1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the LoopInfo class that is used to identify natural loops 11 // and determine the loop depth of various nodes of the CFG. Note that the 12 // loops identified may actually be several natural loops that share the same 13 // header node... not just a single natural loop. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/Analysis/LoopInfoImpl.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugLoc.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/PassManager.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 40 template class llvm::LoopBase<BasicBlock, Loop>; 41 template class llvm::LoopInfoBase<BasicBlock, Loop>; 42 43 // Always verify loopinfo if expensive checking is enabled. 44 #ifdef EXPENSIVE_CHECKS 45 bool llvm::VerifyLoopInfo = true; 46 #else 47 bool llvm::VerifyLoopInfo = false; 48 #endif 49 static cl::opt<bool, true> 50 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 51 cl::Hidden, cl::desc("Verify loop info (time consuming)")); 52 53 //===----------------------------------------------------------------------===// 54 // Loop implementation 55 // 56 57 bool Loop::isLoopInvariant(const Value *V) const { 58 if (const Instruction *I = dyn_cast<Instruction>(V)) 59 return !contains(I); 60 return true; // All non-instructions are loop invariant 61 } 62 63 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 64 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 65 } 66 67 bool Loop::makeLoopInvariant(Value *V, bool &Changed, 68 Instruction *InsertPt) const { 69 if (Instruction *I = dyn_cast<Instruction>(V)) 70 return makeLoopInvariant(I, Changed, InsertPt); 71 return true; // All non-instructions are loop-invariant. 72 } 73 74 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 75 Instruction *InsertPt) const { 76 // Test if the value is already loop-invariant. 77 if (isLoopInvariant(I)) 78 return true; 79 if (!isSafeToSpeculativelyExecute(I)) 80 return false; 81 if (I->mayReadFromMemory()) 82 return false; 83 // EH block instructions are immobile. 84 if (I->isEHPad()) 85 return false; 86 // Determine the insertion point, unless one was given. 87 if (!InsertPt) { 88 BasicBlock *Preheader = getLoopPreheader(); 89 // Without a preheader, hoisting is not feasible. 90 if (!Preheader) 91 return false; 92 InsertPt = Preheader->getTerminator(); 93 } 94 // Don't hoist instructions with loop-variant operands. 95 for (Value *Operand : I->operands()) 96 if (!makeLoopInvariant(Operand, Changed, InsertPt)) 97 return false; 98 99 // Hoist. 100 I->moveBefore(InsertPt); 101 102 // There is possibility of hoisting this instruction above some arbitrary 103 // condition. Any metadata defined on it can be control dependent on this 104 // condition. Conservatively strip it here so that we don't give any wrong 105 // information to the optimizer. 106 I->dropUnknownNonDebugMetadata(); 107 108 Changed = true; 109 return true; 110 } 111 112 PHINode *Loop::getCanonicalInductionVariable() const { 113 BasicBlock *H = getHeader(); 114 115 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 116 pred_iterator PI = pred_begin(H); 117 assert(PI != pred_end(H) && "Loop must have at least one backedge!"); 118 Backedge = *PI++; 119 if (PI == pred_end(H)) 120 return nullptr; // dead loop 121 Incoming = *PI++; 122 if (PI != pred_end(H)) 123 return nullptr; // multiple backedges? 124 125 if (contains(Incoming)) { 126 if (contains(Backedge)) 127 return nullptr; 128 std::swap(Incoming, Backedge); 129 } else if (!contains(Backedge)) 130 return nullptr; 131 132 // Loop over all of the PHI nodes, looking for a canonical indvar. 133 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 134 PHINode *PN = cast<PHINode>(I); 135 if (ConstantInt *CI = 136 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 137 if (CI->isZero()) 138 if (Instruction *Inc = 139 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 140 if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) 141 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 142 if (CI->isOne()) 143 return PN; 144 } 145 return nullptr; 146 } 147 148 // Check that 'BB' doesn't have any uses outside of the 'L' 149 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, 150 DominatorTree &DT) { 151 for (const Instruction &I : BB) { 152 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 153 // optimizations, so for the purposes of considered LCSSA form, we 154 // can ignore them. 155 if (I.getType()->isTokenTy()) 156 continue; 157 158 for (const Use &U : I.uses()) { 159 const Instruction *UI = cast<Instruction>(U.getUser()); 160 const BasicBlock *UserBB = UI->getParent(); 161 if (const PHINode *P = dyn_cast<PHINode>(UI)) 162 UserBB = P->getIncomingBlock(U); 163 164 // Check the current block, as a fast-path, before checking whether 165 // the use is anywhere in the loop. Most values are used in the same 166 // block they are defined in. Also, blocks not reachable from the 167 // entry are special; uses in them don't need to go through PHIs. 168 if (UserBB != &BB && !L.contains(UserBB) && 169 DT.isReachableFromEntry(UserBB)) 170 return false; 171 } 172 } 173 return true; 174 } 175 176 bool Loop::isLCSSAForm(DominatorTree &DT) const { 177 // For each block we check that it doesn't have any uses outside of this loop. 178 return all_of(this->blocks(), [&](const BasicBlock *BB) { 179 return isBlockInLCSSAForm(*this, *BB, DT); 180 }); 181 } 182 183 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const { 184 // For each block we check that it doesn't have any uses outside of its 185 // innermost loop. This process will transitively guarantee that the current 186 // loop and all of the nested loops are in LCSSA form. 187 return all_of(this->blocks(), [&](const BasicBlock *BB) { 188 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT); 189 }); 190 } 191 192 bool Loop::isLoopSimplifyForm() const { 193 // Normal-form loops have a preheader, a single backedge, and all of their 194 // exits have all their predecessors inside the loop. 195 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 196 } 197 198 // Routines that reform the loop CFG and split edges often fail on indirectbr. 199 bool Loop::isSafeToClone() const { 200 // Return false if any loop blocks contain indirectbrs, or there are any calls 201 // to noduplicate functions. 202 for (BasicBlock *BB : this->blocks()) { 203 if (isa<IndirectBrInst>(BB->getTerminator())) 204 return false; 205 206 for (Instruction &I : *BB) 207 if (auto CS = CallSite(&I)) 208 if (CS.cannotDuplicate()) 209 return false; 210 } 211 return true; 212 } 213 214 MDNode *Loop::getLoopID() const { 215 MDNode *LoopID = nullptr; 216 if (BasicBlock *Latch = getLoopLatch()) { 217 LoopID = Latch->getTerminator()->getMetadata(LLVMContext::MD_loop); 218 } else { 219 assert(!getLoopLatch() && 220 "The loop should have no single latch at this point"); 221 // Go through each predecessor of the loop header and check the 222 // terminator for the metadata. 223 BasicBlock *H = getHeader(); 224 for (BasicBlock *BB : this->blocks()) { 225 TerminatorInst *TI = BB->getTerminator(); 226 MDNode *MD = nullptr; 227 228 // Check if this terminator branches to the loop header. 229 for (BasicBlock *Successor : TI->successors()) { 230 if (Successor == H) { 231 MD = TI->getMetadata(LLVMContext::MD_loop); 232 break; 233 } 234 } 235 if (!MD) 236 return nullptr; 237 238 if (!LoopID) 239 LoopID = MD; 240 else if (MD != LoopID) 241 return nullptr; 242 } 243 } 244 if (!LoopID || LoopID->getNumOperands() == 0 || 245 LoopID->getOperand(0) != LoopID) 246 return nullptr; 247 return LoopID; 248 } 249 250 void Loop::setLoopID(MDNode *LoopID) const { 251 assert(LoopID && "Loop ID should not be null"); 252 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand"); 253 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself"); 254 255 if (BasicBlock *Latch = getLoopLatch()) { 256 Latch->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); 257 return; 258 } 259 260 assert(!getLoopLatch() && 261 "The loop should have no single latch at this point"); 262 BasicBlock *H = getHeader(); 263 for (BasicBlock *BB : this->blocks()) { 264 TerminatorInst *TI = BB->getTerminator(); 265 for (BasicBlock *Successor : TI->successors()) { 266 if (Successor == H) 267 TI->setMetadata(LLVMContext::MD_loop, LoopID); 268 } 269 } 270 } 271 272 void Loop::setLoopAlreadyUnrolled() { 273 MDNode *LoopID = getLoopID(); 274 // First remove any existing loop unrolling metadata. 275 SmallVector<Metadata *, 4> MDs; 276 // Reserve first location for self reference to the LoopID metadata node. 277 MDs.push_back(nullptr); 278 279 if (LoopID) { 280 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 281 bool IsUnrollMetadata = false; 282 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 283 if (MD) { 284 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 285 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 286 } 287 if (!IsUnrollMetadata) 288 MDs.push_back(LoopID->getOperand(i)); 289 } 290 } 291 292 // Add unroll(disable) metadata to disable future unrolling. 293 LLVMContext &Context = getHeader()->getContext(); 294 SmallVector<Metadata *, 1> DisableOperands; 295 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 296 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 297 MDs.push_back(DisableNode); 298 299 MDNode *NewLoopID = MDNode::get(Context, MDs); 300 // Set operand 0 to refer to the loop id itself. 301 NewLoopID->replaceOperandWith(0, NewLoopID); 302 setLoopID(NewLoopID); 303 } 304 305 bool Loop::isAnnotatedParallel() const { 306 MDNode *DesiredLoopIdMetadata = getLoopID(); 307 308 if (!DesiredLoopIdMetadata) 309 return false; 310 311 // The loop branch contains the parallel loop metadata. In order to ensure 312 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 313 // dependencies (thus converted the loop back to a sequential loop), check 314 // that all the memory instructions in the loop contain parallelism metadata 315 // that point to the same unique "loop id metadata" the loop branch does. 316 for (BasicBlock *BB : this->blocks()) { 317 for (Instruction &I : *BB) { 318 if (!I.mayReadOrWriteMemory()) 319 continue; 320 321 // The memory instruction can refer to the loop identifier metadata 322 // directly or indirectly through another list metadata (in case of 323 // nested parallel loops). The loop identifier metadata refers to 324 // itself so we can check both cases with the same routine. 325 MDNode *LoopIdMD = 326 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 327 328 if (!LoopIdMD) 329 return false; 330 331 bool LoopIdMDFound = false; 332 for (const MDOperand &MDOp : LoopIdMD->operands()) { 333 if (MDOp == DesiredLoopIdMetadata) { 334 LoopIdMDFound = true; 335 break; 336 } 337 } 338 339 if (!LoopIdMDFound) 340 return false; 341 } 342 } 343 return true; 344 } 345 346 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } 347 348 Loop::LocRange Loop::getLocRange() const { 349 // If we have a debug location in the loop ID, then use it. 350 if (MDNode *LoopID = getLoopID()) { 351 DebugLoc Start; 352 // We use the first DebugLoc in the header as the start location of the loop 353 // and if there is a second DebugLoc in the header we use it as end location 354 // of the loop. 355 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 356 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) { 357 if (!Start) 358 Start = DebugLoc(L); 359 else 360 return LocRange(Start, DebugLoc(L)); 361 } 362 } 363 364 if (Start) 365 return LocRange(Start); 366 } 367 368 // Try the pre-header first. 369 if (BasicBlock *PHeadBB = getLoopPreheader()) 370 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) 371 return LocRange(DL); 372 373 // If we have no pre-header or there are no instructions with debug 374 // info in it, try the header. 375 if (BasicBlock *HeadBB = getHeader()) 376 return LocRange(HeadBB->getTerminator()->getDebugLoc()); 377 378 return LocRange(); 379 } 380 381 bool Loop::hasDedicatedExits() const { 382 // Each predecessor of each exit block of a normal loop is contained 383 // within the loop. 384 SmallVector<BasicBlock *, 4> ExitBlocks; 385 getExitBlocks(ExitBlocks); 386 for (BasicBlock *BB : ExitBlocks) 387 for (BasicBlock *Predecessor : predecessors(BB)) 388 if (!contains(Predecessor)) 389 return false; 390 // All the requirements are met. 391 return true; 392 } 393 394 void Loop::getUniqueExitBlocks( 395 SmallVectorImpl<BasicBlock *> &ExitBlocks) const { 396 assert(hasDedicatedExits() && 397 "getUniqueExitBlocks assumes the loop has canonical form exits!"); 398 399 SmallVector<BasicBlock *, 32> SwitchExitBlocks; 400 for (BasicBlock *BB : this->blocks()) { 401 SwitchExitBlocks.clear(); 402 for (BasicBlock *Successor : successors(BB)) { 403 // If block is inside the loop then it is not an exit block. 404 if (contains(Successor)) 405 continue; 406 407 pred_iterator PI = pred_begin(Successor); 408 BasicBlock *FirstPred = *PI; 409 410 // If current basic block is this exit block's first predecessor 411 // then only insert exit block in to the output ExitBlocks vector. 412 // This ensures that same exit block is not inserted twice into 413 // ExitBlocks vector. 414 if (BB != FirstPred) 415 continue; 416 417 // If a terminator has more then two successors, for example SwitchInst, 418 // then it is possible that there are multiple edges from current block 419 // to one exit block. 420 if (succ_size(BB) <= 2) { 421 ExitBlocks.push_back(Successor); 422 continue; 423 } 424 425 // In case of multiple edges from current block to exit block, collect 426 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of 427 // duplicate edges. 428 if (!is_contained(SwitchExitBlocks, Successor)) { 429 SwitchExitBlocks.push_back(Successor); 430 ExitBlocks.push_back(Successor); 431 } 432 } 433 } 434 } 435 436 BasicBlock *Loop::getUniqueExitBlock() const { 437 SmallVector<BasicBlock *, 8> UniqueExitBlocks; 438 getUniqueExitBlocks(UniqueExitBlocks); 439 if (UniqueExitBlocks.size() == 1) 440 return UniqueExitBlocks[0]; 441 return nullptr; 442 } 443 444 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 445 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } 446 447 LLVM_DUMP_METHOD void Loop::dumpVerbose() const { 448 print(dbgs(), /*Depth=*/0, /*Verbose=*/true); 449 } 450 #endif 451 452 //===----------------------------------------------------------------------===// 453 // UnloopUpdater implementation 454 // 455 456 namespace { 457 /// Find the new parent loop for all blocks within the "unloop" whose last 458 /// backedges has just been removed. 459 class UnloopUpdater { 460 Loop &Unloop; 461 LoopInfo *LI; 462 463 LoopBlocksDFS DFS; 464 465 // Map unloop's immediate subloops to their nearest reachable parents. Nested 466 // loops within these subloops will not change parents. However, an immediate 467 // subloop's new parent will be the nearest loop reachable from either its own 468 // exits *or* any of its nested loop's exits. 469 DenseMap<Loop *, Loop *> SubloopParents; 470 471 // Flag the presence of an irreducible backedge whose destination is a block 472 // directly contained by the original unloop. 473 bool FoundIB; 474 475 public: 476 UnloopUpdater(Loop *UL, LoopInfo *LInfo) 477 : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} 478 479 void updateBlockParents(); 480 481 void removeBlocksFromAncestors(); 482 483 void updateSubloopParents(); 484 485 protected: 486 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 487 }; 488 } // end anonymous namespace 489 490 /// Update the parent loop for all blocks that are directly contained within the 491 /// original "unloop". 492 void UnloopUpdater::updateBlockParents() { 493 if (Unloop.getNumBlocks()) { 494 // Perform a post order CFG traversal of all blocks within this loop, 495 // propagating the nearest loop from successors to predecessors. 496 LoopBlocksTraversal Traversal(DFS, LI); 497 for (BasicBlock *POI : Traversal) { 498 499 Loop *L = LI->getLoopFor(POI); 500 Loop *NL = getNearestLoop(POI, L); 501 502 if (NL != L) { 503 // For reducible loops, NL is now an ancestor of Unloop. 504 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && 505 "uninitialized successor"); 506 LI->changeLoopFor(POI, NL); 507 } else { 508 // Or the current block is part of a subloop, in which case its parent 509 // is unchanged. 510 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); 511 } 512 } 513 } 514 // Each irreducible loop within the unloop induces a round of iteration using 515 // the DFS result cached by Traversal. 516 bool Changed = FoundIB; 517 for (unsigned NIters = 0; Changed; ++NIters) { 518 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); 519 520 // Iterate over the postorder list of blocks, propagating the nearest loop 521 // from successors to predecessors as before. 522 Changed = false; 523 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 524 POE = DFS.endPostorder(); 525 POI != POE; ++POI) { 526 527 Loop *L = LI->getLoopFor(*POI); 528 Loop *NL = getNearestLoop(*POI, L); 529 if (NL != L) { 530 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && 531 "uninitialized successor"); 532 LI->changeLoopFor(*POI, NL); 533 Changed = true; 534 } 535 } 536 } 537 } 538 539 /// Remove unloop's blocks from all ancestors below their new parents. 540 void UnloopUpdater::removeBlocksFromAncestors() { 541 // Remove all unloop's blocks (including those in nested subloops) from 542 // ancestors below the new parent loop. 543 for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end(); 544 BI != BE; ++BI) { 545 Loop *OuterParent = LI->getLoopFor(*BI); 546 if (Unloop.contains(OuterParent)) { 547 while (OuterParent->getParentLoop() != &Unloop) 548 OuterParent = OuterParent->getParentLoop(); 549 OuterParent = SubloopParents[OuterParent]; 550 } 551 // Remove blocks from former Ancestors except Unloop itself which will be 552 // deleted. 553 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; 554 OldParent = OldParent->getParentLoop()) { 555 assert(OldParent && "new loop is not an ancestor of the original"); 556 OldParent->removeBlockFromLoop(*BI); 557 } 558 } 559 } 560 561 /// Update the parent loop for all subloops directly nested within unloop. 562 void UnloopUpdater::updateSubloopParents() { 563 while (!Unloop.empty()) { 564 Loop *Subloop = *std::prev(Unloop.end()); 565 Unloop.removeChildLoop(std::prev(Unloop.end())); 566 567 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 568 if (Loop *Parent = SubloopParents[Subloop]) 569 Parent->addChildLoop(Subloop); 570 else 571 LI->addTopLevelLoop(Subloop); 572 } 573 } 574 575 /// Return the nearest parent loop among this block's successors. If a successor 576 /// is a subloop header, consider its parent to be the nearest parent of the 577 /// subloop's exits. 578 /// 579 /// For subloop blocks, simply update SubloopParents and return NULL. 580 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 581 582 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 583 // is considered uninitialized. 584 Loop *NearLoop = BBLoop; 585 586 Loop *Subloop = nullptr; 587 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { 588 Subloop = NearLoop; 589 // Find the subloop ancestor that is directly contained within Unloop. 590 while (Subloop->getParentLoop() != &Unloop) { 591 Subloop = Subloop->getParentLoop(); 592 assert(Subloop && "subloop is not an ancestor of the original loop"); 593 } 594 // Get the current nearest parent of the Subloop exits, initially Unloop. 595 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; 596 } 597 598 succ_iterator I = succ_begin(BB), E = succ_end(BB); 599 if (I == E) { 600 assert(!Subloop && "subloop blocks must have a successor"); 601 NearLoop = nullptr; // unloop blocks may now exit the function. 602 } 603 for (; I != E; ++I) { 604 if (*I == BB) 605 continue; // self loops are uninteresting 606 607 Loop *L = LI->getLoopFor(*I); 608 if (L == &Unloop) { 609 // This successor has not been processed. This path must lead to an 610 // irreducible backedge. 611 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 612 FoundIB = true; 613 } 614 if (L != &Unloop && Unloop.contains(L)) { 615 // Successor is in a subloop. 616 if (Subloop) 617 continue; // Branching within subloops. Ignore it. 618 619 // BB branches from the original into a subloop header. 620 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); 621 622 // Get the current nearest parent of the Subloop's exits. 623 L = SubloopParents[L]; 624 // L could be Unloop if the only exit was an irreducible backedge. 625 } 626 if (L == &Unloop) { 627 continue; 628 } 629 // Handle critical edges from Unloop into a sibling loop. 630 if (L && !L->contains(&Unloop)) { 631 L = L->getParentLoop(); 632 } 633 // Remember the nearest parent loop among successors or subloop exits. 634 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) 635 NearLoop = L; 636 } 637 if (Subloop) { 638 SubloopParents[Subloop] = NearLoop; 639 return BBLoop; 640 } 641 return NearLoop; 642 } 643 644 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); } 645 646 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, 647 FunctionAnalysisManager::Invalidator &) { 648 // Check whether the analysis, all analyses on functions, or the function's 649 // CFG have been preserved. 650 auto PAC = PA.getChecker<LoopAnalysis>(); 651 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 652 PAC.preservedSet<CFGAnalyses>()); 653 } 654 655 void LoopInfo::erase(Loop *Unloop) { 656 assert(!Unloop->isInvalid() && "Loop has already been erased!"); 657 658 auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); 659 660 // First handle the special case of no parent loop to simplify the algorithm. 661 if (!Unloop->getParentLoop()) { 662 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 663 for (Loop::block_iterator I = Unloop->block_begin(), 664 E = Unloop->block_end(); 665 I != E; ++I) { 666 667 // Don't reparent blocks in subloops. 668 if (getLoopFor(*I) != Unloop) 669 continue; 670 671 // Blocks no longer have a parent but are still referenced by Unloop until 672 // the Unloop object is deleted. 673 changeLoopFor(*I, nullptr); 674 } 675 676 // Remove the loop from the top-level LoopInfo object. 677 for (iterator I = begin();; ++I) { 678 assert(I != end() && "Couldn't find loop"); 679 if (*I == Unloop) { 680 removeLoop(I); 681 break; 682 } 683 } 684 685 // Move all of the subloops to the top-level. 686 while (!Unloop->empty()) 687 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 688 689 return; 690 } 691 692 // Update the parent loop for all blocks within the loop. Blocks within 693 // subloops will not change parents. 694 UnloopUpdater Updater(Unloop, this); 695 Updater.updateBlockParents(); 696 697 // Remove blocks from former ancestor loops. 698 Updater.removeBlocksFromAncestors(); 699 700 // Add direct subloops as children in their new parent loop. 701 Updater.updateSubloopParents(); 702 703 // Remove unloop from its parent loop. 704 Loop *ParentLoop = Unloop->getParentLoop(); 705 for (Loop::iterator I = ParentLoop->begin();; ++I) { 706 assert(I != ParentLoop->end() && "Couldn't find loop"); 707 if (*I == Unloop) { 708 ParentLoop->removeChildLoop(I); 709 break; 710 } 711 } 712 } 713 714 AnalysisKey LoopAnalysis::Key; 715 716 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 717 // FIXME: Currently we create a LoopInfo from scratch for every function. 718 // This may prove to be too wasteful due to deallocating and re-allocating 719 // memory each time for the underlying map and vector datastructures. At some 720 // point it may prove worthwhile to use a freelist and recycle LoopInfo 721 // objects. I don't want to add that kind of complexity until the scope of 722 // the problem is better understood. 723 LoopInfo LI; 724 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); 725 return LI; 726 } 727 728 PreservedAnalyses LoopPrinterPass::run(Function &F, 729 FunctionAnalysisManager &AM) { 730 AM.getResult<LoopAnalysis>(F).print(OS); 731 return PreservedAnalyses::all(); 732 } 733 734 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { 735 736 if (forcePrintModuleIR()) { 737 // handling -print-module-scope 738 OS << Banner << " (loop: "; 739 L.getHeader()->printAsOperand(OS, false); 740 OS << ")\n"; 741 742 // printing whole module 743 OS << *L.getHeader()->getModule(); 744 return; 745 } 746 747 OS << Banner; 748 749 auto *PreHeader = L.getLoopPreheader(); 750 if (PreHeader) { 751 OS << "\n; Preheader:"; 752 PreHeader->print(OS); 753 OS << "\n; Loop:"; 754 } 755 756 for (auto *Block : L.blocks()) 757 if (Block) 758 Block->print(OS); 759 else 760 OS << "Printing <null> block"; 761 762 SmallVector<BasicBlock *, 8> ExitBlocks; 763 L.getExitBlocks(ExitBlocks); 764 if (!ExitBlocks.empty()) { 765 OS << "\n; Exit blocks"; 766 for (auto *Block : ExitBlocks) 767 if (Block) 768 Block->print(OS); 769 else 770 OS << "Printing <null> block"; 771 } 772 } 773 774 //===----------------------------------------------------------------------===// 775 // LoopInfo implementation 776 // 777 778 char LoopInfoWrapperPass::ID = 0; 779 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 780 true, true) 781 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 782 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 783 true, true) 784 785 bool LoopInfoWrapperPass::runOnFunction(Function &) { 786 releaseMemory(); 787 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 788 return false; 789 } 790 791 void LoopInfoWrapperPass::verifyAnalysis() const { 792 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 793 // function each time verifyAnalysis is called is very expensive. The 794 // -verify-loop-info option can enable this. In order to perform some 795 // checking by default, LoopPass has been taught to call verifyLoop manually 796 // during loop pass sequences. 797 if (VerifyLoopInfo) { 798 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 799 LI.verify(DT); 800 } 801 } 802 803 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 804 AU.setPreservesAll(); 805 AU.addRequired<DominatorTreeWrapperPass>(); 806 } 807 808 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 809 LI.print(OS); 810 } 811 812 PreservedAnalyses LoopVerifierPass::run(Function &F, 813 FunctionAnalysisManager &AM) { 814 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 815 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 816 LI.verify(DT); 817 return PreservedAnalyses::all(); 818 } 819 820 //===----------------------------------------------------------------------===// 821 // LoopBlocksDFS implementation 822 // 823 824 /// Traverse the loop blocks and store the DFS result. 825 /// Useful for clients that just want the final DFS result and don't need to 826 /// visit blocks during the initial traversal. 827 void LoopBlocksDFS::perform(LoopInfo *LI) { 828 LoopBlocksTraversal Traversal(*this, LI); 829 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 830 POE = Traversal.end(); 831 POI != POE; ++POI) 832 ; 833 } 834