1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG.  Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/Analysis/LoopInfoImpl.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PassManager.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 using namespace llvm;
38 
39 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
40 template class llvm::LoopBase<BasicBlock, Loop>;
41 template class llvm::LoopInfoBase<BasicBlock, Loop>;
42 
43 // Always verify loopinfo if expensive checking is enabled.
44 #ifdef EXPENSIVE_CHECKS
45 bool llvm::VerifyLoopInfo = true;
46 #else
47 bool llvm::VerifyLoopInfo = false;
48 #endif
49 static cl::opt<bool, true>
50     VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
51                     cl::Hidden, cl::desc("Verify loop info (time consuming)"));
52 
53 //===----------------------------------------------------------------------===//
54 // Loop implementation
55 //
56 
57 bool Loop::isLoopInvariant(const Value *V) const {
58   if (const Instruction *I = dyn_cast<Instruction>(V))
59     return !contains(I);
60   return true; // All non-instructions are loop invariant
61 }
62 
63 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
64   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
65 }
66 
67 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
68                              Instruction *InsertPt) const {
69   if (Instruction *I = dyn_cast<Instruction>(V))
70     return makeLoopInvariant(I, Changed, InsertPt);
71   return true; // All non-instructions are loop-invariant.
72 }
73 
74 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
75                              Instruction *InsertPt) const {
76   // Test if the value is already loop-invariant.
77   if (isLoopInvariant(I))
78     return true;
79   if (!isSafeToSpeculativelyExecute(I))
80     return false;
81   if (I->mayReadFromMemory())
82     return false;
83   // EH block instructions are immobile.
84   if (I->isEHPad())
85     return false;
86   // Determine the insertion point, unless one was given.
87   if (!InsertPt) {
88     BasicBlock *Preheader = getLoopPreheader();
89     // Without a preheader, hoisting is not feasible.
90     if (!Preheader)
91       return false;
92     InsertPt = Preheader->getTerminator();
93   }
94   // Don't hoist instructions with loop-variant operands.
95   for (Value *Operand : I->operands())
96     if (!makeLoopInvariant(Operand, Changed, InsertPt))
97       return false;
98 
99   // Hoist.
100   I->moveBefore(InsertPt);
101 
102   // There is possibility of hoisting this instruction above some arbitrary
103   // condition. Any metadata defined on it can be control dependent on this
104   // condition. Conservatively strip it here so that we don't give any wrong
105   // information to the optimizer.
106   I->dropUnknownNonDebugMetadata();
107 
108   Changed = true;
109   return true;
110 }
111 
112 PHINode *Loop::getCanonicalInductionVariable() const {
113   BasicBlock *H = getHeader();
114 
115   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
116   pred_iterator PI = pred_begin(H);
117   assert(PI != pred_end(H) && "Loop must have at least one backedge!");
118   Backedge = *PI++;
119   if (PI == pred_end(H))
120     return nullptr; // dead loop
121   Incoming = *PI++;
122   if (PI != pred_end(H))
123     return nullptr; // multiple backedges?
124 
125   if (contains(Incoming)) {
126     if (contains(Backedge))
127       return nullptr;
128     std::swap(Incoming, Backedge);
129   } else if (!contains(Backedge))
130     return nullptr;
131 
132   // Loop over all of the PHI nodes, looking for a canonical indvar.
133   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
134     PHINode *PN = cast<PHINode>(I);
135     if (ConstantInt *CI =
136             dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
137       if (CI->isZero())
138         if (Instruction *Inc =
139                 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
140           if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
141             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
142               if (CI->isOne())
143                 return PN;
144   }
145   return nullptr;
146 }
147 
148 // Check that 'BB' doesn't have any uses outside of the 'L'
149 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
150                                DominatorTree &DT) {
151   for (const Instruction &I : BB) {
152     // Tokens can't be used in PHI nodes and live-out tokens prevent loop
153     // optimizations, so for the purposes of considered LCSSA form, we
154     // can ignore them.
155     if (I.getType()->isTokenTy())
156       continue;
157 
158     for (const Use &U : I.uses()) {
159       const Instruction *UI = cast<Instruction>(U.getUser());
160       const BasicBlock *UserBB = UI->getParent();
161       if (const PHINode *P = dyn_cast<PHINode>(UI))
162         UserBB = P->getIncomingBlock(U);
163 
164       // Check the current block, as a fast-path, before checking whether
165       // the use is anywhere in the loop.  Most values are used in the same
166       // block they are defined in.  Also, blocks not reachable from the
167       // entry are special; uses in them don't need to go through PHIs.
168       if (UserBB != &BB && !L.contains(UserBB) &&
169           DT.isReachableFromEntry(UserBB))
170         return false;
171     }
172   }
173   return true;
174 }
175 
176 bool Loop::isLCSSAForm(DominatorTree &DT) const {
177   // For each block we check that it doesn't have any uses outside of this loop.
178   return all_of(this->blocks(), [&](const BasicBlock *BB) {
179     return isBlockInLCSSAForm(*this, *BB, DT);
180   });
181 }
182 
183 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const {
184   // For each block we check that it doesn't have any uses outside of its
185   // innermost loop. This process will transitively guarantee that the current
186   // loop and all of the nested loops are in LCSSA form.
187   return all_of(this->blocks(), [&](const BasicBlock *BB) {
188     return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
189   });
190 }
191 
192 bool Loop::isLoopSimplifyForm() const {
193   // Normal-form loops have a preheader, a single backedge, and all of their
194   // exits have all their predecessors inside the loop.
195   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
196 }
197 
198 // Routines that reform the loop CFG and split edges often fail on indirectbr.
199 bool Loop::isSafeToClone() const {
200   // Return false if any loop blocks contain indirectbrs, or there are any calls
201   // to noduplicate functions.
202   for (BasicBlock *BB : this->blocks()) {
203     if (isa<IndirectBrInst>(BB->getTerminator()))
204       return false;
205 
206     for (Instruction &I : *BB)
207       if (auto CS = CallSite(&I))
208         if (CS.cannotDuplicate())
209           return false;
210   }
211   return true;
212 }
213 
214 MDNode *Loop::getLoopID() const {
215   MDNode *LoopID = nullptr;
216   if (BasicBlock *Latch = getLoopLatch()) {
217     LoopID = Latch->getTerminator()->getMetadata(LLVMContext::MD_loop);
218   } else {
219     assert(!getLoopLatch() &&
220            "The loop should have no single latch at this point");
221     // Go through each predecessor of the loop header and check the
222     // terminator for the metadata.
223     BasicBlock *H = getHeader();
224     for (BasicBlock *BB : this->blocks()) {
225       TerminatorInst *TI = BB->getTerminator();
226       MDNode *MD = nullptr;
227 
228       // Check if this terminator branches to the loop header.
229       for (BasicBlock *Successor : TI->successors()) {
230         if (Successor == H) {
231           MD = TI->getMetadata(LLVMContext::MD_loop);
232           break;
233         }
234       }
235       if (!MD)
236         return nullptr;
237 
238       if (!LoopID)
239         LoopID = MD;
240       else if (MD != LoopID)
241         return nullptr;
242     }
243   }
244   if (!LoopID || LoopID->getNumOperands() == 0 ||
245       LoopID->getOperand(0) != LoopID)
246     return nullptr;
247   return LoopID;
248 }
249 
250 void Loop::setLoopID(MDNode *LoopID) const {
251   assert(LoopID && "Loop ID should not be null");
252   assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
253   assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
254 
255   if (BasicBlock *Latch = getLoopLatch()) {
256     Latch->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
257     return;
258   }
259 
260   assert(!getLoopLatch() &&
261          "The loop should have no single latch at this point");
262   BasicBlock *H = getHeader();
263   for (BasicBlock *BB : this->blocks()) {
264     TerminatorInst *TI = BB->getTerminator();
265     for (BasicBlock *Successor : TI->successors()) {
266       if (Successor == H)
267         TI->setMetadata(LLVMContext::MD_loop, LoopID);
268     }
269   }
270 }
271 
272 void Loop::setLoopAlreadyUnrolled() {
273   MDNode *LoopID = getLoopID();
274   // First remove any existing loop unrolling metadata.
275   SmallVector<Metadata *, 4> MDs;
276   // Reserve first location for self reference to the LoopID metadata node.
277   MDs.push_back(nullptr);
278 
279   if (LoopID) {
280     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
281       bool IsUnrollMetadata = false;
282       MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
283       if (MD) {
284         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
285         IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
286       }
287       if (!IsUnrollMetadata)
288         MDs.push_back(LoopID->getOperand(i));
289     }
290   }
291 
292   // Add unroll(disable) metadata to disable future unrolling.
293   LLVMContext &Context = getHeader()->getContext();
294   SmallVector<Metadata *, 1> DisableOperands;
295   DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
296   MDNode *DisableNode = MDNode::get(Context, DisableOperands);
297   MDs.push_back(DisableNode);
298 
299   MDNode *NewLoopID = MDNode::get(Context, MDs);
300   // Set operand 0 to refer to the loop id itself.
301   NewLoopID->replaceOperandWith(0, NewLoopID);
302   setLoopID(NewLoopID);
303 }
304 
305 bool Loop::isAnnotatedParallel() const {
306   MDNode *DesiredLoopIdMetadata = getLoopID();
307 
308   if (!DesiredLoopIdMetadata)
309     return false;
310 
311   // The loop branch contains the parallel loop metadata. In order to ensure
312   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
313   // dependencies (thus converted the loop back to a sequential loop), check
314   // that all the memory instructions in the loop contain parallelism metadata
315   // that point to the same unique "loop id metadata" the loop branch does.
316   for (BasicBlock *BB : this->blocks()) {
317     for (Instruction &I : *BB) {
318       if (!I.mayReadOrWriteMemory())
319         continue;
320 
321       // The memory instruction can refer to the loop identifier metadata
322       // directly or indirectly through another list metadata (in case of
323       // nested parallel loops). The loop identifier metadata refers to
324       // itself so we can check both cases with the same routine.
325       MDNode *LoopIdMD =
326           I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
327 
328       if (!LoopIdMD)
329         return false;
330 
331       bool LoopIdMDFound = false;
332       for (const MDOperand &MDOp : LoopIdMD->operands()) {
333         if (MDOp == DesiredLoopIdMetadata) {
334           LoopIdMDFound = true;
335           break;
336         }
337       }
338 
339       if (!LoopIdMDFound)
340         return false;
341     }
342   }
343   return true;
344 }
345 
346 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
347 
348 Loop::LocRange Loop::getLocRange() const {
349   // If we have a debug location in the loop ID, then use it.
350   if (MDNode *LoopID = getLoopID()) {
351     DebugLoc Start;
352     // We use the first DebugLoc in the header as the start location of the loop
353     // and if there is a second DebugLoc in the header we use it as end location
354     // of the loop.
355     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
356       if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
357         if (!Start)
358           Start = DebugLoc(L);
359         else
360           return LocRange(Start, DebugLoc(L));
361       }
362     }
363 
364     if (Start)
365       return LocRange(Start);
366   }
367 
368   // Try the pre-header first.
369   if (BasicBlock *PHeadBB = getLoopPreheader())
370     if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
371       return LocRange(DL);
372 
373   // If we have no pre-header or there are no instructions with debug
374   // info in it, try the header.
375   if (BasicBlock *HeadBB = getHeader())
376     return LocRange(HeadBB->getTerminator()->getDebugLoc());
377 
378   return LocRange();
379 }
380 
381 bool Loop::hasDedicatedExits() const {
382   // Each predecessor of each exit block of a normal loop is contained
383   // within the loop.
384   SmallVector<BasicBlock *, 4> ExitBlocks;
385   getExitBlocks(ExitBlocks);
386   for (BasicBlock *BB : ExitBlocks)
387     for (BasicBlock *Predecessor : predecessors(BB))
388       if (!contains(Predecessor))
389         return false;
390   // All the requirements are met.
391   return true;
392 }
393 
394 void Loop::getUniqueExitBlocks(
395     SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
396   assert(hasDedicatedExits() &&
397          "getUniqueExitBlocks assumes the loop has canonical form exits!");
398 
399   SmallVector<BasicBlock *, 32> SwitchExitBlocks;
400   for (BasicBlock *BB : this->blocks()) {
401     SwitchExitBlocks.clear();
402     for (BasicBlock *Successor : successors(BB)) {
403       // If block is inside the loop then it is not an exit block.
404       if (contains(Successor))
405         continue;
406 
407       pred_iterator PI = pred_begin(Successor);
408       BasicBlock *FirstPred = *PI;
409 
410       // If current basic block is this exit block's first predecessor
411       // then only insert exit block in to the output ExitBlocks vector.
412       // This ensures that same exit block is not inserted twice into
413       // ExitBlocks vector.
414       if (BB != FirstPred)
415         continue;
416 
417       // If a terminator has more then two successors, for example SwitchInst,
418       // then it is possible that there are multiple edges from current block
419       // to one exit block.
420       if (succ_size(BB) <= 2) {
421         ExitBlocks.push_back(Successor);
422         continue;
423       }
424 
425       // In case of multiple edges from current block to exit block, collect
426       // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
427       // duplicate edges.
428       if (!is_contained(SwitchExitBlocks, Successor)) {
429         SwitchExitBlocks.push_back(Successor);
430         ExitBlocks.push_back(Successor);
431       }
432     }
433   }
434 }
435 
436 BasicBlock *Loop::getUniqueExitBlock() const {
437   SmallVector<BasicBlock *, 8> UniqueExitBlocks;
438   getUniqueExitBlocks(UniqueExitBlocks);
439   if (UniqueExitBlocks.size() == 1)
440     return UniqueExitBlocks[0];
441   return nullptr;
442 }
443 
444 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
445 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
446 
447 LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
448   print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
449 }
450 #endif
451 
452 //===----------------------------------------------------------------------===//
453 // UnloopUpdater implementation
454 //
455 
456 namespace {
457 /// Find the new parent loop for all blocks within the "unloop" whose last
458 /// backedges has just been removed.
459 class UnloopUpdater {
460   Loop &Unloop;
461   LoopInfo *LI;
462 
463   LoopBlocksDFS DFS;
464 
465   // Map unloop's immediate subloops to their nearest reachable parents. Nested
466   // loops within these subloops will not change parents. However, an immediate
467   // subloop's new parent will be the nearest loop reachable from either its own
468   // exits *or* any of its nested loop's exits.
469   DenseMap<Loop *, Loop *> SubloopParents;
470 
471   // Flag the presence of an irreducible backedge whose destination is a block
472   // directly contained by the original unloop.
473   bool FoundIB;
474 
475 public:
476   UnloopUpdater(Loop *UL, LoopInfo *LInfo)
477       : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
478 
479   void updateBlockParents();
480 
481   void removeBlocksFromAncestors();
482 
483   void updateSubloopParents();
484 
485 protected:
486   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
487 };
488 } // end anonymous namespace
489 
490 /// Update the parent loop for all blocks that are directly contained within the
491 /// original "unloop".
492 void UnloopUpdater::updateBlockParents() {
493   if (Unloop.getNumBlocks()) {
494     // Perform a post order CFG traversal of all blocks within this loop,
495     // propagating the nearest loop from successors to predecessors.
496     LoopBlocksTraversal Traversal(DFS, LI);
497     for (BasicBlock *POI : Traversal) {
498 
499       Loop *L = LI->getLoopFor(POI);
500       Loop *NL = getNearestLoop(POI, L);
501 
502       if (NL != L) {
503         // For reducible loops, NL is now an ancestor of Unloop.
504         assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
505                "uninitialized successor");
506         LI->changeLoopFor(POI, NL);
507       } else {
508         // Or the current block is part of a subloop, in which case its parent
509         // is unchanged.
510         assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
511       }
512     }
513   }
514   // Each irreducible loop within the unloop induces a round of iteration using
515   // the DFS result cached by Traversal.
516   bool Changed = FoundIB;
517   for (unsigned NIters = 0; Changed; ++NIters) {
518     assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
519 
520     // Iterate over the postorder list of blocks, propagating the nearest loop
521     // from successors to predecessors as before.
522     Changed = false;
523     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
524                                    POE = DFS.endPostorder();
525          POI != POE; ++POI) {
526 
527       Loop *L = LI->getLoopFor(*POI);
528       Loop *NL = getNearestLoop(*POI, L);
529       if (NL != L) {
530         assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
531                "uninitialized successor");
532         LI->changeLoopFor(*POI, NL);
533         Changed = true;
534       }
535     }
536   }
537 }
538 
539 /// Remove unloop's blocks from all ancestors below their new parents.
540 void UnloopUpdater::removeBlocksFromAncestors() {
541   // Remove all unloop's blocks (including those in nested subloops) from
542   // ancestors below the new parent loop.
543   for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end();
544        BI != BE; ++BI) {
545     Loop *OuterParent = LI->getLoopFor(*BI);
546     if (Unloop.contains(OuterParent)) {
547       while (OuterParent->getParentLoop() != &Unloop)
548         OuterParent = OuterParent->getParentLoop();
549       OuterParent = SubloopParents[OuterParent];
550     }
551     // Remove blocks from former Ancestors except Unloop itself which will be
552     // deleted.
553     for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
554          OldParent = OldParent->getParentLoop()) {
555       assert(OldParent && "new loop is not an ancestor of the original");
556       OldParent->removeBlockFromLoop(*BI);
557     }
558   }
559 }
560 
561 /// Update the parent loop for all subloops directly nested within unloop.
562 void UnloopUpdater::updateSubloopParents() {
563   while (!Unloop.empty()) {
564     Loop *Subloop = *std::prev(Unloop.end());
565     Unloop.removeChildLoop(std::prev(Unloop.end()));
566 
567     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
568     if (Loop *Parent = SubloopParents[Subloop])
569       Parent->addChildLoop(Subloop);
570     else
571       LI->addTopLevelLoop(Subloop);
572   }
573 }
574 
575 /// Return the nearest parent loop among this block's successors. If a successor
576 /// is a subloop header, consider its parent to be the nearest parent of the
577 /// subloop's exits.
578 ///
579 /// For subloop blocks, simply update SubloopParents and return NULL.
580 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
581 
582   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
583   // is considered uninitialized.
584   Loop *NearLoop = BBLoop;
585 
586   Loop *Subloop = nullptr;
587   if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
588     Subloop = NearLoop;
589     // Find the subloop ancestor that is directly contained within Unloop.
590     while (Subloop->getParentLoop() != &Unloop) {
591       Subloop = Subloop->getParentLoop();
592       assert(Subloop && "subloop is not an ancestor of the original loop");
593     }
594     // Get the current nearest parent of the Subloop exits, initially Unloop.
595     NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
596   }
597 
598   succ_iterator I = succ_begin(BB), E = succ_end(BB);
599   if (I == E) {
600     assert(!Subloop && "subloop blocks must have a successor");
601     NearLoop = nullptr; // unloop blocks may now exit the function.
602   }
603   for (; I != E; ++I) {
604     if (*I == BB)
605       continue; // self loops are uninteresting
606 
607     Loop *L = LI->getLoopFor(*I);
608     if (L == &Unloop) {
609       // This successor has not been processed. This path must lead to an
610       // irreducible backedge.
611       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
612       FoundIB = true;
613     }
614     if (L != &Unloop && Unloop.contains(L)) {
615       // Successor is in a subloop.
616       if (Subloop)
617         continue; // Branching within subloops. Ignore it.
618 
619       // BB branches from the original into a subloop header.
620       assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
621 
622       // Get the current nearest parent of the Subloop's exits.
623       L = SubloopParents[L];
624       // L could be Unloop if the only exit was an irreducible backedge.
625     }
626     if (L == &Unloop) {
627       continue;
628     }
629     // Handle critical edges from Unloop into a sibling loop.
630     if (L && !L->contains(&Unloop)) {
631       L = L->getParentLoop();
632     }
633     // Remember the nearest parent loop among successors or subloop exits.
634     if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
635       NearLoop = L;
636   }
637   if (Subloop) {
638     SubloopParents[Subloop] = NearLoop;
639     return BBLoop;
640   }
641   return NearLoop;
642 }
643 
644 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
645 
646 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
647                           FunctionAnalysisManager::Invalidator &) {
648   // Check whether the analysis, all analyses on functions, or the function's
649   // CFG have been preserved.
650   auto PAC = PA.getChecker<LoopAnalysis>();
651   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
652            PAC.preservedSet<CFGAnalyses>());
653 }
654 
655 void LoopInfo::erase(Loop *Unloop) {
656   assert(!Unloop->isInvalid() && "Loop has already been erased!");
657 
658   auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
659 
660   // First handle the special case of no parent loop to simplify the algorithm.
661   if (!Unloop->getParentLoop()) {
662     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
663     for (Loop::block_iterator I = Unloop->block_begin(),
664                               E = Unloop->block_end();
665          I != E; ++I) {
666 
667       // Don't reparent blocks in subloops.
668       if (getLoopFor(*I) != Unloop)
669         continue;
670 
671       // Blocks no longer have a parent but are still referenced by Unloop until
672       // the Unloop object is deleted.
673       changeLoopFor(*I, nullptr);
674     }
675 
676     // Remove the loop from the top-level LoopInfo object.
677     for (iterator I = begin();; ++I) {
678       assert(I != end() && "Couldn't find loop");
679       if (*I == Unloop) {
680         removeLoop(I);
681         break;
682       }
683     }
684 
685     // Move all of the subloops to the top-level.
686     while (!Unloop->empty())
687       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
688 
689     return;
690   }
691 
692   // Update the parent loop for all blocks within the loop. Blocks within
693   // subloops will not change parents.
694   UnloopUpdater Updater(Unloop, this);
695   Updater.updateBlockParents();
696 
697   // Remove blocks from former ancestor loops.
698   Updater.removeBlocksFromAncestors();
699 
700   // Add direct subloops as children in their new parent loop.
701   Updater.updateSubloopParents();
702 
703   // Remove unloop from its parent loop.
704   Loop *ParentLoop = Unloop->getParentLoop();
705   for (Loop::iterator I = ParentLoop->begin();; ++I) {
706     assert(I != ParentLoop->end() && "Couldn't find loop");
707     if (*I == Unloop) {
708       ParentLoop->removeChildLoop(I);
709       break;
710     }
711   }
712 }
713 
714 AnalysisKey LoopAnalysis::Key;
715 
716 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
717   // FIXME: Currently we create a LoopInfo from scratch for every function.
718   // This may prove to be too wasteful due to deallocating and re-allocating
719   // memory each time for the underlying map and vector datastructures. At some
720   // point it may prove worthwhile to use a freelist and recycle LoopInfo
721   // objects. I don't want to add that kind of complexity until the scope of
722   // the problem is better understood.
723   LoopInfo LI;
724   LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
725   return LI;
726 }
727 
728 PreservedAnalyses LoopPrinterPass::run(Function &F,
729                                        FunctionAnalysisManager &AM) {
730   AM.getResult<LoopAnalysis>(F).print(OS);
731   return PreservedAnalyses::all();
732 }
733 
734 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
735 
736   if (forcePrintModuleIR()) {
737     // handling -print-module-scope
738     OS << Banner << " (loop: ";
739     L.getHeader()->printAsOperand(OS, false);
740     OS << ")\n";
741 
742     // printing whole module
743     OS << *L.getHeader()->getModule();
744     return;
745   }
746 
747   OS << Banner;
748 
749   auto *PreHeader = L.getLoopPreheader();
750   if (PreHeader) {
751     OS << "\n; Preheader:";
752     PreHeader->print(OS);
753     OS << "\n; Loop:";
754   }
755 
756   for (auto *Block : L.blocks())
757     if (Block)
758       Block->print(OS);
759     else
760       OS << "Printing <null> block";
761 
762   SmallVector<BasicBlock *, 8> ExitBlocks;
763   L.getExitBlocks(ExitBlocks);
764   if (!ExitBlocks.empty()) {
765     OS << "\n; Exit blocks";
766     for (auto *Block : ExitBlocks)
767       if (Block)
768         Block->print(OS);
769       else
770         OS << "Printing <null> block";
771   }
772 }
773 
774 //===----------------------------------------------------------------------===//
775 // LoopInfo implementation
776 //
777 
778 char LoopInfoWrapperPass::ID = 0;
779 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
780                       true, true)
781 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
782 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
783                     true, true)
784 
785 bool LoopInfoWrapperPass::runOnFunction(Function &) {
786   releaseMemory();
787   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
788   return false;
789 }
790 
791 void LoopInfoWrapperPass::verifyAnalysis() const {
792   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
793   // function each time verifyAnalysis is called is very expensive. The
794   // -verify-loop-info option can enable this. In order to perform some
795   // checking by default, LoopPass has been taught to call verifyLoop manually
796   // during loop pass sequences.
797   if (VerifyLoopInfo) {
798     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
799     LI.verify(DT);
800   }
801 }
802 
803 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
804   AU.setPreservesAll();
805   AU.addRequired<DominatorTreeWrapperPass>();
806 }
807 
808 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
809   LI.print(OS);
810 }
811 
812 PreservedAnalyses LoopVerifierPass::run(Function &F,
813                                         FunctionAnalysisManager &AM) {
814   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
815   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
816   LI.verify(DT);
817   return PreservedAnalyses::all();
818 }
819 
820 //===----------------------------------------------------------------------===//
821 // LoopBlocksDFS implementation
822 //
823 
824 /// Traverse the loop blocks and store the DFS result.
825 /// Useful for clients that just want the final DFS result and don't need to
826 /// visit blocks during the initial traversal.
827 void LoopBlocksDFS::perform(LoopInfo *LI) {
828   LoopBlocksTraversal Traversal(*this, LI);
829   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
830                                         POE = Traversal.end();
831        POI != POE; ++POI)
832     ;
833 }
834