1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the LoopInfo class that is used to identify natural loops 11 // and determine the loop depth of various nodes of the CFG. Note that the 12 // loops identified may actually be several natural loops that share the same 13 // header node... not just a single natural loop. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/LoopInfoImpl.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/PassManager.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include <algorithm> 33 using namespace llvm; 34 35 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 36 template class llvm::LoopBase<BasicBlock, Loop>; 37 template class llvm::LoopInfoBase<BasicBlock, Loop>; 38 39 // Always verify loopinfo if expensive checking is enabled. 40 #ifdef XDEBUG 41 static bool VerifyLoopInfo = true; 42 #else 43 static bool VerifyLoopInfo = false; 44 #endif 45 static cl::opt<bool,true> 46 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 47 cl::desc("Verify loop info (time consuming)")); 48 49 // Loop identifier metadata name. 50 static const char *const LoopMDName = "llvm.loop"; 51 52 //===----------------------------------------------------------------------===// 53 // Loop implementation 54 // 55 56 /// isLoopInvariant - Return true if the specified value is loop invariant 57 /// 58 bool Loop::isLoopInvariant(Value *V) const { 59 if (Instruction *I = dyn_cast<Instruction>(V)) 60 return !contains(I); 61 return true; // All non-instructions are loop invariant 62 } 63 64 /// hasLoopInvariantOperands - Return true if all the operands of the 65 /// specified instruction are loop invariant. 66 bool Loop::hasLoopInvariantOperands(Instruction *I) const { 67 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 68 if (!isLoopInvariant(I->getOperand(i))) 69 return false; 70 71 return true; 72 } 73 74 /// makeLoopInvariant - If the given value is an instruciton inside of the 75 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 76 /// Return true if the value after any hoisting is loop invariant. This 77 /// function can be used as a slightly more aggressive replacement for 78 /// isLoopInvariant. 79 /// 80 /// If InsertPt is specified, it is the point to hoist instructions to. 81 /// If null, the terminator of the loop preheader is used. 82 /// 83 bool Loop::makeLoopInvariant(Value *V, bool &Changed, 84 Instruction *InsertPt) const { 85 if (Instruction *I = dyn_cast<Instruction>(V)) 86 return makeLoopInvariant(I, Changed, InsertPt); 87 return true; // All non-instructions are loop-invariant. 88 } 89 90 /// makeLoopInvariant - If the given instruction is inside of the 91 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 92 /// Return true if the instruction after any hoisting is loop invariant. This 93 /// function can be used as a slightly more aggressive replacement for 94 /// isLoopInvariant. 95 /// 96 /// If InsertPt is specified, it is the point to hoist instructions to. 97 /// If null, the terminator of the loop preheader is used. 98 /// 99 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 100 Instruction *InsertPt) const { 101 // Test if the value is already loop-invariant. 102 if (isLoopInvariant(I)) 103 return true; 104 if (!isSafeToSpeculativelyExecute(I)) 105 return false; 106 if (I->mayReadFromMemory()) 107 return false; 108 // The landingpad instruction is immobile. 109 if (isa<LandingPadInst>(I)) 110 return false; 111 // Determine the insertion point, unless one was given. 112 if (!InsertPt) { 113 BasicBlock *Preheader = getLoopPreheader(); 114 // Without a preheader, hoisting is not feasible. 115 if (!Preheader) 116 return false; 117 InsertPt = Preheader->getTerminator(); 118 } 119 // Don't hoist instructions with loop-variant operands. 120 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 121 if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt)) 122 return false; 123 124 // Hoist. 125 I->moveBefore(InsertPt); 126 Changed = true; 127 return true; 128 } 129 130 /// getCanonicalInductionVariable - Check to see if the loop has a canonical 131 /// induction variable: an integer recurrence that starts at 0 and increments 132 /// by one each time through the loop. If so, return the phi node that 133 /// corresponds to it. 134 /// 135 /// The IndVarSimplify pass transforms loops to have a canonical induction 136 /// variable. 137 /// 138 PHINode *Loop::getCanonicalInductionVariable() const { 139 BasicBlock *H = getHeader(); 140 141 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 142 pred_iterator PI = pred_begin(H); 143 assert(PI != pred_end(H) && 144 "Loop must have at least one backedge!"); 145 Backedge = *PI++; 146 if (PI == pred_end(H)) return nullptr; // dead loop 147 Incoming = *PI++; 148 if (PI != pred_end(H)) return nullptr; // multiple backedges? 149 150 if (contains(Incoming)) { 151 if (contains(Backedge)) 152 return nullptr; 153 std::swap(Incoming, Backedge); 154 } else if (!contains(Backedge)) 155 return nullptr; 156 157 // Loop over all of the PHI nodes, looking for a canonical indvar. 158 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 159 PHINode *PN = cast<PHINode>(I); 160 if (ConstantInt *CI = 161 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 162 if (CI->isNullValue()) 163 if (Instruction *Inc = 164 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 165 if (Inc->getOpcode() == Instruction::Add && 166 Inc->getOperand(0) == PN) 167 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 168 if (CI->equalsInt(1)) 169 return PN; 170 } 171 return nullptr; 172 } 173 174 /// isLCSSAForm - Return true if the Loop is in LCSSA form 175 bool Loop::isLCSSAForm(DominatorTree &DT) const { 176 for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { 177 BasicBlock *BB = *BI; 178 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I) 179 for (Use &U : I->uses()) { 180 Instruction *UI = cast<Instruction>(U.getUser()); 181 BasicBlock *UserBB = UI->getParent(); 182 if (PHINode *P = dyn_cast<PHINode>(UI)) 183 UserBB = P->getIncomingBlock(U); 184 185 // Check the current block, as a fast-path, before checking whether 186 // the use is anywhere in the loop. Most values are used in the same 187 // block they are defined in. Also, blocks not reachable from the 188 // entry are special; uses in them don't need to go through PHIs. 189 if (UserBB != BB && 190 !contains(UserBB) && 191 DT.isReachableFromEntry(UserBB)) 192 return false; 193 } 194 } 195 196 return true; 197 } 198 199 /// isLoopSimplifyForm - Return true if the Loop is in the form that 200 /// the LoopSimplify form transforms loops to, which is sometimes called 201 /// normal form. 202 bool Loop::isLoopSimplifyForm() const { 203 // Normal-form loops have a preheader, a single backedge, and all of their 204 // exits have all their predecessors inside the loop. 205 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 206 } 207 208 /// isSafeToClone - Return true if the loop body is safe to clone in practice. 209 /// Routines that reform the loop CFG and split edges often fail on indirectbr. 210 bool Loop::isSafeToClone() const { 211 // Return false if any loop blocks contain indirectbrs, or there are any calls 212 // to noduplicate functions. 213 for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) { 214 if (isa<IndirectBrInst>((*I)->getTerminator())) 215 return false; 216 217 if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator())) 218 if (II->cannotDuplicate()) 219 return false; 220 221 for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) { 222 if (const CallInst *CI = dyn_cast<CallInst>(BI)) { 223 if (CI->cannotDuplicate()) 224 return false; 225 } 226 } 227 } 228 return true; 229 } 230 231 MDNode *Loop::getLoopID() const { 232 MDNode *LoopID = nullptr; 233 if (isLoopSimplifyForm()) { 234 LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName); 235 } else { 236 // Go through each predecessor of the loop header and check the 237 // terminator for the metadata. 238 BasicBlock *H = getHeader(); 239 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) { 240 TerminatorInst *TI = (*I)->getTerminator(); 241 MDNode *MD = nullptr; 242 243 // Check if this terminator branches to the loop header. 244 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) { 245 if (TI->getSuccessor(i) == H) { 246 MD = TI->getMetadata(LoopMDName); 247 break; 248 } 249 } 250 if (!MD) 251 return nullptr; 252 253 if (!LoopID) 254 LoopID = MD; 255 else if (MD != LoopID) 256 return nullptr; 257 } 258 } 259 if (!LoopID || LoopID->getNumOperands() == 0 || 260 LoopID->getOperand(0) != LoopID) 261 return nullptr; 262 return LoopID; 263 } 264 265 void Loop::setLoopID(MDNode *LoopID) const { 266 assert(LoopID && "Loop ID should not be null"); 267 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand"); 268 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself"); 269 270 if (isLoopSimplifyForm()) { 271 getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID); 272 return; 273 } 274 275 BasicBlock *H = getHeader(); 276 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) { 277 TerminatorInst *TI = (*I)->getTerminator(); 278 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) { 279 if (TI->getSuccessor(i) == H) 280 TI->setMetadata(LoopMDName, LoopID); 281 } 282 } 283 } 284 285 bool Loop::isAnnotatedParallel() const { 286 MDNode *desiredLoopIdMetadata = getLoopID(); 287 288 if (!desiredLoopIdMetadata) 289 return false; 290 291 // The loop branch contains the parallel loop metadata. In order to ensure 292 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 293 // dependencies (thus converted the loop back to a sequential loop), check 294 // that all the memory instructions in the loop contain parallelism metadata 295 // that point to the same unique "loop id metadata" the loop branch does. 296 for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) { 297 for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end(); 298 II != EE; II++) { 299 300 if (!II->mayReadOrWriteMemory()) 301 continue; 302 303 // The memory instruction can refer to the loop identifier metadata 304 // directly or indirectly through another list metadata (in case of 305 // nested parallel loops). The loop identifier metadata refers to 306 // itself so we can check both cases with the same routine. 307 MDNode *loopIdMD = 308 II->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 309 310 if (!loopIdMD) 311 return false; 312 313 bool loopIdMDFound = false; 314 for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) { 315 if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) { 316 loopIdMDFound = true; 317 break; 318 } 319 } 320 321 if (!loopIdMDFound) 322 return false; 323 } 324 } 325 return true; 326 } 327 328 329 /// hasDedicatedExits - Return true if no exit block for the loop 330 /// has a predecessor that is outside the loop. 331 bool Loop::hasDedicatedExits() const { 332 // Each predecessor of each exit block of a normal loop is contained 333 // within the loop. 334 SmallVector<BasicBlock *, 4> ExitBlocks; 335 getExitBlocks(ExitBlocks); 336 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 337 for (pred_iterator PI = pred_begin(ExitBlocks[i]), 338 PE = pred_end(ExitBlocks[i]); PI != PE; ++PI) 339 if (!contains(*PI)) 340 return false; 341 // All the requirements are met. 342 return true; 343 } 344 345 /// getUniqueExitBlocks - Return all unique successor blocks of this loop. 346 /// These are the blocks _outside of the current loop_ which are branched to. 347 /// This assumes that loop exits are in canonical form. 348 /// 349 void 350 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const { 351 assert(hasDedicatedExits() && 352 "getUniqueExitBlocks assumes the loop has canonical form exits!"); 353 354 SmallVector<BasicBlock *, 32> switchExitBlocks; 355 356 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) { 357 358 BasicBlock *current = *BI; 359 switchExitBlocks.clear(); 360 361 for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) { 362 // If block is inside the loop then it is not a exit block. 363 if (contains(*I)) 364 continue; 365 366 pred_iterator PI = pred_begin(*I); 367 BasicBlock *firstPred = *PI; 368 369 // If current basic block is this exit block's first predecessor 370 // then only insert exit block in to the output ExitBlocks vector. 371 // This ensures that same exit block is not inserted twice into 372 // ExitBlocks vector. 373 if (current != firstPred) 374 continue; 375 376 // If a terminator has more then two successors, for example SwitchInst, 377 // then it is possible that there are multiple edges from current block 378 // to one exit block. 379 if (std::distance(succ_begin(current), succ_end(current)) <= 2) { 380 ExitBlocks.push_back(*I); 381 continue; 382 } 383 384 // In case of multiple edges from current block to exit block, collect 385 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of 386 // duplicate edges. 387 if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) 388 == switchExitBlocks.end()) { 389 switchExitBlocks.push_back(*I); 390 ExitBlocks.push_back(*I); 391 } 392 } 393 } 394 } 395 396 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one 397 /// block, return that block. Otherwise return null. 398 BasicBlock *Loop::getUniqueExitBlock() const { 399 SmallVector<BasicBlock *, 8> UniqueExitBlocks; 400 getUniqueExitBlocks(UniqueExitBlocks); 401 if (UniqueExitBlocks.size() == 1) 402 return UniqueExitBlocks[0]; 403 return nullptr; 404 } 405 406 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 407 void Loop::dump() const { 408 print(dbgs()); 409 } 410 #endif 411 412 //===----------------------------------------------------------------------===// 413 // UnloopUpdater implementation 414 // 415 416 namespace { 417 /// Find the new parent loop for all blocks within the "unloop" whose last 418 /// backedges has just been removed. 419 class UnloopUpdater { 420 Loop *Unloop; 421 LoopInfo *LI; 422 423 LoopBlocksDFS DFS; 424 425 // Map unloop's immediate subloops to their nearest reachable parents. Nested 426 // loops within these subloops will not change parents. However, an immediate 427 // subloop's new parent will be the nearest loop reachable from either its own 428 // exits *or* any of its nested loop's exits. 429 DenseMap<Loop*, Loop*> SubloopParents; 430 431 // Flag the presence of an irreducible backedge whose destination is a block 432 // directly contained by the original unloop. 433 bool FoundIB; 434 435 public: 436 UnloopUpdater(Loop *UL, LoopInfo *LInfo) : 437 Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {} 438 439 void updateBlockParents(); 440 441 void removeBlocksFromAncestors(); 442 443 void updateSubloopParents(); 444 445 protected: 446 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 447 }; 448 } // end anonymous namespace 449 450 /// updateBlockParents - Update the parent loop for all blocks that are directly 451 /// contained within the original "unloop". 452 void UnloopUpdater::updateBlockParents() { 453 if (Unloop->getNumBlocks()) { 454 // Perform a post order CFG traversal of all blocks within this loop, 455 // propagating the nearest loop from sucessors to predecessors. 456 LoopBlocksTraversal Traversal(DFS, LI); 457 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 458 POE = Traversal.end(); POI != POE; ++POI) { 459 460 Loop *L = LI->getLoopFor(*POI); 461 Loop *NL = getNearestLoop(*POI, L); 462 463 if (NL != L) { 464 // For reducible loops, NL is now an ancestor of Unloop. 465 assert((NL != Unloop && (!NL || NL->contains(Unloop))) && 466 "uninitialized successor"); 467 LI->changeLoopFor(*POI, NL); 468 } 469 else { 470 // Or the current block is part of a subloop, in which case its parent 471 // is unchanged. 472 assert((FoundIB || Unloop->contains(L)) && "uninitialized successor"); 473 } 474 } 475 } 476 // Each irreducible loop within the unloop induces a round of iteration using 477 // the DFS result cached by Traversal. 478 bool Changed = FoundIB; 479 for (unsigned NIters = 0; Changed; ++NIters) { 480 assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm"); 481 482 // Iterate over the postorder list of blocks, propagating the nearest loop 483 // from successors to predecessors as before. 484 Changed = false; 485 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 486 POE = DFS.endPostorder(); POI != POE; ++POI) { 487 488 Loop *L = LI->getLoopFor(*POI); 489 Loop *NL = getNearestLoop(*POI, L); 490 if (NL != L) { 491 assert(NL != Unloop && (!NL || NL->contains(Unloop)) && 492 "uninitialized successor"); 493 LI->changeLoopFor(*POI, NL); 494 Changed = true; 495 } 496 } 497 } 498 } 499 500 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below 501 /// their new parents. 502 void UnloopUpdater::removeBlocksFromAncestors() { 503 // Remove all unloop's blocks (including those in nested subloops) from 504 // ancestors below the new parent loop. 505 for (Loop::block_iterator BI = Unloop->block_begin(), 506 BE = Unloop->block_end(); BI != BE; ++BI) { 507 Loop *OuterParent = LI->getLoopFor(*BI); 508 if (Unloop->contains(OuterParent)) { 509 while (OuterParent->getParentLoop() != Unloop) 510 OuterParent = OuterParent->getParentLoop(); 511 OuterParent = SubloopParents[OuterParent]; 512 } 513 // Remove blocks from former Ancestors except Unloop itself which will be 514 // deleted. 515 for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent; 516 OldParent = OldParent->getParentLoop()) { 517 assert(OldParent && "new loop is not an ancestor of the original"); 518 OldParent->removeBlockFromLoop(*BI); 519 } 520 } 521 } 522 523 /// updateSubloopParents - Update the parent loop for all subloops directly 524 /// nested within unloop. 525 void UnloopUpdater::updateSubloopParents() { 526 while (!Unloop->empty()) { 527 Loop *Subloop = *std::prev(Unloop->end()); 528 Unloop->removeChildLoop(std::prev(Unloop->end())); 529 530 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 531 if (Loop *Parent = SubloopParents[Subloop]) 532 Parent->addChildLoop(Subloop); 533 else 534 LI->addTopLevelLoop(Subloop); 535 } 536 } 537 538 /// getNearestLoop - Return the nearest parent loop among this block's 539 /// successors. If a successor is a subloop header, consider its parent to be 540 /// the nearest parent of the subloop's exits. 541 /// 542 /// For subloop blocks, simply update SubloopParents and return NULL. 543 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 544 545 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 546 // is considered uninitialized. 547 Loop *NearLoop = BBLoop; 548 549 Loop *Subloop = nullptr; 550 if (NearLoop != Unloop && Unloop->contains(NearLoop)) { 551 Subloop = NearLoop; 552 // Find the subloop ancestor that is directly contained within Unloop. 553 while (Subloop->getParentLoop() != Unloop) { 554 Subloop = Subloop->getParentLoop(); 555 assert(Subloop && "subloop is not an ancestor of the original loop"); 556 } 557 // Get the current nearest parent of the Subloop exits, initially Unloop. 558 NearLoop = 559 SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second; 560 } 561 562 succ_iterator I = succ_begin(BB), E = succ_end(BB); 563 if (I == E) { 564 assert(!Subloop && "subloop blocks must have a successor"); 565 NearLoop = nullptr; // unloop blocks may now exit the function. 566 } 567 for (; I != E; ++I) { 568 if (*I == BB) 569 continue; // self loops are uninteresting 570 571 Loop *L = LI->getLoopFor(*I); 572 if (L == Unloop) { 573 // This successor has not been processed. This path must lead to an 574 // irreducible backedge. 575 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 576 FoundIB = true; 577 } 578 if (L != Unloop && Unloop->contains(L)) { 579 // Successor is in a subloop. 580 if (Subloop) 581 continue; // Branching within subloops. Ignore it. 582 583 // BB branches from the original into a subloop header. 584 assert(L->getParentLoop() == Unloop && "cannot skip into nested loops"); 585 586 // Get the current nearest parent of the Subloop's exits. 587 L = SubloopParents[L]; 588 // L could be Unloop if the only exit was an irreducible backedge. 589 } 590 if (L == Unloop) { 591 continue; 592 } 593 // Handle critical edges from Unloop into a sibling loop. 594 if (L && !L->contains(Unloop)) { 595 L = L->getParentLoop(); 596 } 597 // Remember the nearest parent loop among successors or subloop exits. 598 if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L)) 599 NearLoop = L; 600 } 601 if (Subloop) { 602 SubloopParents[Subloop] = NearLoop; 603 return BBLoop; 604 } 605 return NearLoop; 606 } 607 608 /// updateUnloop - The last backedge has been removed from a loop--now the 609 /// "unloop". Find a new parent for the blocks contained within unloop and 610 /// update the loop tree. We don't necessarily have valid dominators at this 611 /// point, but LoopInfo is still valid except for the removal of this loop. 612 /// 613 /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without 614 /// checking first is illegal. 615 void LoopInfo::updateUnloop(Loop *Unloop) { 616 617 // First handle the special case of no parent loop to simplify the algorithm. 618 if (!Unloop->getParentLoop()) { 619 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 620 for (Loop::block_iterator I = Unloop->block_begin(), 621 E = Unloop->block_end(); 622 I != E; ++I) { 623 624 // Don't reparent blocks in subloops. 625 if (getLoopFor(*I) != Unloop) 626 continue; 627 628 // Blocks no longer have a parent but are still referenced by Unloop until 629 // the Unloop object is deleted. 630 changeLoopFor(*I, nullptr); 631 } 632 633 // Remove the loop from the top-level LoopInfo object. 634 for (iterator I = begin();; ++I) { 635 assert(I != end() && "Couldn't find loop"); 636 if (*I == Unloop) { 637 removeLoop(I); 638 break; 639 } 640 } 641 642 // Move all of the subloops to the top-level. 643 while (!Unloop->empty()) 644 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 645 646 return; 647 } 648 649 // Update the parent loop for all blocks within the loop. Blocks within 650 // subloops will not change parents. 651 UnloopUpdater Updater(Unloop, this); 652 Updater.updateBlockParents(); 653 654 // Remove blocks from former ancestor loops. 655 Updater.removeBlocksFromAncestors(); 656 657 // Add direct subloops as children in their new parent loop. 658 Updater.updateSubloopParents(); 659 660 // Remove unloop from its parent loop. 661 Loop *ParentLoop = Unloop->getParentLoop(); 662 for (Loop::iterator I = ParentLoop->begin();; ++I) { 663 assert(I != ParentLoop->end() && "Couldn't find loop"); 664 if (*I == Unloop) { 665 ParentLoop->removeChildLoop(I); 666 break; 667 } 668 } 669 } 670 671 char LoopAnalysis::PassID; 672 673 LoopInfo LoopAnalysis::run(Function &F, AnalysisManager<Function> *AM) { 674 // FIXME: Currently we create a LoopInfo from scratch for every function. 675 // This may prove to be too wasteful due to deallocating and re-allocating 676 // memory each time for the underlying map and vector datastructures. At some 677 // point it may prove worthwhile to use a freelist and recycle LoopInfo 678 // objects. I don't want to add that kind of complexity until the scope of 679 // the problem is better understood. 680 LoopInfo LI; 681 LI.Analyze(AM->getResult<DominatorTreeAnalysis>(F)); 682 return std::move(LI); 683 } 684 685 PreservedAnalyses LoopPrinterPass::run(Function &F, 686 AnalysisManager<Function> *AM) { 687 AM->getResult<LoopAnalysis>(F).print(OS); 688 return PreservedAnalyses::all(); 689 } 690 691 //===----------------------------------------------------------------------===// 692 // LoopInfo implementation 693 // 694 695 char LoopInfoWrapperPass::ID = 0; 696 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 697 true, true) 698 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 699 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 700 true, true) 701 702 bool LoopInfoWrapperPass::runOnFunction(Function &) { 703 releaseMemory(); 704 LI.Analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 705 return false; 706 } 707 708 void LoopInfoWrapperPass::verifyAnalysis() const { 709 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 710 // function each time verifyAnalysis is called is very expensive. The 711 // -verify-loop-info option can enable this. In order to perform some 712 // checking by default, LoopPass has been taught to call verifyLoop manually 713 // during loop pass sequences. 714 if (VerifyLoopInfo) 715 LI.verify(); 716 } 717 718 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 719 AU.setPreservesAll(); 720 AU.addRequired<DominatorTreeWrapperPass>(); 721 } 722 723 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 724 LI.print(OS); 725 } 726 727 //===----------------------------------------------------------------------===// 728 // LoopBlocksDFS implementation 729 // 730 731 /// Traverse the loop blocks and store the DFS result. 732 /// Useful for clients that just want the final DFS result and don't need to 733 /// visit blocks during the initial traversal. 734 void LoopBlocksDFS::perform(LoopInfo *LI) { 735 LoopBlocksTraversal Traversal(*this, LI); 736 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 737 POE = Traversal.end(); POI != POE; ++POI) ; 738 } 739