1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the LoopInfo class that is used to identify natural loops 11 // and determine the loop depth of various nodes of the CFG. Note that the 12 // loops identified may actually be several natural loops that share the same 13 // header node... not just a single natural loop. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/LoopInfoImpl.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/PassManager.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> 34 using namespace llvm; 35 36 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 37 template class llvm::LoopBase<BasicBlock, Loop>; 38 template class llvm::LoopInfoBase<BasicBlock, Loop>; 39 40 // Always verify loopinfo if expensive checking is enabled. 41 #ifdef XDEBUG 42 static bool VerifyLoopInfo = true; 43 #else 44 static bool VerifyLoopInfo = false; 45 #endif 46 static cl::opt<bool,true> 47 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 48 cl::desc("Verify loop info (time consuming)")); 49 50 // Loop identifier metadata name. 51 static const char *const LoopMDName = "llvm.loop"; 52 53 //===----------------------------------------------------------------------===// 54 // Loop implementation 55 // 56 57 /// isLoopInvariant - Return true if the specified value is loop invariant 58 /// 59 bool Loop::isLoopInvariant(const Value *V) const { 60 if (const Instruction *I = dyn_cast<Instruction>(V)) 61 return !contains(I); 62 return true; // All non-instructions are loop invariant 63 } 64 65 /// hasLoopInvariantOperands - Return true if all the operands of the 66 /// specified instruction are loop invariant. 67 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 68 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 69 } 70 71 /// makeLoopInvariant - If the given value is an instruciton inside of the 72 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 73 /// Return true if the value after any hoisting is loop invariant. This 74 /// function can be used as a slightly more aggressive replacement for 75 /// isLoopInvariant. 76 /// 77 /// If InsertPt is specified, it is the point to hoist instructions to. 78 /// If null, the terminator of the loop preheader is used. 79 /// 80 bool Loop::makeLoopInvariant(Value *V, bool &Changed, 81 Instruction *InsertPt) const { 82 if (Instruction *I = dyn_cast<Instruction>(V)) 83 return makeLoopInvariant(I, Changed, InsertPt); 84 return true; // All non-instructions are loop-invariant. 85 } 86 87 /// makeLoopInvariant - If the given instruction is inside of the 88 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 89 /// Return true if the instruction after any hoisting is loop invariant. This 90 /// function can be used as a slightly more aggressive replacement for 91 /// isLoopInvariant. 92 /// 93 /// If InsertPt is specified, it is the point to hoist instructions to. 94 /// If null, the terminator of the loop preheader is used. 95 /// 96 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 97 Instruction *InsertPt) const { 98 // Test if the value is already loop-invariant. 99 if (isLoopInvariant(I)) 100 return true; 101 if (!isSafeToSpeculativelyExecute(I)) 102 return false; 103 if (I->mayReadFromMemory()) 104 return false; 105 // EH block instructions are immobile. 106 if (I->isEHPad()) 107 return false; 108 // Determine the insertion point, unless one was given. 109 if (!InsertPt) { 110 BasicBlock *Preheader = getLoopPreheader(); 111 // Without a preheader, hoisting is not feasible. 112 if (!Preheader) 113 return false; 114 InsertPt = Preheader->getTerminator(); 115 } 116 // Don't hoist instructions with loop-variant operands. 117 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 118 if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt)) 119 return false; 120 121 // Hoist. 122 I->moveBefore(InsertPt); 123 124 // There is possibility of hoisting this instruction above some arbitrary 125 // condition. Any metadata defined on it can be control dependent on this 126 // condition. Conservatively strip it here so that we don't give any wrong 127 // information to the optimizer. 128 I->dropUnknownNonDebugMetadata(); 129 130 Changed = true; 131 return true; 132 } 133 134 /// getCanonicalInductionVariable - Check to see if the loop has a canonical 135 /// induction variable: an integer recurrence that starts at 0 and increments 136 /// by one each time through the loop. If so, return the phi node that 137 /// corresponds to it. 138 /// 139 /// The IndVarSimplify pass transforms loops to have a canonical induction 140 /// variable. 141 /// 142 PHINode *Loop::getCanonicalInductionVariable() const { 143 BasicBlock *H = getHeader(); 144 145 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 146 pred_iterator PI = pred_begin(H); 147 assert(PI != pred_end(H) && 148 "Loop must have at least one backedge!"); 149 Backedge = *PI++; 150 if (PI == pred_end(H)) return nullptr; // dead loop 151 Incoming = *PI++; 152 if (PI != pred_end(H)) return nullptr; // multiple backedges? 153 154 if (contains(Incoming)) { 155 if (contains(Backedge)) 156 return nullptr; 157 std::swap(Incoming, Backedge); 158 } else if (!contains(Backedge)) 159 return nullptr; 160 161 // Loop over all of the PHI nodes, looking for a canonical indvar. 162 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 163 PHINode *PN = cast<PHINode>(I); 164 if (ConstantInt *CI = 165 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 166 if (CI->isNullValue()) 167 if (Instruction *Inc = 168 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 169 if (Inc->getOpcode() == Instruction::Add && 170 Inc->getOperand(0) == PN) 171 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 172 if (CI->equalsInt(1)) 173 return PN; 174 } 175 return nullptr; 176 } 177 178 /// isLCSSAForm - Return true if the Loop is in LCSSA form 179 bool Loop::isLCSSAForm(DominatorTree &DT) const { 180 for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { 181 BasicBlock *BB = *BI; 182 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I) 183 for (Use &U : I->uses()) { 184 Instruction *UI = cast<Instruction>(U.getUser()); 185 BasicBlock *UserBB = UI->getParent(); 186 if (PHINode *P = dyn_cast<PHINode>(UI)) 187 UserBB = P->getIncomingBlock(U); 188 189 // Check the current block, as a fast-path, before checking whether 190 // the use is anywhere in the loop. Most values are used in the same 191 // block they are defined in. Also, blocks not reachable from the 192 // entry are special; uses in them don't need to go through PHIs. 193 if (UserBB != BB && 194 !contains(UserBB) && 195 DT.isReachableFromEntry(UserBB)) 196 return false; 197 } 198 } 199 200 return true; 201 } 202 203 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT) const { 204 if (!isLCSSAForm(DT)) 205 return false; 206 207 return std::all_of(begin(), end(), [&](const Loop *L) { 208 return L->isRecursivelyLCSSAForm(DT); 209 }); 210 } 211 212 /// isLoopSimplifyForm - Return true if the Loop is in the form that 213 /// the LoopSimplify form transforms loops to, which is sometimes called 214 /// normal form. 215 bool Loop::isLoopSimplifyForm() const { 216 // Normal-form loops have a preheader, a single backedge, and all of their 217 // exits have all their predecessors inside the loop. 218 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 219 } 220 221 /// isSafeToClone - Return true if the loop body is safe to clone in practice. 222 /// Routines that reform the loop CFG and split edges often fail on indirectbr. 223 bool Loop::isSafeToClone() const { 224 // Return false if any loop blocks contain indirectbrs, or there are any calls 225 // to noduplicate functions. 226 for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) { 227 if (isa<IndirectBrInst>((*I)->getTerminator())) 228 return false; 229 230 if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator())) 231 if (II->cannotDuplicate()) 232 return false; 233 234 for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) { 235 if (const CallInst *CI = dyn_cast<CallInst>(BI)) { 236 if (CI->cannotDuplicate()) 237 return false; 238 } 239 if (BI->getType()->isTokenTy() && BI->isUsedOutsideOfBlock(*I)) 240 return false; 241 } 242 } 243 return true; 244 } 245 246 MDNode *Loop::getLoopID() const { 247 MDNode *LoopID = nullptr; 248 if (isLoopSimplifyForm()) { 249 LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName); 250 } else { 251 // Go through each predecessor of the loop header and check the 252 // terminator for the metadata. 253 BasicBlock *H = getHeader(); 254 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) { 255 TerminatorInst *TI = (*I)->getTerminator(); 256 MDNode *MD = nullptr; 257 258 // Check if this terminator branches to the loop header. 259 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) { 260 if (TI->getSuccessor(i) == H) { 261 MD = TI->getMetadata(LoopMDName); 262 break; 263 } 264 } 265 if (!MD) 266 return nullptr; 267 268 if (!LoopID) 269 LoopID = MD; 270 else if (MD != LoopID) 271 return nullptr; 272 } 273 } 274 if (!LoopID || LoopID->getNumOperands() == 0 || 275 LoopID->getOperand(0) != LoopID) 276 return nullptr; 277 return LoopID; 278 } 279 280 void Loop::setLoopID(MDNode *LoopID) const { 281 assert(LoopID && "Loop ID should not be null"); 282 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand"); 283 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself"); 284 285 if (isLoopSimplifyForm()) { 286 getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID); 287 return; 288 } 289 290 BasicBlock *H = getHeader(); 291 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) { 292 TerminatorInst *TI = (*I)->getTerminator(); 293 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) { 294 if (TI->getSuccessor(i) == H) 295 TI->setMetadata(LoopMDName, LoopID); 296 } 297 } 298 } 299 300 bool Loop::isAnnotatedParallel() const { 301 MDNode *desiredLoopIdMetadata = getLoopID(); 302 303 if (!desiredLoopIdMetadata) 304 return false; 305 306 // The loop branch contains the parallel loop metadata. In order to ensure 307 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 308 // dependencies (thus converted the loop back to a sequential loop), check 309 // that all the memory instructions in the loop contain parallelism metadata 310 // that point to the same unique "loop id metadata" the loop branch does. 311 for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) { 312 for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end(); 313 II != EE; II++) { 314 315 if (!II->mayReadOrWriteMemory()) 316 continue; 317 318 // The memory instruction can refer to the loop identifier metadata 319 // directly or indirectly through another list metadata (in case of 320 // nested parallel loops). The loop identifier metadata refers to 321 // itself so we can check both cases with the same routine. 322 MDNode *loopIdMD = 323 II->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 324 325 if (!loopIdMD) 326 return false; 327 328 bool loopIdMDFound = false; 329 for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) { 330 if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) { 331 loopIdMDFound = true; 332 break; 333 } 334 } 335 336 if (!loopIdMDFound) 337 return false; 338 } 339 } 340 return true; 341 } 342 343 344 /// hasDedicatedExits - Return true if no exit block for the loop 345 /// has a predecessor that is outside the loop. 346 bool Loop::hasDedicatedExits() const { 347 // Each predecessor of each exit block of a normal loop is contained 348 // within the loop. 349 SmallVector<BasicBlock *, 4> ExitBlocks; 350 getExitBlocks(ExitBlocks); 351 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 352 for (pred_iterator PI = pred_begin(ExitBlocks[i]), 353 PE = pred_end(ExitBlocks[i]); PI != PE; ++PI) 354 if (!contains(*PI)) 355 return false; 356 // All the requirements are met. 357 return true; 358 } 359 360 /// getUniqueExitBlocks - Return all unique successor blocks of this loop. 361 /// These are the blocks _outside of the current loop_ which are branched to. 362 /// This assumes that loop exits are in canonical form. 363 /// 364 void 365 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const { 366 assert(hasDedicatedExits() && 367 "getUniqueExitBlocks assumes the loop has canonical form exits!"); 368 369 SmallVector<BasicBlock *, 32> switchExitBlocks; 370 371 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) { 372 373 BasicBlock *current = *BI; 374 switchExitBlocks.clear(); 375 376 for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) { 377 // If block is inside the loop then it is not a exit block. 378 if (contains(*I)) 379 continue; 380 381 pred_iterator PI = pred_begin(*I); 382 BasicBlock *firstPred = *PI; 383 384 // If current basic block is this exit block's first predecessor 385 // then only insert exit block in to the output ExitBlocks vector. 386 // This ensures that same exit block is not inserted twice into 387 // ExitBlocks vector. 388 if (current != firstPred) 389 continue; 390 391 // If a terminator has more then two successors, for example SwitchInst, 392 // then it is possible that there are multiple edges from current block 393 // to one exit block. 394 if (std::distance(succ_begin(current), succ_end(current)) <= 2) { 395 ExitBlocks.push_back(*I); 396 continue; 397 } 398 399 // In case of multiple edges from current block to exit block, collect 400 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of 401 // duplicate edges. 402 if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) 403 == switchExitBlocks.end()) { 404 switchExitBlocks.push_back(*I); 405 ExitBlocks.push_back(*I); 406 } 407 } 408 } 409 } 410 411 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one 412 /// block, return that block. Otherwise return null. 413 BasicBlock *Loop::getUniqueExitBlock() const { 414 SmallVector<BasicBlock *, 8> UniqueExitBlocks; 415 getUniqueExitBlocks(UniqueExitBlocks); 416 if (UniqueExitBlocks.size() == 1) 417 return UniqueExitBlocks[0]; 418 return nullptr; 419 } 420 421 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 422 void Loop::dump() const { 423 print(dbgs()); 424 } 425 #endif 426 427 //===----------------------------------------------------------------------===// 428 // UnloopUpdater implementation 429 // 430 431 namespace { 432 /// Find the new parent loop for all blocks within the "unloop" whose last 433 /// backedges has just been removed. 434 class UnloopUpdater { 435 Loop *Unloop; 436 LoopInfo *LI; 437 438 LoopBlocksDFS DFS; 439 440 // Map unloop's immediate subloops to their nearest reachable parents. Nested 441 // loops within these subloops will not change parents. However, an immediate 442 // subloop's new parent will be the nearest loop reachable from either its own 443 // exits *or* any of its nested loop's exits. 444 DenseMap<Loop*, Loop*> SubloopParents; 445 446 // Flag the presence of an irreducible backedge whose destination is a block 447 // directly contained by the original unloop. 448 bool FoundIB; 449 450 public: 451 UnloopUpdater(Loop *UL, LoopInfo *LInfo) : 452 Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {} 453 454 void updateBlockParents(); 455 456 void removeBlocksFromAncestors(); 457 458 void updateSubloopParents(); 459 460 protected: 461 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 462 }; 463 } // end anonymous namespace 464 465 /// updateBlockParents - Update the parent loop for all blocks that are directly 466 /// contained within the original "unloop". 467 void UnloopUpdater::updateBlockParents() { 468 if (Unloop->getNumBlocks()) { 469 // Perform a post order CFG traversal of all blocks within this loop, 470 // propagating the nearest loop from sucessors to predecessors. 471 LoopBlocksTraversal Traversal(DFS, LI); 472 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 473 POE = Traversal.end(); POI != POE; ++POI) { 474 475 Loop *L = LI->getLoopFor(*POI); 476 Loop *NL = getNearestLoop(*POI, L); 477 478 if (NL != L) { 479 // For reducible loops, NL is now an ancestor of Unloop. 480 assert((NL != Unloop && (!NL || NL->contains(Unloop))) && 481 "uninitialized successor"); 482 LI->changeLoopFor(*POI, NL); 483 } 484 else { 485 // Or the current block is part of a subloop, in which case its parent 486 // is unchanged. 487 assert((FoundIB || Unloop->contains(L)) && "uninitialized successor"); 488 } 489 } 490 } 491 // Each irreducible loop within the unloop induces a round of iteration using 492 // the DFS result cached by Traversal. 493 bool Changed = FoundIB; 494 for (unsigned NIters = 0; Changed; ++NIters) { 495 assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm"); 496 497 // Iterate over the postorder list of blocks, propagating the nearest loop 498 // from successors to predecessors as before. 499 Changed = false; 500 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 501 POE = DFS.endPostorder(); POI != POE; ++POI) { 502 503 Loop *L = LI->getLoopFor(*POI); 504 Loop *NL = getNearestLoop(*POI, L); 505 if (NL != L) { 506 assert(NL != Unloop && (!NL || NL->contains(Unloop)) && 507 "uninitialized successor"); 508 LI->changeLoopFor(*POI, NL); 509 Changed = true; 510 } 511 } 512 } 513 } 514 515 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below 516 /// their new parents. 517 void UnloopUpdater::removeBlocksFromAncestors() { 518 // Remove all unloop's blocks (including those in nested subloops) from 519 // ancestors below the new parent loop. 520 for (Loop::block_iterator BI = Unloop->block_begin(), 521 BE = Unloop->block_end(); BI != BE; ++BI) { 522 Loop *OuterParent = LI->getLoopFor(*BI); 523 if (Unloop->contains(OuterParent)) { 524 while (OuterParent->getParentLoop() != Unloop) 525 OuterParent = OuterParent->getParentLoop(); 526 OuterParent = SubloopParents[OuterParent]; 527 } 528 // Remove blocks from former Ancestors except Unloop itself which will be 529 // deleted. 530 for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent; 531 OldParent = OldParent->getParentLoop()) { 532 assert(OldParent && "new loop is not an ancestor of the original"); 533 OldParent->removeBlockFromLoop(*BI); 534 } 535 } 536 } 537 538 /// updateSubloopParents - Update the parent loop for all subloops directly 539 /// nested within unloop. 540 void UnloopUpdater::updateSubloopParents() { 541 while (!Unloop->empty()) { 542 Loop *Subloop = *std::prev(Unloop->end()); 543 Unloop->removeChildLoop(std::prev(Unloop->end())); 544 545 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 546 if (Loop *Parent = SubloopParents[Subloop]) 547 Parent->addChildLoop(Subloop); 548 else 549 LI->addTopLevelLoop(Subloop); 550 } 551 } 552 553 /// getNearestLoop - Return the nearest parent loop among this block's 554 /// successors. If a successor is a subloop header, consider its parent to be 555 /// the nearest parent of the subloop's exits. 556 /// 557 /// For subloop blocks, simply update SubloopParents and return NULL. 558 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 559 560 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 561 // is considered uninitialized. 562 Loop *NearLoop = BBLoop; 563 564 Loop *Subloop = nullptr; 565 if (NearLoop != Unloop && Unloop->contains(NearLoop)) { 566 Subloop = NearLoop; 567 // Find the subloop ancestor that is directly contained within Unloop. 568 while (Subloop->getParentLoop() != Unloop) { 569 Subloop = Subloop->getParentLoop(); 570 assert(Subloop && "subloop is not an ancestor of the original loop"); 571 } 572 // Get the current nearest parent of the Subloop exits, initially Unloop. 573 NearLoop = 574 SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second; 575 } 576 577 succ_iterator I = succ_begin(BB), E = succ_end(BB); 578 if (I == E) { 579 assert(!Subloop && "subloop blocks must have a successor"); 580 NearLoop = nullptr; // unloop blocks may now exit the function. 581 } 582 for (; I != E; ++I) { 583 if (*I == BB) 584 continue; // self loops are uninteresting 585 586 Loop *L = LI->getLoopFor(*I); 587 if (L == Unloop) { 588 // This successor has not been processed. This path must lead to an 589 // irreducible backedge. 590 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 591 FoundIB = true; 592 } 593 if (L != Unloop && Unloop->contains(L)) { 594 // Successor is in a subloop. 595 if (Subloop) 596 continue; // Branching within subloops. Ignore it. 597 598 // BB branches from the original into a subloop header. 599 assert(L->getParentLoop() == Unloop && "cannot skip into nested loops"); 600 601 // Get the current nearest parent of the Subloop's exits. 602 L = SubloopParents[L]; 603 // L could be Unloop if the only exit was an irreducible backedge. 604 } 605 if (L == Unloop) { 606 continue; 607 } 608 // Handle critical edges from Unloop into a sibling loop. 609 if (L && !L->contains(Unloop)) { 610 L = L->getParentLoop(); 611 } 612 // Remember the nearest parent loop among successors or subloop exits. 613 if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L)) 614 NearLoop = L; 615 } 616 if (Subloop) { 617 SubloopParents[Subloop] = NearLoop; 618 return BBLoop; 619 } 620 return NearLoop; 621 } 622 623 LoopInfo::LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree) { 624 analyze(DomTree); 625 } 626 627 /// updateUnloop - The last backedge has been removed from a loop--now the 628 /// "unloop". Find a new parent for the blocks contained within unloop and 629 /// update the loop tree. We don't necessarily have valid dominators at this 630 /// point, but LoopInfo is still valid except for the removal of this loop. 631 /// 632 /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without 633 /// checking first is illegal. 634 void LoopInfo::updateUnloop(Loop *Unloop) { 635 636 // First handle the special case of no parent loop to simplify the algorithm. 637 if (!Unloop->getParentLoop()) { 638 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 639 for (Loop::block_iterator I = Unloop->block_begin(), 640 E = Unloop->block_end(); 641 I != E; ++I) { 642 643 // Don't reparent blocks in subloops. 644 if (getLoopFor(*I) != Unloop) 645 continue; 646 647 // Blocks no longer have a parent but are still referenced by Unloop until 648 // the Unloop object is deleted. 649 changeLoopFor(*I, nullptr); 650 } 651 652 // Remove the loop from the top-level LoopInfo object. 653 for (iterator I = begin();; ++I) { 654 assert(I != end() && "Couldn't find loop"); 655 if (*I == Unloop) { 656 removeLoop(I); 657 break; 658 } 659 } 660 661 // Move all of the subloops to the top-level. 662 while (!Unloop->empty()) 663 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 664 665 return; 666 } 667 668 // Update the parent loop for all blocks within the loop. Blocks within 669 // subloops will not change parents. 670 UnloopUpdater Updater(Unloop, this); 671 Updater.updateBlockParents(); 672 673 // Remove blocks from former ancestor loops. 674 Updater.removeBlocksFromAncestors(); 675 676 // Add direct subloops as children in their new parent loop. 677 Updater.updateSubloopParents(); 678 679 // Remove unloop from its parent loop. 680 Loop *ParentLoop = Unloop->getParentLoop(); 681 for (Loop::iterator I = ParentLoop->begin();; ++I) { 682 assert(I != ParentLoop->end() && "Couldn't find loop"); 683 if (*I == Unloop) { 684 ParentLoop->removeChildLoop(I); 685 break; 686 } 687 } 688 } 689 690 char LoopAnalysis::PassID; 691 692 LoopInfo LoopAnalysis::run(Function &F, AnalysisManager<Function> *AM) { 693 // FIXME: Currently we create a LoopInfo from scratch for every function. 694 // This may prove to be too wasteful due to deallocating and re-allocating 695 // memory each time for the underlying map and vector datastructures. At some 696 // point it may prove worthwhile to use a freelist and recycle LoopInfo 697 // objects. I don't want to add that kind of complexity until the scope of 698 // the problem is better understood. 699 LoopInfo LI; 700 LI.analyze(AM->getResult<DominatorTreeAnalysis>(F)); 701 return LI; 702 } 703 704 PreservedAnalyses LoopPrinterPass::run(Function &F, 705 AnalysisManager<Function> *AM) { 706 AM->getResult<LoopAnalysis>(F).print(OS); 707 return PreservedAnalyses::all(); 708 } 709 710 PrintLoopPass::PrintLoopPass() : OS(dbgs()) {} 711 PrintLoopPass::PrintLoopPass(raw_ostream &OS, const std::string &Banner) 712 : OS(OS), Banner(Banner) {} 713 714 PreservedAnalyses PrintLoopPass::run(Loop &L) { 715 OS << Banner; 716 for (auto *Block : L.blocks()) 717 if (Block) 718 Block->print(OS); 719 else 720 OS << "Printing <null> block"; 721 return PreservedAnalyses::all(); 722 } 723 724 //===----------------------------------------------------------------------===// 725 // LoopInfo implementation 726 // 727 728 char LoopInfoWrapperPass::ID = 0; 729 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 730 true, true) 731 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 732 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 733 true, true) 734 735 bool LoopInfoWrapperPass::runOnFunction(Function &) { 736 releaseMemory(); 737 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 738 return false; 739 } 740 741 void LoopInfoWrapperPass::verifyAnalysis() const { 742 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 743 // function each time verifyAnalysis is called is very expensive. The 744 // -verify-loop-info option can enable this. In order to perform some 745 // checking by default, LoopPass has been taught to call verifyLoop manually 746 // during loop pass sequences. 747 if (VerifyLoopInfo) 748 LI.verify(); 749 } 750 751 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 752 AU.setPreservesAll(); 753 AU.addRequired<DominatorTreeWrapperPass>(); 754 } 755 756 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 757 LI.print(OS); 758 } 759 760 //===----------------------------------------------------------------------===// 761 // LoopBlocksDFS implementation 762 // 763 764 /// Traverse the loop blocks and store the DFS result. 765 /// Useful for clients that just want the final DFS result and don't need to 766 /// visit blocks during the initial traversal. 767 void LoopBlocksDFS::perform(LoopInfo *LI) { 768 LoopBlocksTraversal Traversal(*this, LI); 769 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 770 POE = Traversal.end(); POI != POE; ++POI) ; 771 } 772