1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the LoopInfo class that is used to identify natural loops 11 // and determine the loop depth of various nodes of the CFG. Note that the 12 // loops identified may actually be several natural loops that share the same 13 // header node... not just a single natural loop. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/LoopInfoImpl.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DebugLoc.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/PassManager.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> 35 using namespace llvm; 36 37 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 38 template class llvm::LoopBase<BasicBlock, Loop>; 39 template class llvm::LoopInfoBase<BasicBlock, Loop>; 40 41 // Always verify loopinfo if expensive checking is enabled. 42 #ifdef EXPENSIVE_CHECKS 43 static bool VerifyLoopInfo = true; 44 #else 45 static bool VerifyLoopInfo = false; 46 #endif 47 static cl::opt<bool,true> 48 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 49 cl::desc("Verify loop info (time consuming)")); 50 51 //===----------------------------------------------------------------------===// 52 // Loop implementation 53 // 54 55 bool Loop::isLoopInvariant(const Value *V) const { 56 if (const Instruction *I = dyn_cast<Instruction>(V)) 57 return !contains(I); 58 return true; // All non-instructions are loop invariant 59 } 60 61 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 62 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 63 } 64 65 bool Loop::makeLoopInvariant(Value *V, bool &Changed, 66 Instruction *InsertPt) const { 67 if (Instruction *I = dyn_cast<Instruction>(V)) 68 return makeLoopInvariant(I, Changed, InsertPt); 69 return true; // All non-instructions are loop-invariant. 70 } 71 72 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 73 Instruction *InsertPt) const { 74 // Test if the value is already loop-invariant. 75 if (isLoopInvariant(I)) 76 return true; 77 if (!isSafeToSpeculativelyExecute(I)) 78 return false; 79 if (I->mayReadFromMemory()) 80 return false; 81 // EH block instructions are immobile. 82 if (I->isEHPad()) 83 return false; 84 // Determine the insertion point, unless one was given. 85 if (!InsertPt) { 86 BasicBlock *Preheader = getLoopPreheader(); 87 // Without a preheader, hoisting is not feasible. 88 if (!Preheader) 89 return false; 90 InsertPt = Preheader->getTerminator(); 91 } 92 // Don't hoist instructions with loop-variant operands. 93 for (Value *Operand : I->operands()) 94 if (!makeLoopInvariant(Operand, Changed, InsertPt)) 95 return false; 96 97 // Hoist. 98 I->moveBefore(InsertPt); 99 100 // There is possibility of hoisting this instruction above some arbitrary 101 // condition. Any metadata defined on it can be control dependent on this 102 // condition. Conservatively strip it here so that we don't give any wrong 103 // information to the optimizer. 104 I->dropUnknownNonDebugMetadata(); 105 106 Changed = true; 107 return true; 108 } 109 110 PHINode *Loop::getCanonicalInductionVariable() const { 111 BasicBlock *H = getHeader(); 112 113 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 114 pred_iterator PI = pred_begin(H); 115 assert(PI != pred_end(H) && 116 "Loop must have at least one backedge!"); 117 Backedge = *PI++; 118 if (PI == pred_end(H)) return nullptr; // dead loop 119 Incoming = *PI++; 120 if (PI != pred_end(H)) return nullptr; // multiple backedges? 121 122 if (contains(Incoming)) { 123 if (contains(Backedge)) 124 return nullptr; 125 std::swap(Incoming, Backedge); 126 } else if (!contains(Backedge)) 127 return nullptr; 128 129 // Loop over all of the PHI nodes, looking for a canonical indvar. 130 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 131 PHINode *PN = cast<PHINode>(I); 132 if (ConstantInt *CI = 133 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 134 if (CI->isNullValue()) 135 if (Instruction *Inc = 136 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 137 if (Inc->getOpcode() == Instruction::Add && 138 Inc->getOperand(0) == PN) 139 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 140 if (CI->equalsInt(1)) 141 return PN; 142 } 143 return nullptr; 144 } 145 146 bool Loop::isLCSSAForm(DominatorTree &DT) const { 147 for (BasicBlock *BB : this->blocks()) { 148 for (Instruction &I : *BB) { 149 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 150 // optimizations, so for the purposes of considered LCSSA form, we 151 // can ignore them. 152 if (I.getType()->isTokenTy()) 153 continue; 154 155 for (Use &U : I.uses()) { 156 Instruction *UI = cast<Instruction>(U.getUser()); 157 BasicBlock *UserBB = UI->getParent(); 158 if (PHINode *P = dyn_cast<PHINode>(UI)) 159 UserBB = P->getIncomingBlock(U); 160 161 // Check the current block, as a fast-path, before checking whether 162 // the use is anywhere in the loop. Most values are used in the same 163 // block they are defined in. Also, blocks not reachable from the 164 // entry are special; uses in them don't need to go through PHIs. 165 if (UserBB != BB && 166 !contains(UserBB) && 167 DT.isReachableFromEntry(UserBB)) 168 return false; 169 } 170 } 171 } 172 173 return true; 174 } 175 176 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT) const { 177 if (!isLCSSAForm(DT)) 178 return false; 179 180 return std::all_of(begin(), end(), [&](const Loop *L) { 181 return L->isRecursivelyLCSSAForm(DT); 182 }); 183 } 184 185 bool Loop::isLoopSimplifyForm() const { 186 // Normal-form loops have a preheader, a single backedge, and all of their 187 // exits have all their predecessors inside the loop. 188 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 189 } 190 191 // Routines that reform the loop CFG and split edges often fail on indirectbr. 192 bool Loop::isSafeToClone() const { 193 // Return false if any loop blocks contain indirectbrs, or there are any calls 194 // to noduplicate functions. 195 for (BasicBlock *BB : this->blocks()) { 196 if (isa<IndirectBrInst>(BB->getTerminator())) 197 return false; 198 199 for (Instruction &I : *BB) 200 if (auto CS = CallSite(&I)) 201 if (CS.cannotDuplicate()) 202 return false; 203 } 204 return true; 205 } 206 207 MDNode *Loop::getLoopID() const { 208 MDNode *LoopID = nullptr; 209 if (isLoopSimplifyForm()) { 210 LoopID = getLoopLatch()->getTerminator()->getMetadata(LLVMContext::MD_loop); 211 } else { 212 // Go through each predecessor of the loop header and check the 213 // terminator for the metadata. 214 BasicBlock *H = getHeader(); 215 for (BasicBlock *BB : this->blocks()) { 216 TerminatorInst *TI = BB->getTerminator(); 217 MDNode *MD = nullptr; 218 219 // Check if this terminator branches to the loop header. 220 for (BasicBlock *Successor : TI->successors()) { 221 if (Successor == H) { 222 MD = TI->getMetadata(LLVMContext::MD_loop); 223 break; 224 } 225 } 226 if (!MD) 227 return nullptr; 228 229 if (!LoopID) 230 LoopID = MD; 231 else if (MD != LoopID) 232 return nullptr; 233 } 234 } 235 if (!LoopID || LoopID->getNumOperands() == 0 || 236 LoopID->getOperand(0) != LoopID) 237 return nullptr; 238 return LoopID; 239 } 240 241 void Loop::setLoopID(MDNode *LoopID) const { 242 assert(LoopID && "Loop ID should not be null"); 243 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand"); 244 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself"); 245 246 if (isLoopSimplifyForm()) { 247 getLoopLatch()->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); 248 return; 249 } 250 251 BasicBlock *H = getHeader(); 252 for (BasicBlock *BB : this->blocks()) { 253 TerminatorInst *TI = BB->getTerminator(); 254 for (BasicBlock *Successor : TI->successors()) { 255 if (Successor == H) 256 TI->setMetadata(LLVMContext::MD_loop, LoopID); 257 } 258 } 259 } 260 261 bool Loop::isAnnotatedParallel() const { 262 MDNode *DesiredLoopIdMetadata = getLoopID(); 263 264 if (!DesiredLoopIdMetadata) 265 return false; 266 267 // The loop branch contains the parallel loop metadata. In order to ensure 268 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 269 // dependencies (thus converted the loop back to a sequential loop), check 270 // that all the memory instructions in the loop contain parallelism metadata 271 // that point to the same unique "loop id metadata" the loop branch does. 272 for (BasicBlock *BB : this->blocks()) { 273 for (Instruction &I : *BB) { 274 if (!I.mayReadOrWriteMemory()) 275 continue; 276 277 // The memory instruction can refer to the loop identifier metadata 278 // directly or indirectly through another list metadata (in case of 279 // nested parallel loops). The loop identifier metadata refers to 280 // itself so we can check both cases with the same routine. 281 MDNode *LoopIdMD = 282 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 283 284 if (!LoopIdMD) 285 return false; 286 287 bool LoopIdMDFound = false; 288 for (const MDOperand &MDOp : LoopIdMD->operands()) { 289 if (MDOp == DesiredLoopIdMetadata) { 290 LoopIdMDFound = true; 291 break; 292 } 293 } 294 295 if (!LoopIdMDFound) 296 return false; 297 } 298 } 299 return true; 300 } 301 302 DebugLoc Loop::getStartLoc() const { 303 // If we have a debug location in the loop ID, then use it. 304 if (MDNode *LoopID = getLoopID()) 305 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) 306 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) 307 return DebugLoc(L); 308 309 // Try the pre-header first. 310 if (BasicBlock *PHeadBB = getLoopPreheader()) 311 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) 312 return DL; 313 314 // If we have no pre-header or there are no instructions with debug 315 // info in it, try the header. 316 if (BasicBlock *HeadBB = getHeader()) 317 return HeadBB->getTerminator()->getDebugLoc(); 318 319 return DebugLoc(); 320 } 321 322 bool Loop::hasDedicatedExits() const { 323 // Each predecessor of each exit block of a normal loop is contained 324 // within the loop. 325 SmallVector<BasicBlock *, 4> ExitBlocks; 326 getExitBlocks(ExitBlocks); 327 for (BasicBlock *BB : ExitBlocks) 328 for (BasicBlock *Predecessor : predecessors(BB)) 329 if (!contains(Predecessor)) 330 return false; 331 // All the requirements are met. 332 return true; 333 } 334 335 void 336 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const { 337 assert(hasDedicatedExits() && 338 "getUniqueExitBlocks assumes the loop has canonical form exits!"); 339 340 SmallVector<BasicBlock *, 32> SwitchExitBlocks; 341 for (BasicBlock *BB : this->blocks()) { 342 SwitchExitBlocks.clear(); 343 for (BasicBlock *Successor : successors(BB)) { 344 // If block is inside the loop then it is not an exit block. 345 if (contains(Successor)) 346 continue; 347 348 pred_iterator PI = pred_begin(Successor); 349 BasicBlock *FirstPred = *PI; 350 351 // If current basic block is this exit block's first predecessor 352 // then only insert exit block in to the output ExitBlocks vector. 353 // This ensures that same exit block is not inserted twice into 354 // ExitBlocks vector. 355 if (BB != FirstPred) 356 continue; 357 358 // If a terminator has more then two successors, for example SwitchInst, 359 // then it is possible that there are multiple edges from current block 360 // to one exit block. 361 if (std::distance(succ_begin(BB), succ_end(BB)) <= 2) { 362 ExitBlocks.push_back(Successor); 363 continue; 364 } 365 366 // In case of multiple edges from current block to exit block, collect 367 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of 368 // duplicate edges. 369 if (std::find(SwitchExitBlocks.begin(), SwitchExitBlocks.end(), Successor) 370 == SwitchExitBlocks.end()) { 371 SwitchExitBlocks.push_back(Successor); 372 ExitBlocks.push_back(Successor); 373 } 374 } 375 } 376 } 377 378 BasicBlock *Loop::getUniqueExitBlock() const { 379 SmallVector<BasicBlock *, 8> UniqueExitBlocks; 380 getUniqueExitBlocks(UniqueExitBlocks); 381 if (UniqueExitBlocks.size() == 1) 382 return UniqueExitBlocks[0]; 383 return nullptr; 384 } 385 386 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 387 LLVM_DUMP_METHOD void Loop::dump() const { 388 print(dbgs()); 389 } 390 391 LLVM_DUMP_METHOD void Loop::dumpVerbose() const { 392 print(dbgs(), /*Depth=*/ 0, /*Verbose=*/ true); 393 } 394 #endif 395 396 //===----------------------------------------------------------------------===// 397 // UnloopUpdater implementation 398 // 399 400 namespace { 401 /// Find the new parent loop for all blocks within the "unloop" whose last 402 /// backedges has just been removed. 403 class UnloopUpdater { 404 Loop &Unloop; 405 LoopInfo *LI; 406 407 LoopBlocksDFS DFS; 408 409 // Map unloop's immediate subloops to their nearest reachable parents. Nested 410 // loops within these subloops will not change parents. However, an immediate 411 // subloop's new parent will be the nearest loop reachable from either its own 412 // exits *or* any of its nested loop's exits. 413 DenseMap<Loop*, Loop*> SubloopParents; 414 415 // Flag the presence of an irreducible backedge whose destination is a block 416 // directly contained by the original unloop. 417 bool FoundIB; 418 419 public: 420 UnloopUpdater(Loop *UL, LoopInfo *LInfo) : 421 Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} 422 423 void updateBlockParents(); 424 425 void removeBlocksFromAncestors(); 426 427 void updateSubloopParents(); 428 429 protected: 430 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 431 }; 432 } // end anonymous namespace 433 434 /// Update the parent loop for all blocks that are directly contained within the 435 /// original "unloop". 436 void UnloopUpdater::updateBlockParents() { 437 if (Unloop.getNumBlocks()) { 438 // Perform a post order CFG traversal of all blocks within this loop, 439 // propagating the nearest loop from sucessors to predecessors. 440 LoopBlocksTraversal Traversal(DFS, LI); 441 for (BasicBlock *POI : Traversal) { 442 443 Loop *L = LI->getLoopFor(POI); 444 Loop *NL = getNearestLoop(POI, L); 445 446 if (NL != L) { 447 // For reducible loops, NL is now an ancestor of Unloop. 448 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && 449 "uninitialized successor"); 450 LI->changeLoopFor(POI, NL); 451 } 452 else { 453 // Or the current block is part of a subloop, in which case its parent 454 // is unchanged. 455 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); 456 } 457 } 458 } 459 // Each irreducible loop within the unloop induces a round of iteration using 460 // the DFS result cached by Traversal. 461 bool Changed = FoundIB; 462 for (unsigned NIters = 0; Changed; ++NIters) { 463 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); 464 465 // Iterate over the postorder list of blocks, propagating the nearest loop 466 // from successors to predecessors as before. 467 Changed = false; 468 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 469 POE = DFS.endPostorder(); POI != POE; ++POI) { 470 471 Loop *L = LI->getLoopFor(*POI); 472 Loop *NL = getNearestLoop(*POI, L); 473 if (NL != L) { 474 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && 475 "uninitialized successor"); 476 LI->changeLoopFor(*POI, NL); 477 Changed = true; 478 } 479 } 480 } 481 } 482 483 /// Remove unloop's blocks from all ancestors below their new parents. 484 void UnloopUpdater::removeBlocksFromAncestors() { 485 // Remove all unloop's blocks (including those in nested subloops) from 486 // ancestors below the new parent loop. 487 for (Loop::block_iterator BI = Unloop.block_begin(), 488 BE = Unloop.block_end(); BI != BE; ++BI) { 489 Loop *OuterParent = LI->getLoopFor(*BI); 490 if (Unloop.contains(OuterParent)) { 491 while (OuterParent->getParentLoop() != &Unloop) 492 OuterParent = OuterParent->getParentLoop(); 493 OuterParent = SubloopParents[OuterParent]; 494 } 495 // Remove blocks from former Ancestors except Unloop itself which will be 496 // deleted. 497 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; 498 OldParent = OldParent->getParentLoop()) { 499 assert(OldParent && "new loop is not an ancestor of the original"); 500 OldParent->removeBlockFromLoop(*BI); 501 } 502 } 503 } 504 505 /// Update the parent loop for all subloops directly nested within unloop. 506 void UnloopUpdater::updateSubloopParents() { 507 while (!Unloop.empty()) { 508 Loop *Subloop = *std::prev(Unloop.end()); 509 Unloop.removeChildLoop(std::prev(Unloop.end())); 510 511 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 512 if (Loop *Parent = SubloopParents[Subloop]) 513 Parent->addChildLoop(Subloop); 514 else 515 LI->addTopLevelLoop(Subloop); 516 } 517 } 518 519 /// Return the nearest parent loop among this block's successors. If a successor 520 /// is a subloop header, consider its parent to be the nearest parent of the 521 /// subloop's exits. 522 /// 523 /// For subloop blocks, simply update SubloopParents and return NULL. 524 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 525 526 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 527 // is considered uninitialized. 528 Loop *NearLoop = BBLoop; 529 530 Loop *Subloop = nullptr; 531 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { 532 Subloop = NearLoop; 533 // Find the subloop ancestor that is directly contained within Unloop. 534 while (Subloop->getParentLoop() != &Unloop) { 535 Subloop = Subloop->getParentLoop(); 536 assert(Subloop && "subloop is not an ancestor of the original loop"); 537 } 538 // Get the current nearest parent of the Subloop exits, initially Unloop. 539 NearLoop = 540 SubloopParents.insert(std::make_pair(Subloop, &Unloop)).first->second; 541 } 542 543 succ_iterator I = succ_begin(BB), E = succ_end(BB); 544 if (I == E) { 545 assert(!Subloop && "subloop blocks must have a successor"); 546 NearLoop = nullptr; // unloop blocks may now exit the function. 547 } 548 for (; I != E; ++I) { 549 if (*I == BB) 550 continue; // self loops are uninteresting 551 552 Loop *L = LI->getLoopFor(*I); 553 if (L == &Unloop) { 554 // This successor has not been processed. This path must lead to an 555 // irreducible backedge. 556 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 557 FoundIB = true; 558 } 559 if (L != &Unloop && Unloop.contains(L)) { 560 // Successor is in a subloop. 561 if (Subloop) 562 continue; // Branching within subloops. Ignore it. 563 564 // BB branches from the original into a subloop header. 565 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); 566 567 // Get the current nearest parent of the Subloop's exits. 568 L = SubloopParents[L]; 569 // L could be Unloop if the only exit was an irreducible backedge. 570 } 571 if (L == &Unloop) { 572 continue; 573 } 574 // Handle critical edges from Unloop into a sibling loop. 575 if (L && !L->contains(&Unloop)) { 576 L = L->getParentLoop(); 577 } 578 // Remember the nearest parent loop among successors or subloop exits. 579 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) 580 NearLoop = L; 581 } 582 if (Subloop) { 583 SubloopParents[Subloop] = NearLoop; 584 return BBLoop; 585 } 586 return NearLoop; 587 } 588 589 LoopInfo::LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree) { 590 analyze(DomTree); 591 } 592 593 void LoopInfo::markAsRemoved(Loop *Unloop) { 594 assert(!Unloop->isInvalid() && "Loop has already been removed"); 595 Unloop->invalidate(); 596 RemovedLoops.push_back(Unloop); 597 598 // First handle the special case of no parent loop to simplify the algorithm. 599 if (!Unloop->getParentLoop()) { 600 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 601 for (Loop::block_iterator I = Unloop->block_begin(), 602 E = Unloop->block_end(); 603 I != E; ++I) { 604 605 // Don't reparent blocks in subloops. 606 if (getLoopFor(*I) != Unloop) 607 continue; 608 609 // Blocks no longer have a parent but are still referenced by Unloop until 610 // the Unloop object is deleted. 611 changeLoopFor(*I, nullptr); 612 } 613 614 // Remove the loop from the top-level LoopInfo object. 615 for (iterator I = begin();; ++I) { 616 assert(I != end() && "Couldn't find loop"); 617 if (*I == Unloop) { 618 removeLoop(I); 619 break; 620 } 621 } 622 623 // Move all of the subloops to the top-level. 624 while (!Unloop->empty()) 625 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 626 627 return; 628 } 629 630 // Update the parent loop for all blocks within the loop. Blocks within 631 // subloops will not change parents. 632 UnloopUpdater Updater(Unloop, this); 633 Updater.updateBlockParents(); 634 635 // Remove blocks from former ancestor loops. 636 Updater.removeBlocksFromAncestors(); 637 638 // Add direct subloops as children in their new parent loop. 639 Updater.updateSubloopParents(); 640 641 // Remove unloop from its parent loop. 642 Loop *ParentLoop = Unloop->getParentLoop(); 643 for (Loop::iterator I = ParentLoop->begin();; ++I) { 644 assert(I != ParentLoop->end() && "Couldn't find loop"); 645 if (*I == Unloop) { 646 ParentLoop->removeChildLoop(I); 647 break; 648 } 649 } 650 } 651 652 char LoopAnalysis::PassID; 653 654 LoopInfo LoopAnalysis::run(Function &F, AnalysisManager<Function> &AM) { 655 // FIXME: Currently we create a LoopInfo from scratch for every function. 656 // This may prove to be too wasteful due to deallocating and re-allocating 657 // memory each time for the underlying map and vector datastructures. At some 658 // point it may prove worthwhile to use a freelist and recycle LoopInfo 659 // objects. I don't want to add that kind of complexity until the scope of 660 // the problem is better understood. 661 LoopInfo LI; 662 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); 663 return LI; 664 } 665 666 PreservedAnalyses LoopPrinterPass::run(Function &F, 667 AnalysisManager<Function> &AM) { 668 AM.getResult<LoopAnalysis>(F).print(OS); 669 return PreservedAnalyses::all(); 670 } 671 672 PrintLoopPass::PrintLoopPass() : OS(dbgs()) {} 673 PrintLoopPass::PrintLoopPass(raw_ostream &OS, const std::string &Banner) 674 : OS(OS), Banner(Banner) {} 675 676 PreservedAnalyses PrintLoopPass::run(Loop &L, AnalysisManager<Loop> &) { 677 OS << Banner; 678 for (auto *Block : L.blocks()) 679 if (Block) 680 Block->print(OS); 681 else 682 OS << "Printing <null> block"; 683 return PreservedAnalyses::all(); 684 } 685 686 //===----------------------------------------------------------------------===// 687 // LoopInfo implementation 688 // 689 690 char LoopInfoWrapperPass::ID = 0; 691 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 692 true, true) 693 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 694 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 695 true, true) 696 697 bool LoopInfoWrapperPass::runOnFunction(Function &) { 698 releaseMemory(); 699 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 700 return false; 701 } 702 703 void LoopInfoWrapperPass::verifyAnalysis() const { 704 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 705 // function each time verifyAnalysis is called is very expensive. The 706 // -verify-loop-info option can enable this. In order to perform some 707 // checking by default, LoopPass has been taught to call verifyLoop manually 708 // during loop pass sequences. 709 if (VerifyLoopInfo) 710 LI.verify(); 711 } 712 713 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 714 AU.setPreservesAll(); 715 AU.addRequired<DominatorTreeWrapperPass>(); 716 } 717 718 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 719 LI.print(OS); 720 } 721 722 PreservedAnalyses LoopVerifierPass::run(Function &F, 723 AnalysisManager<Function> &AM) { 724 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 725 LI.verify(); 726 return PreservedAnalyses::all(); 727 } 728 729 //===----------------------------------------------------------------------===// 730 // LoopBlocksDFS implementation 731 // 732 733 /// Traverse the loop blocks and store the DFS result. 734 /// Useful for clients that just want the final DFS result and don't need to 735 /// visit blocks during the initial traversal. 736 void LoopBlocksDFS::perform(LoopInfo *LI) { 737 LoopBlocksTraversal Traversal(*this, LI); 738 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 739 POE = Traversal.end(); POI != POE; ++POI) ; 740 } 741