1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the LoopInfo class that is used to identify natural loops 11 // and determine the loop depth of various nodes of the CFG. Note that the 12 // loops identified may actually be several natural loops that share the same 13 // header node... not just a single natural loop. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Constants.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Analysis/Dominators.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Assembly/Writer.h" 23 #include "llvm/Support/CFG.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include <algorithm> 29 using namespace llvm; 30 31 // Always verify loopinfo if expensive checking is enabled. 32 #ifdef XDEBUG 33 static bool VerifyLoopInfo = true; 34 #else 35 static bool VerifyLoopInfo = false; 36 #endif 37 static cl::opt<bool,true> 38 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 39 cl::desc("Verify loop info (time consuming)")); 40 41 char LoopInfo::ID = 0; 42 INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true) 43 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 44 INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true) 45 46 //===----------------------------------------------------------------------===// 47 // Loop implementation 48 // 49 50 /// isLoopInvariant - Return true if the specified value is loop invariant 51 /// 52 bool Loop::isLoopInvariant(Value *V) const { 53 if (Instruction *I = dyn_cast<Instruction>(V)) 54 return !contains(I); 55 return true; // All non-instructions are loop invariant 56 } 57 58 /// hasLoopInvariantOperands - Return true if all the operands of the 59 /// specified instruction are loop invariant. 60 bool Loop::hasLoopInvariantOperands(Instruction *I) const { 61 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 62 if (!isLoopInvariant(I->getOperand(i))) 63 return false; 64 65 return true; 66 } 67 68 /// makeLoopInvariant - If the given value is an instruciton inside of the 69 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 70 /// Return true if the value after any hoisting is loop invariant. This 71 /// function can be used as a slightly more aggressive replacement for 72 /// isLoopInvariant. 73 /// 74 /// If InsertPt is specified, it is the point to hoist instructions to. 75 /// If null, the terminator of the loop preheader is used. 76 /// 77 bool Loop::makeLoopInvariant(Value *V, bool &Changed, 78 Instruction *InsertPt) const { 79 if (Instruction *I = dyn_cast<Instruction>(V)) 80 return makeLoopInvariant(I, Changed, InsertPt); 81 return true; // All non-instructions are loop-invariant. 82 } 83 84 /// makeLoopInvariant - If the given instruction is inside of the 85 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 86 /// Return true if the instruction after any hoisting is loop invariant. This 87 /// function can be used as a slightly more aggressive replacement for 88 /// isLoopInvariant. 89 /// 90 /// If InsertPt is specified, it is the point to hoist instructions to. 91 /// If null, the terminator of the loop preheader is used. 92 /// 93 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 94 Instruction *InsertPt) const { 95 // Test if the value is already loop-invariant. 96 if (isLoopInvariant(I)) 97 return true; 98 if (!I->isSafeToSpeculativelyExecute()) 99 return false; 100 if (I->mayReadFromMemory()) 101 return false; 102 // Determine the insertion point, unless one was given. 103 if (!InsertPt) { 104 BasicBlock *Preheader = getLoopPreheader(); 105 // Without a preheader, hoisting is not feasible. 106 if (!Preheader) 107 return false; 108 InsertPt = Preheader->getTerminator(); 109 } 110 // Don't hoist instructions with loop-variant operands. 111 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 112 if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt)) 113 return false; 114 115 // Hoist. 116 I->moveBefore(InsertPt); 117 Changed = true; 118 return true; 119 } 120 121 /// getCanonicalInductionVariable - Check to see if the loop has a canonical 122 /// induction variable: an integer recurrence that starts at 0 and increments 123 /// by one each time through the loop. If so, return the phi node that 124 /// corresponds to it. 125 /// 126 /// The IndVarSimplify pass transforms loops to have a canonical induction 127 /// variable. 128 /// 129 PHINode *Loop::getCanonicalInductionVariable() const { 130 BasicBlock *H = getHeader(); 131 132 BasicBlock *Incoming = 0, *Backedge = 0; 133 pred_iterator PI = pred_begin(H); 134 assert(PI != pred_end(H) && 135 "Loop must have at least one backedge!"); 136 Backedge = *PI++; 137 if (PI == pred_end(H)) return 0; // dead loop 138 Incoming = *PI++; 139 if (PI != pred_end(H)) return 0; // multiple backedges? 140 141 if (contains(Incoming)) { 142 if (contains(Backedge)) 143 return 0; 144 std::swap(Incoming, Backedge); 145 } else if (!contains(Backedge)) 146 return 0; 147 148 // Loop over all of the PHI nodes, looking for a canonical indvar. 149 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 150 PHINode *PN = cast<PHINode>(I); 151 if (ConstantInt *CI = 152 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 153 if (CI->isNullValue()) 154 if (Instruction *Inc = 155 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 156 if (Inc->getOpcode() == Instruction::Add && 157 Inc->getOperand(0) == PN) 158 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 159 if (CI->equalsInt(1)) 160 return PN; 161 } 162 return 0; 163 } 164 165 /// getTripCount - Return a loop-invariant LLVM value indicating the number of 166 /// times the loop will be executed. Note that this means that the backedge 167 /// of the loop executes N-1 times. If the trip-count cannot be determined, 168 /// this returns null. 169 /// 170 /// The IndVarSimplify pass transforms loops to have a form that this 171 /// function easily understands. 172 /// 173 Value *Loop::getTripCount() const { 174 // Canonical loops will end with a 'cmp ne I, V', where I is the incremented 175 // canonical induction variable and V is the trip count of the loop. 176 PHINode *IV = getCanonicalInductionVariable(); 177 if (IV == 0 || IV->getNumIncomingValues() != 2) return 0; 178 179 bool P0InLoop = contains(IV->getIncomingBlock(0)); 180 Value *Inc = IV->getIncomingValue(!P0InLoop); 181 BasicBlock *BackedgeBlock = IV->getIncomingBlock(!P0InLoop); 182 183 if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator())) 184 if (BI->isConditional()) { 185 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 186 if (ICI->getOperand(0) == Inc) { 187 if (BI->getSuccessor(0) == getHeader()) { 188 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 189 return ICI->getOperand(1); 190 } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) { 191 return ICI->getOperand(1); 192 } 193 } 194 } 195 } 196 197 return 0; 198 } 199 200 /// getSmallConstantTripCount - Returns the trip count of this loop as a 201 /// normal unsigned value, if possible. Returns 0 if the trip count is unknown 202 /// or not constant. Will also return 0 if the trip count is very large 203 /// (>= 2^32) 204 unsigned Loop::getSmallConstantTripCount() const { 205 Value* TripCount = this->getTripCount(); 206 if (TripCount) { 207 if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) { 208 // Guard against huge trip counts. 209 if (TripCountC->getValue().getActiveBits() <= 32) { 210 return (unsigned)TripCountC->getZExtValue(); 211 } 212 } 213 } 214 return 0; 215 } 216 217 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 218 /// trip count of this loop as a normal unsigned value, if possible. This 219 /// means that the actual trip count is always a multiple of the returned 220 /// value (don't forget the trip count could very well be zero as well!). 221 /// 222 /// Returns 1 if the trip count is unknown or not guaranteed to be the 223 /// multiple of a constant (which is also the case if the trip count is simply 224 /// constant, use getSmallConstantTripCount for that case), Will also return 1 225 /// if the trip count is very large (>= 2^32). 226 unsigned Loop::getSmallConstantTripMultiple() const { 227 Value* TripCount = this->getTripCount(); 228 // This will hold the ConstantInt result, if any 229 ConstantInt *Result = NULL; 230 if (TripCount) { 231 // See if the trip count is constant itself 232 Result = dyn_cast<ConstantInt>(TripCount); 233 // if not, see if it is a multiplication 234 if (!Result) 235 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) { 236 switch (BO->getOpcode()) { 237 case BinaryOperator::Mul: 238 Result = dyn_cast<ConstantInt>(BO->getOperand(1)); 239 break; 240 case BinaryOperator::Shl: 241 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 242 if (CI->getValue().getActiveBits() <= 5) 243 return 1u << CI->getZExtValue(); 244 break; 245 default: 246 break; 247 } 248 } 249 } 250 // Guard against huge trip counts. 251 if (Result && Result->getValue().getActiveBits() <= 32) { 252 return (unsigned)Result->getZExtValue(); 253 } else { 254 return 1; 255 } 256 } 257 258 /// isLCSSAForm - Return true if the Loop is in LCSSA form 259 bool Loop::isLCSSAForm(DominatorTree &DT) const { 260 // Sort the blocks vector so that we can use binary search to do quick 261 // lookups. 262 SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end()); 263 264 for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { 265 BasicBlock *BB = *BI; 266 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I) 267 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 268 ++UI) { 269 User *U = *UI; 270 BasicBlock *UserBB = cast<Instruction>(U)->getParent(); 271 if (PHINode *P = dyn_cast<PHINode>(U)) 272 UserBB = P->getIncomingBlock(UI); 273 274 // Check the current block, as a fast-path, before checking whether 275 // the use is anywhere in the loop. Most values are used in the same 276 // block they are defined in. Also, blocks not reachable from the 277 // entry are special; uses in them don't need to go through PHIs. 278 if (UserBB != BB && 279 !LoopBBs.count(UserBB) && 280 DT.isReachableFromEntry(UserBB)) 281 return false; 282 } 283 } 284 285 return true; 286 } 287 288 /// isLoopSimplifyForm - Return true if the Loop is in the form that 289 /// the LoopSimplify form transforms loops to, which is sometimes called 290 /// normal form. 291 bool Loop::isLoopSimplifyForm() const { 292 // Normal-form loops have a preheader, a single backedge, and all of their 293 // exits have all their predecessors inside the loop. 294 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 295 } 296 297 /// hasDedicatedExits - Return true if no exit block for the loop 298 /// has a predecessor that is outside the loop. 299 bool Loop::hasDedicatedExits() const { 300 // Sort the blocks vector so that we can use binary search to do quick 301 // lookups. 302 SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end()); 303 // Each predecessor of each exit block of a normal loop is contained 304 // within the loop. 305 SmallVector<BasicBlock *, 4> ExitBlocks; 306 getExitBlocks(ExitBlocks); 307 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 308 for (pred_iterator PI = pred_begin(ExitBlocks[i]), 309 PE = pred_end(ExitBlocks[i]); PI != PE; ++PI) 310 if (!LoopBBs.count(*PI)) 311 return false; 312 // All the requirements are met. 313 return true; 314 } 315 316 /// getUniqueExitBlocks - Return all unique successor blocks of this loop. 317 /// These are the blocks _outside of the current loop_ which are branched to. 318 /// This assumes that loop exits are in canonical form. 319 /// 320 void 321 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const { 322 assert(hasDedicatedExits() && 323 "getUniqueExitBlocks assumes the loop has canonical form exits!"); 324 325 // Sort the blocks vector so that we can use binary search to do quick 326 // lookups. 327 SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end()); 328 std::sort(LoopBBs.begin(), LoopBBs.end()); 329 330 SmallVector<BasicBlock *, 32> switchExitBlocks; 331 332 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) { 333 334 BasicBlock *current = *BI; 335 switchExitBlocks.clear(); 336 337 for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) { 338 // If block is inside the loop then it is not a exit block. 339 if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) 340 continue; 341 342 pred_iterator PI = pred_begin(*I); 343 BasicBlock *firstPred = *PI; 344 345 // If current basic block is this exit block's first predecessor 346 // then only insert exit block in to the output ExitBlocks vector. 347 // This ensures that same exit block is not inserted twice into 348 // ExitBlocks vector. 349 if (current != firstPred) 350 continue; 351 352 // If a terminator has more then two successors, for example SwitchInst, 353 // then it is possible that there are multiple edges from current block 354 // to one exit block. 355 if (std::distance(succ_begin(current), succ_end(current)) <= 2) { 356 ExitBlocks.push_back(*I); 357 continue; 358 } 359 360 // In case of multiple edges from current block to exit block, collect 361 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of 362 // duplicate edges. 363 if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) 364 == switchExitBlocks.end()) { 365 switchExitBlocks.push_back(*I); 366 ExitBlocks.push_back(*I); 367 } 368 } 369 } 370 } 371 372 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one 373 /// block, return that block. Otherwise return null. 374 BasicBlock *Loop::getUniqueExitBlock() const { 375 SmallVector<BasicBlock *, 8> UniqueExitBlocks; 376 getUniqueExitBlocks(UniqueExitBlocks); 377 if (UniqueExitBlocks.size() == 1) 378 return UniqueExitBlocks[0]; 379 return 0; 380 } 381 382 void Loop::dump() const { 383 print(dbgs()); 384 } 385 386 //===----------------------------------------------------------------------===// 387 // UnloopUpdater implementation 388 // 389 390 /// Find the new parent loop for all blocks within the "unloop" whose last 391 /// backedges has just been removed. 392 class UnloopUpdater { 393 Loop *Unloop; 394 LoopInfo *LI; 395 396 LoopBlocksDFS DFS; 397 398 // Map unloop's immediate subloops to their nearest reachable parents. Nested 399 // loops within these subloops will not change parents. However, an immediate 400 // subloop's new parent will be the nearest loop reachable from either its own 401 // exits *or* any of its nested loop's exits. 402 DenseMap<Loop*, Loop*> SubloopParents; 403 404 // Flag the presence of an irreducible backedge whose destination is a block 405 // directly contained by the original unloop. 406 bool FoundIB; 407 408 public: 409 UnloopUpdater(Loop *UL, LoopInfo *LInfo) : 410 Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {} 411 412 void updateBlockParents(); 413 414 void removeBlocksFromAncestors(); 415 416 void updateSubloopParents(); 417 418 protected: 419 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 420 }; 421 422 /// updateBlockParents - Update the parent loop for all blocks that are directly 423 /// contained within the original "unloop". 424 void UnloopUpdater::updateBlockParents() { 425 if (Unloop->getNumBlocks()) { 426 // Perform a post order CFG traversal of all blocks within this loop, 427 // propagating the nearest loop from sucessors to predecessors. 428 LoopBlocksTraversal Traversal(DFS, LI); 429 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 430 POE = Traversal.end(); POI != POE; ++POI) { 431 432 Loop *L = LI->getLoopFor(*POI); 433 Loop *NL = getNearestLoop(*POI, L); 434 435 if (NL != L) { 436 // For reducible loops, NL is now an ancestor of Unloop. 437 assert((NL != Unloop && (!NL || NL->contains(Unloop))) && 438 "uninitialized successor"); 439 LI->changeLoopFor(*POI, NL); 440 } 441 else { 442 // Or the current block is part of a subloop, in which case its parent 443 // is unchanged. 444 assert((FoundIB || Unloop->contains(L)) && "uninitialized successor"); 445 } 446 } 447 } 448 // Each irreducible loop within the unloop induces a round of iteration using 449 // the DFS result cached by Traversal. 450 bool Changed = FoundIB; 451 for (unsigned NIters = 0; Changed; ++NIters) { 452 assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm"); 453 454 // Iterate over the postorder list of blocks, propagating the nearest loop 455 // from successors to predecessors as before. 456 Changed = false; 457 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 458 POE = DFS.endPostorder(); POI != POE; ++POI) { 459 460 Loop *L = LI->getLoopFor(*POI); 461 Loop *NL = getNearestLoop(*POI, L); 462 if (NL != L) { 463 assert(NL != Unloop && (!NL || NL->contains(Unloop)) && 464 "uninitialized successor"); 465 LI->changeLoopFor(*POI, NL); 466 Changed = true; 467 } 468 } 469 } 470 } 471 472 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below 473 /// their new parents. 474 void UnloopUpdater::removeBlocksFromAncestors() { 475 // Remove unloop's blocks from all ancestors below their new parents. 476 for (Loop::block_iterator BI = Unloop->block_begin(), 477 BE = Unloop->block_end(); BI != BE; ++BI) { 478 Loop *NewParent = LI->getLoopFor(*BI); 479 // If this block is an immediate subloop, remove all blocks (including 480 // nested subloops) from ancestors below the new parent loop. 481 // Otherwise, if this block is in a nested subloop, skip it. 482 if (SubloopParents.count(NewParent)) 483 NewParent = SubloopParents[NewParent]; 484 else if (Unloop->contains(NewParent)) 485 continue; 486 487 // Remove blocks from former Ancestors except Unloop itself which will be 488 // deleted. 489 for (Loop *OldParent = Unloop->getParentLoop(); OldParent != NewParent; 490 OldParent = OldParent->getParentLoop()) { 491 assert(OldParent && "new loop is not an ancestor of the original"); 492 OldParent->removeBlockFromLoop(*BI); 493 } 494 } 495 } 496 497 /// updateSubloopParents - Update the parent loop for all subloops directly 498 /// nested within unloop. 499 void UnloopUpdater::updateSubloopParents() { 500 while (!Unloop->empty()) { 501 Loop *Subloop = *llvm::prior(Unloop->end()); 502 Unloop->removeChildLoop(llvm::prior(Unloop->end())); 503 504 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 505 if (SubloopParents[Subloop]) 506 SubloopParents[Subloop]->addChildLoop(Subloop); 507 } 508 } 509 510 /// getNearestLoop - Return the nearest parent loop among this block's 511 /// successors. If a successor is a subloop header, consider its parent to be 512 /// the nearest parent of the subloop's exits. 513 /// 514 /// For subloop blocks, simply update SubloopParents and return NULL. 515 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 516 517 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 518 // is considered uninitialized. 519 Loop *NearLoop = BBLoop; 520 521 Loop *Subloop = 0; 522 if (NearLoop != Unloop && Unloop->contains(NearLoop)) { 523 Subloop = NearLoop; 524 // Find the subloop ancestor that is directly contained within Unloop. 525 while (Subloop->getParentLoop() != Unloop) { 526 Subloop = Subloop->getParentLoop(); 527 assert(Subloop && "subloop is not an ancestor of the original loop"); 528 } 529 // Get the current nearest parent of the Subloop exits, initially Unloop. 530 if (!SubloopParents.count(Subloop)) 531 SubloopParents[Subloop] = Unloop; 532 NearLoop = SubloopParents[Subloop]; 533 } 534 535 succ_iterator I = succ_begin(BB), E = succ_end(BB); 536 if (I == E) { 537 assert(!Subloop && "subloop blocks must have a successor"); 538 NearLoop = 0; // unloop blocks may now exit the function. 539 } 540 for (; I != E; ++I) { 541 if (*I == BB) 542 continue; // self loops are uninteresting 543 544 Loop *L = LI->getLoopFor(*I); 545 if (L == Unloop) { 546 // This successor has not been processed. This path must lead to an 547 // irreducible backedge. 548 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 549 FoundIB = true; 550 } 551 if (L != Unloop && Unloop->contains(L)) { 552 // Successor is in a subloop. 553 if (Subloop) 554 continue; // Branching within subloops. Ignore it. 555 556 // BB branches from the original into a subloop header. 557 assert(L->getParentLoop() == Unloop && "cannot skip into nested loops"); 558 559 // Get the current nearest parent of the Subloop's exits. 560 L = SubloopParents[L]; 561 // L could be Unloop if the only exit was an irreducible backedge. 562 } 563 if (L == Unloop) { 564 continue; 565 } 566 // Handle critical edges from Unloop into a sibling loop. 567 if (L && !L->contains(Unloop)) { 568 L = L->getParentLoop(); 569 } 570 // Remember the nearest parent loop among successors or subloop exits. 571 if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L)) 572 NearLoop = L; 573 } 574 if (Subloop) { 575 SubloopParents[Subloop] = NearLoop; 576 return BBLoop; 577 } 578 return NearLoop; 579 } 580 581 //===----------------------------------------------------------------------===// 582 // LoopInfo implementation 583 // 584 bool LoopInfo::runOnFunction(Function &) { 585 releaseMemory(); 586 LI.Calculate(getAnalysis<DominatorTree>().getBase()); // Update 587 return false; 588 } 589 590 /// updateUnloop - The last backedge has been removed from a loop--now the 591 /// "unloop". Find a new parent for the blocks contained within unloop and 592 /// update the loop tree. We don't necessarily have valid dominators at this 593 /// point, but LoopInfo is still valid except for the removal of this loop. 594 /// 595 /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without 596 /// checking first is illegal. 597 void LoopInfo::updateUnloop(Loop *Unloop) { 598 599 // First handle the special case of no parent loop to simplify the algorithm. 600 if (!Unloop->getParentLoop()) { 601 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 602 for (Loop::block_iterator I = Unloop->block_begin(), 603 E = Unloop->block_end(); I != E; ++I) { 604 605 // Don't reparent blocks in subloops. 606 if (getLoopFor(*I) != Unloop) 607 continue; 608 609 // Blocks no longer have a parent but are still referenced by Unloop until 610 // the Unloop object is deleted. 611 LI.changeLoopFor(*I, 0); 612 } 613 614 // Remove the loop from the top-level LoopInfo object. 615 for (LoopInfo::iterator I = LI.begin(), E = LI.end();; ++I) { 616 assert(I != E && "Couldn't find loop"); 617 if (*I == Unloop) { 618 LI.removeLoop(I); 619 break; 620 } 621 } 622 623 // Move all of the subloops to the top-level. 624 while (!Unloop->empty()) 625 LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end()))); 626 627 return; 628 } 629 630 // Update the parent loop for all blocks within the loop. Blocks within 631 // subloops will not change parents. 632 UnloopUpdater Updater(Unloop, this); 633 Updater.updateBlockParents(); 634 635 // Remove blocks from former ancestor loops. 636 Updater.removeBlocksFromAncestors(); 637 638 // Add direct subloops as children in their new parent loop. 639 Updater.updateSubloopParents(); 640 641 // Remove unloop from its parent loop. 642 Loop *ParentLoop = Unloop->getParentLoop(); 643 for (Loop::iterator I = ParentLoop->begin(), E = ParentLoop->end();; ++I) { 644 assert(I != E && "Couldn't find loop"); 645 if (*I == Unloop) { 646 ParentLoop->removeChildLoop(I); 647 break; 648 } 649 } 650 } 651 652 void LoopInfo::verifyAnalysis() const { 653 // LoopInfo is a FunctionPass, but verifying every loop in the function 654 // each time verifyAnalysis is called is very expensive. The 655 // -verify-loop-info option can enable this. In order to perform some 656 // checking by default, LoopPass has been taught to call verifyLoop 657 // manually during loop pass sequences. 658 659 if (!VerifyLoopInfo) return; 660 661 for (iterator I = begin(), E = end(); I != E; ++I) { 662 assert(!(*I)->getParentLoop() && "Top-level loop has a parent!"); 663 (*I)->verifyLoopNest(); 664 } 665 666 // TODO: check BBMap consistency. 667 } 668 669 void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { 670 AU.setPreservesAll(); 671 AU.addRequired<DominatorTree>(); 672 } 673 674 void LoopInfo::print(raw_ostream &OS, const Module*) const { 675 LI.print(OS); 676 } 677 678 //===----------------------------------------------------------------------===// 679 // LoopBlocksDFS implementation 680 // 681 682 /// Traverse the loop blocks and store the DFS result. 683 /// Useful for clients that just want the final DFS result and don't need to 684 /// visit blocks during the initial traversal. 685 void LoopBlocksDFS::perform(LoopInfo *LI) { 686 LoopBlocksTraversal Traversal(*this, LI); 687 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 688 POE = Traversal.end(); POI != POE; ++POI) ; 689 } 690