1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the LoopInfo class that is used to identify natural loops 10 // and determine the loop depth of various nodes of the CFG. Note that the 11 // loops identified may actually be several natural loops that share the same 12 // header node... not just a single natural loop. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/IVDescriptors.h" 21 #include "llvm/Analysis/LoopInfoImpl.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include "llvm/Analysis/MemorySSA.h" 24 #include "llvm/Analysis/MemorySSAUpdater.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Config/llvm-config.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DebugLoc.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 44 template class llvm::LoopBase<BasicBlock, Loop>; 45 template class llvm::LoopInfoBase<BasicBlock, Loop>; 46 47 // Always verify loopinfo if expensive checking is enabled. 48 #ifdef EXPENSIVE_CHECKS 49 bool llvm::VerifyLoopInfo = true; 50 #else 51 bool llvm::VerifyLoopInfo = false; 52 #endif 53 static cl::opt<bool, true> 54 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 55 cl::Hidden, cl::desc("Verify loop info (time consuming)")); 56 57 //===----------------------------------------------------------------------===// 58 // Loop implementation 59 // 60 61 bool Loop::isLoopInvariant(const Value *V) const { 62 if (const Instruction *I = dyn_cast<Instruction>(V)) 63 return !contains(I); 64 return true; // All non-instructions are loop invariant 65 } 66 67 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 68 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 69 } 70 71 bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt, 72 MemorySSAUpdater *MSSAU) const { 73 if (Instruction *I = dyn_cast<Instruction>(V)) 74 return makeLoopInvariant(I, Changed, InsertPt, MSSAU); 75 return true; // All non-instructions are loop-invariant. 76 } 77 78 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 79 Instruction *InsertPt, 80 MemorySSAUpdater *MSSAU) const { 81 // Test if the value is already loop-invariant. 82 if (isLoopInvariant(I)) 83 return true; 84 if (!isSafeToSpeculativelyExecute(I)) 85 return false; 86 if (I->mayReadFromMemory()) 87 return false; 88 // EH block instructions are immobile. 89 if (I->isEHPad()) 90 return false; 91 // Determine the insertion point, unless one was given. 92 if (!InsertPt) { 93 BasicBlock *Preheader = getLoopPreheader(); 94 // Without a preheader, hoisting is not feasible. 95 if (!Preheader) 96 return false; 97 InsertPt = Preheader->getTerminator(); 98 } 99 // Don't hoist instructions with loop-variant operands. 100 for (Value *Operand : I->operands()) 101 if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU)) 102 return false; 103 104 // Hoist. 105 I->moveBefore(InsertPt); 106 if (MSSAU) 107 if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I)) 108 MSSAU->moveToPlace(MUD, InsertPt->getParent(), MemorySSA::End); 109 110 // There is possibility of hoisting this instruction above some arbitrary 111 // condition. Any metadata defined on it can be control dependent on this 112 // condition. Conservatively strip it here so that we don't give any wrong 113 // information to the optimizer. 114 I->dropUnknownNonDebugMetadata(); 115 116 Changed = true; 117 return true; 118 } 119 120 bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming, 121 BasicBlock *&Backedge) const { 122 BasicBlock *H = getHeader(); 123 124 Incoming = nullptr; 125 Backedge = nullptr; 126 pred_iterator PI = pred_begin(H); 127 assert(PI != pred_end(H) && "Loop must have at least one backedge!"); 128 Backedge = *PI++; 129 if (PI == pred_end(H)) 130 return false; // dead loop 131 Incoming = *PI++; 132 if (PI != pred_end(H)) 133 return false; // multiple backedges? 134 135 if (contains(Incoming)) { 136 if (contains(Backedge)) 137 return false; 138 std::swap(Incoming, Backedge); 139 } else if (!contains(Backedge)) 140 return false; 141 142 assert(Incoming && Backedge && "expected non-null incoming and backedges"); 143 return true; 144 } 145 146 PHINode *Loop::getCanonicalInductionVariable() const { 147 BasicBlock *H = getHeader(); 148 149 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 150 if (!getIncomingAndBackEdge(Incoming, Backedge)) 151 return nullptr; 152 153 // Loop over all of the PHI nodes, looking for a canonical indvar. 154 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 155 PHINode *PN = cast<PHINode>(I); 156 if (ConstantInt *CI = 157 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 158 if (CI->isZero()) 159 if (Instruction *Inc = 160 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 161 if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) 162 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 163 if (CI->isOne()) 164 return PN; 165 } 166 return nullptr; 167 } 168 169 /// Get the latch condition instruction. 170 static ICmpInst *getLatchCmpInst(const Loop &L) { 171 if (BasicBlock *Latch = L.getLoopLatch()) 172 if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator())) 173 if (BI->isConditional()) 174 return dyn_cast<ICmpInst>(BI->getCondition()); 175 176 return nullptr; 177 } 178 179 /// Return the final value of the loop induction variable if found. 180 static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar, 181 const Instruction &StepInst) { 182 ICmpInst *LatchCmpInst = getLatchCmpInst(L); 183 if (!LatchCmpInst) 184 return nullptr; 185 186 Value *Op0 = LatchCmpInst->getOperand(0); 187 Value *Op1 = LatchCmpInst->getOperand(1); 188 if (Op0 == &IndVar || Op0 == &StepInst) 189 return Op1; 190 191 if (Op1 == &IndVar || Op1 == &StepInst) 192 return Op0; 193 194 return nullptr; 195 } 196 197 Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L, 198 PHINode &IndVar, 199 ScalarEvolution &SE) { 200 InductionDescriptor IndDesc; 201 if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc)) 202 return None; 203 204 Value *InitialIVValue = IndDesc.getStartValue(); 205 Instruction *StepInst = IndDesc.getInductionBinOp(); 206 if (!InitialIVValue || !StepInst) 207 return None; 208 209 const SCEV *Step = IndDesc.getStep(); 210 Value *StepInstOp1 = StepInst->getOperand(1); 211 Value *StepInstOp0 = StepInst->getOperand(0); 212 Value *StepValue = nullptr; 213 if (SE.getSCEV(StepInstOp1) == Step) 214 StepValue = StepInstOp1; 215 else if (SE.getSCEV(StepInstOp0) == Step) 216 StepValue = StepInstOp0; 217 218 Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst); 219 if (!FinalIVValue) 220 return None; 221 222 return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue, 223 SE); 224 } 225 226 using Direction = Loop::LoopBounds::Direction; 227 228 ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const { 229 BasicBlock *Latch = L.getLoopLatch(); 230 assert(Latch && "Expecting valid latch"); 231 232 BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()); 233 assert(BI && BI->isConditional() && "Expecting conditional latch branch"); 234 235 ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition()); 236 assert(LatchCmpInst && 237 "Expecting the latch compare instruction to be a CmpInst"); 238 239 // Need to inverse the predicate when first successor is not the loop 240 // header 241 ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader()) 242 ? LatchCmpInst->getPredicate() 243 : LatchCmpInst->getInversePredicate(); 244 245 if (LatchCmpInst->getOperand(0) == &getFinalIVValue()) 246 Pred = ICmpInst::getSwappedPredicate(Pred); 247 248 // Need to flip strictness of the predicate when the latch compare instruction 249 // is not using StepInst 250 if (LatchCmpInst->getOperand(0) == &getStepInst() || 251 LatchCmpInst->getOperand(1) == &getStepInst()) 252 return Pred; 253 254 // Cannot flip strictness of NE and EQ 255 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 256 return ICmpInst::getFlippedStrictnessPredicate(Pred); 257 258 Direction D = getDirection(); 259 if (D == Direction::Increasing) 260 return ICmpInst::ICMP_SLT; 261 262 if (D == Direction::Decreasing) 263 return ICmpInst::ICMP_SGT; 264 265 // If cannot determine the direction, then unable to find the canonical 266 // predicate 267 return ICmpInst::BAD_ICMP_PREDICATE; 268 } 269 270 Direction Loop::LoopBounds::getDirection() const { 271 if (const SCEVAddRecExpr *StepAddRecExpr = 272 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst()))) 273 if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) { 274 if (SE.isKnownPositive(StepRecur)) 275 return Direction::Increasing; 276 if (SE.isKnownNegative(StepRecur)) 277 return Direction::Decreasing; 278 } 279 280 return Direction::Unknown; 281 } 282 283 Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const { 284 if (PHINode *IndVar = getInductionVariable(SE)) 285 return LoopBounds::getBounds(*this, *IndVar, SE); 286 287 return None; 288 } 289 290 PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const { 291 if (!isLoopSimplifyForm()) 292 return nullptr; 293 294 BasicBlock *Header = getHeader(); 295 assert(Header && "Expected a valid loop header"); 296 ICmpInst *CmpInst = getLatchCmpInst(*this); 297 if (!CmpInst) 298 return nullptr; 299 300 Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0)); 301 Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1)); 302 303 for (PHINode &IndVar : Header->phis()) { 304 InductionDescriptor IndDesc; 305 if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc)) 306 continue; 307 308 Instruction *StepInst = IndDesc.getInductionBinOp(); 309 310 // case 1: 311 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] 312 // StepInst = IndVar + step 313 // cmp = StepInst < FinalValue 314 if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1) 315 return &IndVar; 316 317 // case 2: 318 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] 319 // StepInst = IndVar + step 320 // cmp = IndVar < FinalValue 321 if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1) 322 return &IndVar; 323 } 324 325 return nullptr; 326 } 327 328 bool Loop::getInductionDescriptor(ScalarEvolution &SE, 329 InductionDescriptor &IndDesc) const { 330 if (PHINode *IndVar = getInductionVariable(SE)) 331 return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc); 332 333 return false; 334 } 335 336 bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar, 337 ScalarEvolution &SE) const { 338 // Located in the loop header 339 BasicBlock *Header = getHeader(); 340 if (AuxIndVar.getParent() != Header) 341 return false; 342 343 // No uses outside of the loop 344 for (User *U : AuxIndVar.users()) 345 if (const Instruction *I = dyn_cast<Instruction>(U)) 346 if (!contains(I)) 347 return false; 348 349 InductionDescriptor IndDesc; 350 if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc)) 351 return false; 352 353 // The step instruction opcode should be add or sub. 354 if (IndDesc.getInductionOpcode() != Instruction::Add && 355 IndDesc.getInductionOpcode() != Instruction::Sub) 356 return false; 357 358 // Incremented by a loop invariant step for each loop iteration 359 return SE.isLoopInvariant(IndDesc.getStep(), this); 360 } 361 362 bool Loop::isCanonical(ScalarEvolution &SE) const { 363 InductionDescriptor IndDesc; 364 if (!getInductionDescriptor(SE, IndDesc)) 365 return false; 366 367 ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue()); 368 if (!Init || !Init->isZero()) 369 return false; 370 371 if (IndDesc.getInductionOpcode() != Instruction::Add) 372 return false; 373 374 ConstantInt *Step = IndDesc.getConstIntStepValue(); 375 if (!Step || !Step->isOne()) 376 return false; 377 378 return true; 379 } 380 381 // Check that 'BB' doesn't have any uses outside of the 'L' 382 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, 383 DominatorTree &DT) { 384 for (const Instruction &I : BB) { 385 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 386 // optimizations, so for the purposes of considered LCSSA form, we 387 // can ignore them. 388 if (I.getType()->isTokenTy()) 389 continue; 390 391 for (const Use &U : I.uses()) { 392 const Instruction *UI = cast<Instruction>(U.getUser()); 393 const BasicBlock *UserBB = UI->getParent(); 394 if (const PHINode *P = dyn_cast<PHINode>(UI)) 395 UserBB = P->getIncomingBlock(U); 396 397 // Check the current block, as a fast-path, before checking whether 398 // the use is anywhere in the loop. Most values are used in the same 399 // block they are defined in. Also, blocks not reachable from the 400 // entry are special; uses in them don't need to go through PHIs. 401 if (UserBB != &BB && !L.contains(UserBB) && 402 DT.isReachableFromEntry(UserBB)) 403 return false; 404 } 405 } 406 return true; 407 } 408 409 bool Loop::isLCSSAForm(DominatorTree &DT) const { 410 // For each block we check that it doesn't have any uses outside of this loop. 411 return all_of(this->blocks(), [&](const BasicBlock *BB) { 412 return isBlockInLCSSAForm(*this, *BB, DT); 413 }); 414 } 415 416 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const { 417 // For each block we check that it doesn't have any uses outside of its 418 // innermost loop. This process will transitively guarantee that the current 419 // loop and all of the nested loops are in LCSSA form. 420 return all_of(this->blocks(), [&](const BasicBlock *BB) { 421 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT); 422 }); 423 } 424 425 bool Loop::isLoopSimplifyForm() const { 426 // Normal-form loops have a preheader, a single backedge, and all of their 427 // exits have all their predecessors inside the loop. 428 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 429 } 430 431 // Routines that reform the loop CFG and split edges often fail on indirectbr. 432 bool Loop::isSafeToClone() const { 433 // Return false if any loop blocks contain indirectbrs, or there are any calls 434 // to noduplicate functions. 435 for (BasicBlock *BB : this->blocks()) { 436 if (isa<IndirectBrInst>(BB->getTerminator())) 437 return false; 438 439 for (Instruction &I : *BB) 440 if (auto CS = CallSite(&I)) 441 if (CS.cannotDuplicate()) 442 return false; 443 } 444 return true; 445 } 446 447 MDNode *Loop::getLoopID() const { 448 MDNode *LoopID = nullptr; 449 450 // Go through the latch blocks and check the terminator for the metadata. 451 SmallVector<BasicBlock *, 4> LatchesBlocks; 452 getLoopLatches(LatchesBlocks); 453 for (BasicBlock *BB : LatchesBlocks) { 454 Instruction *TI = BB->getTerminator(); 455 MDNode *MD = TI->getMetadata(LLVMContext::MD_loop); 456 457 if (!MD) 458 return nullptr; 459 460 if (!LoopID) 461 LoopID = MD; 462 else if (MD != LoopID) 463 return nullptr; 464 } 465 if (!LoopID || LoopID->getNumOperands() == 0 || 466 LoopID->getOperand(0) != LoopID) 467 return nullptr; 468 return LoopID; 469 } 470 471 void Loop::setLoopID(MDNode *LoopID) const { 472 assert((!LoopID || LoopID->getNumOperands() > 0) && 473 "Loop ID needs at least one operand"); 474 assert((!LoopID || LoopID->getOperand(0) == LoopID) && 475 "Loop ID should refer to itself"); 476 477 SmallVector<BasicBlock *, 4> LoopLatches; 478 getLoopLatches(LoopLatches); 479 for (BasicBlock *BB : LoopLatches) 480 BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); 481 } 482 483 void Loop::setLoopAlreadyUnrolled() { 484 LLVMContext &Context = getHeader()->getContext(); 485 486 MDNode *DisableUnrollMD = 487 MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable")); 488 MDNode *LoopID = getLoopID(); 489 MDNode *NewLoopID = makePostTransformationMetadata( 490 Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD}); 491 setLoopID(NewLoopID); 492 } 493 494 bool Loop::isAnnotatedParallel() const { 495 MDNode *DesiredLoopIdMetadata = getLoopID(); 496 497 if (!DesiredLoopIdMetadata) 498 return false; 499 500 MDNode *ParallelAccesses = 501 findOptionMDForLoop(this, "llvm.loop.parallel_accesses"); 502 SmallPtrSet<MDNode *, 4> 503 ParallelAccessGroups; // For scalable 'contains' check. 504 if (ParallelAccesses) { 505 for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) { 506 MDNode *AccGroup = cast<MDNode>(MD.get()); 507 assert(isValidAsAccessGroup(AccGroup) && 508 "List item must be an access group"); 509 ParallelAccessGroups.insert(AccGroup); 510 } 511 } 512 513 // The loop branch contains the parallel loop metadata. In order to ensure 514 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 515 // dependencies (thus converted the loop back to a sequential loop), check 516 // that all the memory instructions in the loop belong to an access group that 517 // is parallel to this loop. 518 for (BasicBlock *BB : this->blocks()) { 519 for (Instruction &I : *BB) { 520 if (!I.mayReadOrWriteMemory()) 521 continue; 522 523 if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) { 524 auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool { 525 if (AG->getNumOperands() == 0) { 526 assert(isValidAsAccessGroup(AG) && "Item must be an access group"); 527 return ParallelAccessGroups.count(AG); 528 } 529 530 for (const MDOperand &AccessListItem : AG->operands()) { 531 MDNode *AccGroup = cast<MDNode>(AccessListItem.get()); 532 assert(isValidAsAccessGroup(AccGroup) && 533 "List item must be an access group"); 534 if (ParallelAccessGroups.count(AccGroup)) 535 return true; 536 } 537 return false; 538 }; 539 540 if (ContainsAccessGroup(AccessGroup)) 541 continue; 542 } 543 544 // The memory instruction can refer to the loop identifier metadata 545 // directly or indirectly through another list metadata (in case of 546 // nested parallel loops). The loop identifier metadata refers to 547 // itself so we can check both cases with the same routine. 548 MDNode *LoopIdMD = 549 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 550 551 if (!LoopIdMD) 552 return false; 553 554 bool LoopIdMDFound = false; 555 for (const MDOperand &MDOp : LoopIdMD->operands()) { 556 if (MDOp == DesiredLoopIdMetadata) { 557 LoopIdMDFound = true; 558 break; 559 } 560 } 561 562 if (!LoopIdMDFound) 563 return false; 564 } 565 } 566 return true; 567 } 568 569 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } 570 571 Loop::LocRange Loop::getLocRange() const { 572 // If we have a debug location in the loop ID, then use it. 573 if (MDNode *LoopID = getLoopID()) { 574 DebugLoc Start; 575 // We use the first DebugLoc in the header as the start location of the loop 576 // and if there is a second DebugLoc in the header we use it as end location 577 // of the loop. 578 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 579 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) { 580 if (!Start) 581 Start = DebugLoc(L); 582 else 583 return LocRange(Start, DebugLoc(L)); 584 } 585 } 586 587 if (Start) 588 return LocRange(Start); 589 } 590 591 // Try the pre-header first. 592 if (BasicBlock *PHeadBB = getLoopPreheader()) 593 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) 594 return LocRange(DL); 595 596 // If we have no pre-header or there are no instructions with debug 597 // info in it, try the header. 598 if (BasicBlock *HeadBB = getHeader()) 599 return LocRange(HeadBB->getTerminator()->getDebugLoc()); 600 601 return LocRange(); 602 } 603 604 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 605 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } 606 607 LLVM_DUMP_METHOD void Loop::dumpVerbose() const { 608 print(dbgs(), /*Depth=*/0, /*Verbose=*/true); 609 } 610 #endif 611 612 //===----------------------------------------------------------------------===// 613 // UnloopUpdater implementation 614 // 615 616 namespace { 617 /// Find the new parent loop for all blocks within the "unloop" whose last 618 /// backedges has just been removed. 619 class UnloopUpdater { 620 Loop &Unloop; 621 LoopInfo *LI; 622 623 LoopBlocksDFS DFS; 624 625 // Map unloop's immediate subloops to their nearest reachable parents. Nested 626 // loops within these subloops will not change parents. However, an immediate 627 // subloop's new parent will be the nearest loop reachable from either its own 628 // exits *or* any of its nested loop's exits. 629 DenseMap<Loop *, Loop *> SubloopParents; 630 631 // Flag the presence of an irreducible backedge whose destination is a block 632 // directly contained by the original unloop. 633 bool FoundIB; 634 635 public: 636 UnloopUpdater(Loop *UL, LoopInfo *LInfo) 637 : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} 638 639 void updateBlockParents(); 640 641 void removeBlocksFromAncestors(); 642 643 void updateSubloopParents(); 644 645 protected: 646 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 647 }; 648 } // end anonymous namespace 649 650 /// Update the parent loop for all blocks that are directly contained within the 651 /// original "unloop". 652 void UnloopUpdater::updateBlockParents() { 653 if (Unloop.getNumBlocks()) { 654 // Perform a post order CFG traversal of all blocks within this loop, 655 // propagating the nearest loop from successors to predecessors. 656 LoopBlocksTraversal Traversal(DFS, LI); 657 for (BasicBlock *POI : Traversal) { 658 659 Loop *L = LI->getLoopFor(POI); 660 Loop *NL = getNearestLoop(POI, L); 661 662 if (NL != L) { 663 // For reducible loops, NL is now an ancestor of Unloop. 664 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && 665 "uninitialized successor"); 666 LI->changeLoopFor(POI, NL); 667 } else { 668 // Or the current block is part of a subloop, in which case its parent 669 // is unchanged. 670 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); 671 } 672 } 673 } 674 // Each irreducible loop within the unloop induces a round of iteration using 675 // the DFS result cached by Traversal. 676 bool Changed = FoundIB; 677 for (unsigned NIters = 0; Changed; ++NIters) { 678 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); 679 680 // Iterate over the postorder list of blocks, propagating the nearest loop 681 // from successors to predecessors as before. 682 Changed = false; 683 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 684 POE = DFS.endPostorder(); 685 POI != POE; ++POI) { 686 687 Loop *L = LI->getLoopFor(*POI); 688 Loop *NL = getNearestLoop(*POI, L); 689 if (NL != L) { 690 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && 691 "uninitialized successor"); 692 LI->changeLoopFor(*POI, NL); 693 Changed = true; 694 } 695 } 696 } 697 } 698 699 /// Remove unloop's blocks from all ancestors below their new parents. 700 void UnloopUpdater::removeBlocksFromAncestors() { 701 // Remove all unloop's blocks (including those in nested subloops) from 702 // ancestors below the new parent loop. 703 for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end(); 704 BI != BE; ++BI) { 705 Loop *OuterParent = LI->getLoopFor(*BI); 706 if (Unloop.contains(OuterParent)) { 707 while (OuterParent->getParentLoop() != &Unloop) 708 OuterParent = OuterParent->getParentLoop(); 709 OuterParent = SubloopParents[OuterParent]; 710 } 711 // Remove blocks from former Ancestors except Unloop itself which will be 712 // deleted. 713 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; 714 OldParent = OldParent->getParentLoop()) { 715 assert(OldParent && "new loop is not an ancestor of the original"); 716 OldParent->removeBlockFromLoop(*BI); 717 } 718 } 719 } 720 721 /// Update the parent loop for all subloops directly nested within unloop. 722 void UnloopUpdater::updateSubloopParents() { 723 while (!Unloop.empty()) { 724 Loop *Subloop = *std::prev(Unloop.end()); 725 Unloop.removeChildLoop(std::prev(Unloop.end())); 726 727 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 728 if (Loop *Parent = SubloopParents[Subloop]) 729 Parent->addChildLoop(Subloop); 730 else 731 LI->addTopLevelLoop(Subloop); 732 } 733 } 734 735 /// Return the nearest parent loop among this block's successors. If a successor 736 /// is a subloop header, consider its parent to be the nearest parent of the 737 /// subloop's exits. 738 /// 739 /// For subloop blocks, simply update SubloopParents and return NULL. 740 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 741 742 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 743 // is considered uninitialized. 744 Loop *NearLoop = BBLoop; 745 746 Loop *Subloop = nullptr; 747 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { 748 Subloop = NearLoop; 749 // Find the subloop ancestor that is directly contained within Unloop. 750 while (Subloop->getParentLoop() != &Unloop) { 751 Subloop = Subloop->getParentLoop(); 752 assert(Subloop && "subloop is not an ancestor of the original loop"); 753 } 754 // Get the current nearest parent of the Subloop exits, initially Unloop. 755 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; 756 } 757 758 succ_iterator I = succ_begin(BB), E = succ_end(BB); 759 if (I == E) { 760 assert(!Subloop && "subloop blocks must have a successor"); 761 NearLoop = nullptr; // unloop blocks may now exit the function. 762 } 763 for (; I != E; ++I) { 764 if (*I == BB) 765 continue; // self loops are uninteresting 766 767 Loop *L = LI->getLoopFor(*I); 768 if (L == &Unloop) { 769 // This successor has not been processed. This path must lead to an 770 // irreducible backedge. 771 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 772 FoundIB = true; 773 } 774 if (L != &Unloop && Unloop.contains(L)) { 775 // Successor is in a subloop. 776 if (Subloop) 777 continue; // Branching within subloops. Ignore it. 778 779 // BB branches from the original into a subloop header. 780 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); 781 782 // Get the current nearest parent of the Subloop's exits. 783 L = SubloopParents[L]; 784 // L could be Unloop if the only exit was an irreducible backedge. 785 } 786 if (L == &Unloop) { 787 continue; 788 } 789 // Handle critical edges from Unloop into a sibling loop. 790 if (L && !L->contains(&Unloop)) { 791 L = L->getParentLoop(); 792 } 793 // Remember the nearest parent loop among successors or subloop exits. 794 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) 795 NearLoop = L; 796 } 797 if (Subloop) { 798 SubloopParents[Subloop] = NearLoop; 799 return BBLoop; 800 } 801 return NearLoop; 802 } 803 804 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); } 805 806 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, 807 FunctionAnalysisManager::Invalidator &) { 808 // Check whether the analysis, all analyses on functions, or the function's 809 // CFG have been preserved. 810 auto PAC = PA.getChecker<LoopAnalysis>(); 811 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 812 PAC.preservedSet<CFGAnalyses>()); 813 } 814 815 void LoopInfo::erase(Loop *Unloop) { 816 assert(!Unloop->isInvalid() && "Loop has already been erased!"); 817 818 auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); 819 820 // First handle the special case of no parent loop to simplify the algorithm. 821 if (!Unloop->getParentLoop()) { 822 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 823 for (Loop::block_iterator I = Unloop->block_begin(), 824 E = Unloop->block_end(); 825 I != E; ++I) { 826 827 // Don't reparent blocks in subloops. 828 if (getLoopFor(*I) != Unloop) 829 continue; 830 831 // Blocks no longer have a parent but are still referenced by Unloop until 832 // the Unloop object is deleted. 833 changeLoopFor(*I, nullptr); 834 } 835 836 // Remove the loop from the top-level LoopInfo object. 837 for (iterator I = begin();; ++I) { 838 assert(I != end() && "Couldn't find loop"); 839 if (*I == Unloop) { 840 removeLoop(I); 841 break; 842 } 843 } 844 845 // Move all of the subloops to the top-level. 846 while (!Unloop->empty()) 847 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 848 849 return; 850 } 851 852 // Update the parent loop for all blocks within the loop. Blocks within 853 // subloops will not change parents. 854 UnloopUpdater Updater(Unloop, this); 855 Updater.updateBlockParents(); 856 857 // Remove blocks from former ancestor loops. 858 Updater.removeBlocksFromAncestors(); 859 860 // Add direct subloops as children in their new parent loop. 861 Updater.updateSubloopParents(); 862 863 // Remove unloop from its parent loop. 864 Loop *ParentLoop = Unloop->getParentLoop(); 865 for (Loop::iterator I = ParentLoop->begin();; ++I) { 866 assert(I != ParentLoop->end() && "Couldn't find loop"); 867 if (*I == Unloop) { 868 ParentLoop->removeChildLoop(I); 869 break; 870 } 871 } 872 } 873 874 AnalysisKey LoopAnalysis::Key; 875 876 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 877 // FIXME: Currently we create a LoopInfo from scratch for every function. 878 // This may prove to be too wasteful due to deallocating and re-allocating 879 // memory each time for the underlying map and vector datastructures. At some 880 // point it may prove worthwhile to use a freelist and recycle LoopInfo 881 // objects. I don't want to add that kind of complexity until the scope of 882 // the problem is better understood. 883 LoopInfo LI; 884 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); 885 return LI; 886 } 887 888 PreservedAnalyses LoopPrinterPass::run(Function &F, 889 FunctionAnalysisManager &AM) { 890 AM.getResult<LoopAnalysis>(F).print(OS); 891 return PreservedAnalyses::all(); 892 } 893 894 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { 895 896 if (forcePrintModuleIR()) { 897 // handling -print-module-scope 898 OS << Banner << " (loop: "; 899 L.getHeader()->printAsOperand(OS, false); 900 OS << ")\n"; 901 902 // printing whole module 903 OS << *L.getHeader()->getModule(); 904 return; 905 } 906 907 OS << Banner; 908 909 auto *PreHeader = L.getLoopPreheader(); 910 if (PreHeader) { 911 OS << "\n; Preheader:"; 912 PreHeader->print(OS); 913 OS << "\n; Loop:"; 914 } 915 916 for (auto *Block : L.blocks()) 917 if (Block) 918 Block->print(OS); 919 else 920 OS << "Printing <null> block"; 921 922 SmallVector<BasicBlock *, 8> ExitBlocks; 923 L.getExitBlocks(ExitBlocks); 924 if (!ExitBlocks.empty()) { 925 OS << "\n; Exit blocks"; 926 for (auto *Block : ExitBlocks) 927 if (Block) 928 Block->print(OS); 929 else 930 OS << "Printing <null> block"; 931 } 932 } 933 934 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) { 935 // No loop metadata node, no loop properties. 936 if (!LoopID) 937 return nullptr; 938 939 // First operand should refer to the metadata node itself, for legacy reasons. 940 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 941 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 942 943 // Iterate over the metdata node operands and look for MDString metadata. 944 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 945 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 946 if (!MD || MD->getNumOperands() < 1) 947 continue; 948 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 949 if (!S) 950 continue; 951 // Return the operand node if MDString holds expected metadata. 952 if (Name.equals(S->getString())) 953 return MD; 954 } 955 956 // Loop property not found. 957 return nullptr; 958 } 959 960 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) { 961 return findOptionMDForLoopID(TheLoop->getLoopID(), Name); 962 } 963 964 bool llvm::isValidAsAccessGroup(MDNode *Node) { 965 return Node->getNumOperands() == 0 && Node->isDistinct(); 966 } 967 968 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context, 969 MDNode *OrigLoopID, 970 ArrayRef<StringRef> RemovePrefixes, 971 ArrayRef<MDNode *> AddAttrs) { 972 // First remove any existing loop metadata related to this transformation. 973 SmallVector<Metadata *, 4> MDs; 974 975 // Reserve first location for self reference to the LoopID metadata node. 976 TempMDTuple TempNode = MDNode::getTemporary(Context, None); 977 MDs.push_back(TempNode.get()); 978 979 // Remove metadata for the transformation that has been applied or that became 980 // outdated. 981 if (OrigLoopID) { 982 for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) { 983 bool IsVectorMetadata = false; 984 Metadata *Op = OrigLoopID->getOperand(i); 985 if (MDNode *MD = dyn_cast<MDNode>(Op)) { 986 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 987 if (S) 988 IsVectorMetadata = 989 llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool { 990 return S->getString().startswith(Prefix); 991 }); 992 } 993 if (!IsVectorMetadata) 994 MDs.push_back(Op); 995 } 996 } 997 998 // Add metadata to avoid reapplying a transformation, such as 999 // llvm.loop.unroll.disable and llvm.loop.isvectorized. 1000 MDs.append(AddAttrs.begin(), AddAttrs.end()); 1001 1002 MDNode *NewLoopID = MDNode::getDistinct(Context, MDs); 1003 // Replace the temporary node with a self-reference. 1004 NewLoopID->replaceOperandWith(0, NewLoopID); 1005 return NewLoopID; 1006 } 1007 1008 //===----------------------------------------------------------------------===// 1009 // LoopInfo implementation 1010 // 1011 1012 char LoopInfoWrapperPass::ID = 0; 1013 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 1014 true, true) 1015 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1016 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 1017 true, true) 1018 1019 bool LoopInfoWrapperPass::runOnFunction(Function &) { 1020 releaseMemory(); 1021 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 1022 return false; 1023 } 1024 1025 void LoopInfoWrapperPass::verifyAnalysis() const { 1026 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 1027 // function each time verifyAnalysis is called is very expensive. The 1028 // -verify-loop-info option can enable this. In order to perform some 1029 // checking by default, LoopPass has been taught to call verifyLoop manually 1030 // during loop pass sequences. 1031 if (VerifyLoopInfo) { 1032 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1033 LI.verify(DT); 1034 } 1035 } 1036 1037 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1038 AU.setPreservesAll(); 1039 AU.addRequired<DominatorTreeWrapperPass>(); 1040 } 1041 1042 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 1043 LI.print(OS); 1044 } 1045 1046 PreservedAnalyses LoopVerifierPass::run(Function &F, 1047 FunctionAnalysisManager &AM) { 1048 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 1049 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1050 LI.verify(DT); 1051 return PreservedAnalyses::all(); 1052 } 1053 1054 //===----------------------------------------------------------------------===// 1055 // LoopBlocksDFS implementation 1056 // 1057 1058 /// Traverse the loop blocks and store the DFS result. 1059 /// Useful for clients that just want the final DFS result and don't need to 1060 /// visit blocks during the initial traversal. 1061 void LoopBlocksDFS::perform(LoopInfo *LI) { 1062 LoopBlocksTraversal Traversal(*this, LI); 1063 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 1064 POE = Traversal.end(); 1065 POI != POE; ++POI) 1066 ; 1067 } 1068