 458 } 459 460 bool Loop::isRecursivelyLCSSAForm(const DominatorTree &DT, 461 const LoopInfo &LI) const { 462 // For each block we check that it doesn't have any uses outside of its 463 // innermost loop. This process will transitively guarantee that the current 464 // loop and all of the nested loops are in LCSSA form. 465 return all_of(this->blocks(), [&](const BasicBlock *BB) { 466 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT); 467 }); 468 } 469 470 bool Loop::isLoopSimplifyForm() const { 471 // Normal-form loops have a preheader, a single backedge, and all of their 472 // exits have all their predecessors inside the loop. 473 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 474 } 475 476 // Routines that reform the loop CFG and split edges often fail on indirectbr. 477 bool Loop::isSafeToClone() const { 478 // Return false if any loop blocks contain indirectbrs, or there are any calls 479 // to noduplicate functions. 480 // FIXME: it should be ok to clone CallBrInst's if we correctly update the 481 // operand list to reflect the newly cloned labels. 482 for (BasicBlock *BB : this->blocks()) { 483 if (isa<IndirectBrInst>(BB->getTerminator()) || 484 isa<CallBrInst>(BB->getTerminator())) 485 return false; 486 487 for (Instruction &I : *BB) 488 if (auto *CB = dyn_cast<CallBase>(&I)) 489 if (CB->cannotDuplicate()) 490 return false; 491 } 492 return true; 493 } 494 495 MDNode *Loop::getLoopID() const { 496 MDNode *LoopID = nullptr; 497 498 // Go through the latch blocks and check the terminator for the metadata. 499 SmallVector<BasicBlock *, 4> LatchesBlocks; 500 getLoopLatches(LatchesBlocks); 501 for (BasicBlock *BB : LatchesBlocks) { 502 Instruction *TI = BB->getTerminator(); 503 MDNode *MD = TI->getMetadata(LLVMContext::MD_loop); 504 505 if (!MD) 506 return nullptr; 507 508 if (!LoopID) 509 LoopID = MD; 510 else if (MD != LoopID) 511 return nullptr; 512 } 513 if (!LoopID || LoopID->getNumOperands() == 0 || 514 LoopID->getOperand(0) != LoopID) 515 return nullptr; 516 return LoopID; 517 } 518 519 void Loop::setLoopID(MDNode *LoopID) const { 520 assert((!LoopID || LoopID->getNumOperands() > 0) && 521 "Loop ID needs at least one operand"); 522 assert((!LoopID || LoopID->getOperand(0) == LoopID) && 523 "Loop ID should refer to itself"); 524 525 SmallVector<BasicBlock *, 4> LoopLatches; 526 getLoopLatches(LoopLatches); 527 for (BasicBlock *BB : LoopLatches) 528 BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); 529 } 530 531 void Loop::setLoopAlreadyUnrolled() { 532 LLVMContext &Context = getHeader()->getContext(); 533 534 MDNode *DisableUnrollMD = 535 MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable")); 536 MDNode *LoopID = getLoopID(); 537 MDNode *NewLoopID = makePostTransformationMetadata( 538 Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD}); 539 setLoopID(NewLoopID); 540 } 541 542 bool Loop::isAnnotatedParallel() const { 543 MDNode *DesiredLoopIdMetadata = getLoopID(); 544 545 if (!DesiredLoopIdMetadata) 546 return false; 547 548 MDNode *ParallelAccesses = 549 findOptionMDForLoop(this, "llvm.loop.parallel_accesses"); 550 SmallPtrSet<MDNode *, 4> 551 ParallelAccessGroups; // For scalable 'contains' check. 552 if (ParallelAccesses) { 553 for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) { 554 MDNode *AccGroup = cast<MDNode>(MD.get()); 555 assert(isValidAsAccessGroup(AccGroup) && 556 "List item must be an access group"); 557 ParallelAccessGroups.insert(AccGroup); 558 } 559 } 560 561 // The loop branch contains the parallel loop metadata. In order to ensure 562 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 563 // dependencies (thus converted the loop back to a sequential loop), check 564 // that all the memory instructions in the loop belong to an access group that 565 // is parallel to this loop. 566 for (BasicBlock *BB : this->blocks()) { 567 for (Instruction &I : *BB) { 568 if (!I.mayReadOrWriteMemory()) 569 continue; 570 571 if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) { 572 auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool { 573 if (AG->getNumOperands() == 0) { 574 assert(isValidAsAccessGroup(AG) && "Item must be an access group"); 575 return ParallelAccessGroups.count(AG); 576 } 577 578 for (const MDOperand &AccessListItem : AG->operands()) { 579 MDNode *AccGroup = cast<MDNode>(AccessListItem.get()); 580 assert(isValidAsAccessGroup(AccGroup) && 581 "List item must be an access group"); 582 if (ParallelAccessGroups.count(AccGroup)) 583 return true; 584 } 585 return false; 586 }; 587 588 if (ContainsAccessGroup(AccessGroup)) 589 continue; 590 } 591 592 // The memory instruction can refer to the loop identifier metadata 593 // directly or indirectly through another list metadata (in case of 594 // nested parallel loops). The loop identifier metadata refers to 595 // itself so we can check both cases with the same routine. 596 MDNode *LoopIdMD = 597 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 598 599 if (!LoopIdMD) 600 return false; 601 602 bool LoopIdMDFound = false; 603 for (const MDOperand &MDOp : LoopIdMD->operands()) { 604 if (MDOp == DesiredLoopIdMetadata) { 605 LoopIdMDFound = true; 606 break; 607 } 608 } 609 610 if (!LoopIdMDFound) 611 return false; 612 } 613 } 614 return true; 615 } 616 617 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } 618 619 Loop::LocRange Loop::getLocRange() const { 620 // If we have a debug location in the loop ID, then use it. 621 if (MDNode *LoopID = getLoopID()) { 622 DebugLoc Start; 623 // We use the first DebugLoc in the header as the start location of the loop 624 // and if there is a second DebugLoc in the header we use it as end location 625 // of the loop. 626 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 627 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) { 628 if (!Start) 629 Start = DebugLoc(L); 630 else 631 return LocRange(Start, DebugLoc(L)); 632 } 633 } 634 635 if (Start) 636 return LocRange(Start); 637 } 638 639 // Try the pre-header first. 640 if (BasicBlock *PHeadBB = getLoopPreheader()) 641 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) 642 return LocRange(DL); 643 644 // If we have no pre-header or there are no instructions with debug 645 // info in it, try the header. 646 if (BasicBlock *HeadBB = getHeader()) 647 return LocRange(HeadBB->getTerminator()->getDebugLoc()); 648 649 return LocRange(); 650 } 651 652 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 653 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } 654 655 LLVM_DUMP_METHOD void Loop::dumpVerbose() const { 656 print(dbgs(), /*Depth=*/0, /*Verbose=*/true); 657 } 658 #endif 659 660 //===----------------------------------------------------------------------===// 661 // UnloopUpdater implementation 662 // 663 664 namespace { 665 /// Find the new parent loop for all blocks within the "unloop" whose last 666 /// backedges has just been removed. 667 class UnloopUpdater { 668 Loop &Unloop; 669 LoopInfo *LI; 670 671 LoopBlocksDFS DFS; 672 673 // Map unloop's immediate subloops to their nearest reachable parents. Nested 674 // loops within these subloops will not change parents. However, an immediate 675 // subloop's new parent will be the nearest loop reachable from either its own 676 // exits *or* any of its nested loop's exits. 677 DenseMap<Loop *, Loop *> SubloopParents; 678 679 // Flag the presence of an irreducible backedge whose destination is a block 680 // directly contained by the original unloop. 681 bool FoundIB; 682 683 public: 684 UnloopUpdater(Loop *UL, LoopInfo *LInfo) 685 : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} 686 687 void updateBlockParents(); 688 689 void removeBlocksFromAncestors(); 690 691 void updateSubloopParents(); 692 693 protected: 694 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 695 }; 696 } // end anonymous namespace 697 698 /// Update the parent loop for all blocks that are directly contained within the 699 /// original "unloop". 700 void UnloopUpdater::updateBlockParents() { 701 if (Unloop.getNumBlocks()) { 702 // Perform a post order CFG traversal of all blocks within this loop, 703 // propagating the nearest loop from successors to predecessors. 704 LoopBlocksTraversal Traversal(DFS, LI); 705 for (BasicBlock *POI : Traversal) { 706 707 Loop *L = LI->getLoopFor(POI); 708 Loop *NL = getNearestLoop(POI, L); 709 710 if (NL != L) { 711 // For reducible loops, NL is now an ancestor of Unloop. 712 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && 713 "uninitialized successor"); 714 LI->changeLoopFor(POI, NL); 715 } else { 716 // Or the current block is part of a subloop, in which case its parent 717 // is unchanged. 718 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); 719 } 720 } 721 } 722 // Each irreducible loop within the unloop induces a round of iteration using 723 // the DFS result cached by Traversal. 724 bool Changed = FoundIB; 725 for (unsigned NIters = 0; Changed; ++NIters) { 726 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); 727 728 // Iterate over the postorder list of blocks, propagating the nearest loop 729 // from successors to predecessors as before. 730 Changed = false; 731 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 732 POE = DFS.endPostorder(); 733 POI != POE; ++POI) { 734 735 Loop *L = LI->getLoopFor(*POI); 736 Loop *NL = getNearestLoop(*POI, L); 737 if (NL != L) { 738 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && 739 "uninitialized successor"); 740 LI->changeLoopFor(*POI, NL); 741 Changed = true; 742 } 743 } 744 } 745 } 746 747 /// Remove unloop's blocks from all ancestors below their new parents. 748 void UnloopUpdater::removeBlocksFromAncestors() { 749 // Remove all unloop's blocks (including those in nested subloops) from 750 // ancestors below the new parent loop. 751 for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end(); 752 BI != BE; ++BI) { 753 Loop *OuterParent = LI->getLoopFor(*BI); 754 if (Unloop.contains(OuterParent)) { 755 while (OuterParent->getParentLoop() != &Unloop) 756 OuterParent = OuterParent->getParentLoop(); 757 OuterParent = SubloopParents[OuterParent]; 758 } 759 // Remove blocks from former Ancestors except Unloop itself which will be 760 // deleted. 761 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; 762 OldParent = OldParent->getParentLoop()) { 763 assert(OldParent && "new loop is not an ancestor of the original"); 764 OldParent->removeBlockFromLoop(*BI); 765 } 766 } 767 } 768 769 /// Update the parent loop for all subloops directly nested within unloop. 770 void UnloopUpdater::updateSubloopParents() { 771 while (!Unloop.isInnermost()) { 772 Loop *Subloop = *std::prev(Unloop.end()); 773 Unloop.removeChildLoop(std::prev(Unloop.end())); 774 775 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 776 if (Loop *Parent = SubloopParents[Subloop]) 777 Parent->addChildLoop(Subloop); 778 else 779 LI->addTopLevelLoop(Subloop); 780 } 781 } 782 783 /// Return the nearest parent loop among this block's successors. If a successor 784 /// is a subloop header, consider its parent to be the nearest parent of the 785 /// subloop's exits. 786 /// 787 /// For subloop blocks, simply update SubloopParents and return NULL. 788 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 789 790 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 791 // is considered uninitialized. 792 Loop *NearLoop = BBLoop; 793 794 Loop *Subloop = nullptr; 795 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { 796 Subloop = NearLoop; 797 // Find the subloop ancestor that is directly contained within Unloop. 798 while (Subloop->getParentLoop() != &Unloop) { 799 Subloop = Subloop->getParentLoop(); 800 assert(Subloop && "subloop is not an ancestor of the original loop"); 801 } 802 // Get the current nearest parent of the Subloop exits, initially Unloop. 803 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; 804 } 805 806 succ_iterator I = succ_begin(BB), E = succ_end(BB); 807 if (I == E) { 808 assert(!Subloop && "subloop blocks must have a successor"); 809 NearLoop = nullptr; // unloop blocks may now exit the function. 810 } 811 for (; I != E; ++I) { 812 if (*I == BB) 813 continue; // self loops are uninteresting 814 815 Loop *L = LI->getLoopFor(*I); 816 if (L == &Unloop) { 817 // This successor has not been processed. This path must lead to an 818 // irreducible backedge. 819 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 820 FoundIB = true; 821 } 822 if (L != &Unloop && Unloop.contains(L)) { 823 // Successor is in a subloop. 824 if (Subloop) 825 continue; // Branching within subloops. Ignore it. 826 827 // BB branches from the original into a subloop header. 828 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); 829 830 // Get the current nearest parent of the Subloop's exits. 831 L = SubloopParents[L]; 832 // L could be Unloop if the only exit was an irreducible backedge. 833 } 834 if (L == &Unloop) { 835 continue; 836 } 837 // Handle critical edges from Unloop into a sibling loop. 838 if (L && !L->contains(&Unloop)) { 839 L = L->getParentLoop(); 840 } 841 // Remember the nearest parent loop among successors or subloop exits. 842 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) 843 NearLoop = L; 844 } 845 if (Subloop) { 846 SubloopParents[Subloop] = NearLoop; 847 return BBLoop; 848 } 849 return NearLoop; 850 } 851 852 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); } 853 854 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, 855 FunctionAnalysisManager::Invalidator &) { 856 // Check whether the analysis, all analyses on functions, or the function's 857 // CFG have been preserved. 858 auto PAC = PA.getChecker<LoopAnalysis>(); 859 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 860 PAC.preservedSet<CFGAnalyses>()); 861 } 862 863 void LoopInfo::erase(Loop *Unloop) { 864 assert(!Unloop->isInvalid() && "Loop has already been erased!"); 865 866 auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); 867 868 // First handle the special case of no parent loop to simplify the algorithm. 869 if (Unloop->isOutermost()) { 870 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 871 for (Loop::block_iterator I = Unloop->block_begin(), 872 E = Unloop->block_end(); 873 I != E; ++I) { 874 875 // Don't reparent blocks in subloops. 876 if (getLoopFor(*I) != Unloop) 877 continue; 878 879 // Blocks no longer have a parent but are still referenced by Unloop until 880 // the Unloop object is deleted. 881 changeLoopFor(*I, nullptr); 882 } 883 884 // Remove the loop from the top-level LoopInfo object. 885 for (iterator I = begin();; ++I) { 886 assert(I != end() && "Couldn't find loop"); 887 if (*I == Unloop) { 888 removeLoop(I); 889 break; 890 } 891 } 892 893 // Move all of the subloops to the top-level. 894 while (!Unloop->isInnermost()) 895 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 896 897 return; 898 } 899 900 // Update the parent loop for all blocks within the loop. Blocks within 901 // subloops will not change parents. 902 UnloopUpdater Updater(Unloop, this); 903 Updater.updateBlockParents(); 904 905 // Remove blocks from former ancestor loops. 906 Updater.removeBlocksFromAncestors(); 907 908 // Add direct subloops as children in their new parent loop. 909 Updater.updateSubloopParents(); 910 911 // Remove unloop from its parent loop. 912 Loop *ParentLoop = Unloop->getParentLoop(); 913 for (Loop::iterator I = ParentLoop->begin();; ++I) { 914 assert(I != ParentLoop->end() && "Couldn't find loop"); 915 if (*I == Unloop) { 916 ParentLoop->removeChildLoop(I); 917 break; 918 } 919 } 920 } 921 922 AnalysisKey LoopAnalysis::Key; 923 924 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 925 // FIXME: Currently we create a LoopInfo from scratch for every function. 926 // This may prove to be too wasteful due to deallocating and re-allocating 927 // memory each time for the underlying map and vector datastructures. At some 928 // point it may prove worthwhile to use a freelist and recycle LoopInfo 929 // objects. I don't want to add that kind of complexity until the scope of 930 // the problem is better understood. 931 LoopInfo LI; 932 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); 933 return LI; 934 } 935 936 PreservedAnalyses LoopPrinterPass::run(Function &F, 937 FunctionAnalysisManager &AM) { 938 AM.getResult<LoopAnalysis>(F).print(OS); 939 return PreservedAnalyses::all(); 940 } 941 942 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { 943 944 if (forcePrintModuleIR()) { 945 // handling -print-module-scope 946 OS << Banner << " (loop: "; 947 L.getHeader()->printAsOperand(OS, false); 948 OS << ")\n"; 949 950 // printing whole module 951 OS << *L.getHeader()->getModule(); 952 return; 953 } 954 955 OS << Banner; 956 957 auto *PreHeader = L.getLoopPreheader(); 958 if (PreHeader) { 959 OS << "\n; Preheader:"; 960 PreHeader->print(OS); 961 OS << "\n; Loop:"; 962 } 963 964 for (auto *Block : L.blocks()) 965 if (Block) 966 Block->print(OS); 967 else 968 OS << "Printing <null> block"; 969 970 SmallVector<BasicBlock *, 8> ExitBlocks; 971 L.getExitBlocks(ExitBlocks); 972 if (!ExitBlocks.empty()) { 973 OS << "\n; Exit blocks"; 974 for (auto *Block : ExitBlocks) 975 if (Block) 976 Block->print(OS); 977 else 978 OS << "Printing <null> block"; 979 } 980 } 981 982 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) { 983 // No loop metadata node, no loop properties. 984 if (!LoopID) 985 return nullptr; 986 987 // First operand should refer to the metadata node itself, for legacy reasons. 988 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 989 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 990 991 // Iterate over the metdata node operands and look for MDString metadata. 992 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 993 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 994 if (!MD || MD->getNumOperands() < 1) 995 continue; 996 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 997 if (!S) 998 continue; 999 // Return the operand node if MDString holds expected metadata. 1000 if (Name.equals(S->getString())) 1001 return MD; 1002 } 1003 1004 // Loop property not found. 1005 return nullptr; 1006 } 1007 1008 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) { 1009 return findOptionMDForLoopID(TheLoop->getLoopID(), Name); 1010 } 1011 1012 bool llvm::isValidAsAccessGroup(MDNode *Node) { 1013 return Node->getNumOperands() == 0 && Node->isDistinct(); 1014 } 1015 1016 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context, 1017 MDNode *OrigLoopID, 1018 ArrayRef<StringRef> RemovePrefixes, 1019 ArrayRef<MDNode *> AddAttrs) { 1020 // First remove any existing loop metadata related to this transformation. 1021 SmallVector<Metadata *, 4> MDs; 1022 1023 // Reserve first location for self reference to the LoopID metadata node. 1024 MDs.push_back(nullptr); 1025 1026 // Remove metadata for the transformation that has been applied or that became 1027 // outdated. 1028 if (OrigLoopID) { 1029 for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) { 1030 bool IsVectorMetadata = false; 1031 Metadata *Op = OrigLoopID->getOperand(i); 1032 if (MDNode *MD = dyn_cast<MDNode>(Op)) { 1033 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1034 if (S) 1035 IsVectorMetadata = 1036 llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool { 1037 return S->getString().startswith(Prefix); 1038 }); 1039 } 1040 if (!IsVectorMetadata) 1041 MDs.push_back(Op); 1042 } 1043 } 1044 1045 // Add metadata to avoid reapplying a transformation, such as 1046 // llvm.loop.unroll.disable and llvm.loop.isvectorized. 1047 MDs.append(AddAttrs.begin(), AddAttrs.end()); 1048 1049 MDNode *NewLoopID = MDNode::getDistinct(Context, MDs); 1050 // Replace the temporary node with a self-reference. 1051 NewLoopID->replaceOperandWith(0, NewLoopID); 1052 return NewLoopID; 1053 } 1054 1055 //===----------------------------------------------------------------------===// 1056 // LoopInfo implementation 1057 // 1058 1059 LoopInfoWrapperPass::LoopInfoWrapperPass() : FunctionPass(ID) { 1060 initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 1061 } 1062 1063 char LoopInfoWrapperPass::ID = 0; 1064 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 1065 true, true) 1066 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1067 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 1068 true, true) 1069 1070 bool LoopInfoWrapperPass::runOnFunction(Function &) { 1071 releaseMemory(); 1072 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 1073 return false; 1074 } 1075 1076 void LoopInfoWrapperPass::verifyAnalysis() const { 1077 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 1078 // function each time verifyAnalysis is called is very expensive. The 1079 // -verify-loop-info option can enable this. In order to perform some 1080 // checking by default, LoopPass has been taught to call verifyLoop manually 1081 // during loop pass sequences. 1082 if (VerifyLoopInfo) { 1083 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1084 LI.verify(DT); 1085 } 1086 } 1087 1088 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1089 AU.setPreservesAll(); 1090 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1091 } 1092 1093 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 1094 LI.print(OS); 1095 } 1096 1097 PreservedAnalyses LoopVerifierPass::run(Function &F, 1098 FunctionAnalysisManager &AM) { 1099 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 1100 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1101 LI.verify(DT); 1102 return PreservedAnalyses::all(); 1103 } 1104 1105 //===----------------------------------------------------------------------===// 1106 // LoopBlocksDFS implementation 1107 // 1108 1109 /// Traverse the loop blocks and store the DFS result. 1110 /// Useful for clients that just want the final DFS result and don't need to 1111 /// visit blocks during the initial traversal. 1112 void LoopBlocksDFS::perform(LoopInfo *LI) { 1113 LoopBlocksTraversal Traversal(*this, LI); 1114 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 1115 POE = Traversal.end(); 1116 POI != POE; ++POI) 1117 ; 1118 } 1119