1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the LoopInfo class that is used to identify natural loops 11 // and determine the loop depth of various nodes of the CFG. Note that the 12 // loops identified may actually be several natural loops that share the same 13 // header node... not just a single natural loop. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/LoopInfoImpl.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Metadata.h" 27 #include "llvm/Support/CFG.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include <algorithm> 31 using namespace llvm; 32 33 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 34 template class llvm::LoopBase<BasicBlock, Loop>; 35 template class llvm::LoopInfoBase<BasicBlock, Loop>; 36 37 // Always verify loopinfo if expensive checking is enabled. 38 #ifdef XDEBUG 39 static bool VerifyLoopInfo = true; 40 #else 41 static bool VerifyLoopInfo = false; 42 #endif 43 static cl::opt<bool,true> 44 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 45 cl::desc("Verify loop info (time consuming)")); 46 47 char LoopInfo::ID = 0; 48 INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true) 49 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 50 INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true) 51 52 // Loop identifier metadata name. 53 static const char *const LoopMDName = "llvm.loop"; 54 55 //===----------------------------------------------------------------------===// 56 // Loop implementation 57 // 58 59 /// isLoopInvariant - Return true if the specified value is loop invariant 60 /// 61 bool Loop::isLoopInvariant(Value *V) const { 62 if (Instruction *I = dyn_cast<Instruction>(V)) 63 return !contains(I); 64 return true; // All non-instructions are loop invariant 65 } 66 67 /// hasLoopInvariantOperands - Return true if all the operands of the 68 /// specified instruction are loop invariant. 69 bool Loop::hasLoopInvariantOperands(Instruction *I) const { 70 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 71 if (!isLoopInvariant(I->getOperand(i))) 72 return false; 73 74 return true; 75 } 76 77 /// makeLoopInvariant - If the given value is an instruciton inside of the 78 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 79 /// Return true if the value after any hoisting is loop invariant. This 80 /// function can be used as a slightly more aggressive replacement for 81 /// isLoopInvariant. 82 /// 83 /// If InsertPt is specified, it is the point to hoist instructions to. 84 /// If null, the terminator of the loop preheader is used. 85 /// 86 bool Loop::makeLoopInvariant(Value *V, bool &Changed, 87 Instruction *InsertPt) const { 88 if (Instruction *I = dyn_cast<Instruction>(V)) 89 return makeLoopInvariant(I, Changed, InsertPt); 90 return true; // All non-instructions are loop-invariant. 91 } 92 93 /// makeLoopInvariant - If the given instruction is inside of the 94 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 95 /// Return true if the instruction after any hoisting is loop invariant. This 96 /// function can be used as a slightly more aggressive replacement for 97 /// isLoopInvariant. 98 /// 99 /// If InsertPt is specified, it is the point to hoist instructions to. 100 /// If null, the terminator of the loop preheader is used. 101 /// 102 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 103 Instruction *InsertPt) const { 104 // Test if the value is already loop-invariant. 105 if (isLoopInvariant(I)) 106 return true; 107 if (!isSafeToSpeculativelyExecute(I)) 108 return false; 109 if (I->mayReadFromMemory()) 110 return false; 111 // The landingpad instruction is immobile. 112 if (isa<LandingPadInst>(I)) 113 return false; 114 // Determine the insertion point, unless one was given. 115 if (!InsertPt) { 116 BasicBlock *Preheader = getLoopPreheader(); 117 // Without a preheader, hoisting is not feasible. 118 if (!Preheader) 119 return false; 120 InsertPt = Preheader->getTerminator(); 121 } 122 // Don't hoist instructions with loop-variant operands. 123 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 124 if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt)) 125 return false; 126 127 // Hoist. 128 I->moveBefore(InsertPt); 129 Changed = true; 130 return true; 131 } 132 133 /// getCanonicalInductionVariable - Check to see if the loop has a canonical 134 /// induction variable: an integer recurrence that starts at 0 and increments 135 /// by one each time through the loop. If so, return the phi node that 136 /// corresponds to it. 137 /// 138 /// The IndVarSimplify pass transforms loops to have a canonical induction 139 /// variable. 140 /// 141 PHINode *Loop::getCanonicalInductionVariable() const { 142 BasicBlock *H = getHeader(); 143 144 BasicBlock *Incoming = 0, *Backedge = 0; 145 pred_iterator PI = pred_begin(H); 146 assert(PI != pred_end(H) && 147 "Loop must have at least one backedge!"); 148 Backedge = *PI++; 149 if (PI == pred_end(H)) return 0; // dead loop 150 Incoming = *PI++; 151 if (PI != pred_end(H)) return 0; // multiple backedges? 152 153 if (contains(Incoming)) { 154 if (contains(Backedge)) 155 return 0; 156 std::swap(Incoming, Backedge); 157 } else if (!contains(Backedge)) 158 return 0; 159 160 // Loop over all of the PHI nodes, looking for a canonical indvar. 161 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 162 PHINode *PN = cast<PHINode>(I); 163 if (ConstantInt *CI = 164 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 165 if (CI->isNullValue()) 166 if (Instruction *Inc = 167 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 168 if (Inc->getOpcode() == Instruction::Add && 169 Inc->getOperand(0) == PN) 170 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 171 if (CI->equalsInt(1)) 172 return PN; 173 } 174 return 0; 175 } 176 177 /// isLCSSAForm - Return true if the Loop is in LCSSA form 178 bool Loop::isLCSSAForm(DominatorTree &DT) const { 179 for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { 180 BasicBlock *BB = *BI; 181 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I) 182 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 183 ++UI) { 184 User *U = *UI; 185 BasicBlock *UserBB = cast<Instruction>(U)->getParent(); 186 if (PHINode *P = dyn_cast<PHINode>(U)) 187 UserBB = P->getIncomingBlock(UI); 188 189 // Check the current block, as a fast-path, before checking whether 190 // the use is anywhere in the loop. Most values are used in the same 191 // block they are defined in. Also, blocks not reachable from the 192 // entry are special; uses in them don't need to go through PHIs. 193 if (UserBB != BB && 194 !contains(UserBB) && 195 DT.isReachableFromEntry(UserBB)) 196 return false; 197 } 198 } 199 200 return true; 201 } 202 203 /// isLoopSimplifyForm - Return true if the Loop is in the form that 204 /// the LoopSimplify form transforms loops to, which is sometimes called 205 /// normal form. 206 bool Loop::isLoopSimplifyForm() const { 207 // Normal-form loops have a preheader, a single backedge, and all of their 208 // exits have all their predecessors inside the loop. 209 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 210 } 211 212 /// isSafeToClone - Return true if the loop body is safe to clone in practice. 213 /// Routines that reform the loop CFG and split edges often fail on indirectbr. 214 bool Loop::isSafeToClone() const { 215 // Return false if any loop blocks contain indirectbrs, or there are any calls 216 // to noduplicate functions. 217 for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) { 218 if (isa<IndirectBrInst>((*I)->getTerminator())) 219 return false; 220 221 if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator())) 222 if (II->hasFnAttr(Attribute::NoDuplicate)) 223 return false; 224 225 for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) { 226 if (const CallInst *CI = dyn_cast<CallInst>(BI)) { 227 if (CI->hasFnAttr(Attribute::NoDuplicate)) 228 return false; 229 } 230 } 231 } 232 return true; 233 } 234 235 MDNode *Loop::getLoopID() const { 236 MDNode *LoopID = 0; 237 if (isLoopSimplifyForm()) { 238 LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName); 239 } else { 240 // Go through each predecessor of the loop header and check the 241 // terminator for the metadata. 242 BasicBlock *H = getHeader(); 243 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) { 244 TerminatorInst *TI = (*I)->getTerminator(); 245 MDNode *MD = 0; 246 247 // Check if this terminator branches to the loop header. 248 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) { 249 if (TI->getSuccessor(i) == H) { 250 MD = TI->getMetadata(LoopMDName); 251 break; 252 } 253 } 254 if (!MD) 255 return 0; 256 257 if (!LoopID) 258 LoopID = MD; 259 else if (MD != LoopID) 260 return 0; 261 } 262 } 263 if (!LoopID || LoopID->getNumOperands() == 0 || 264 LoopID->getOperand(0) != LoopID) 265 return 0; 266 return LoopID; 267 } 268 269 void Loop::setLoopID(MDNode *LoopID) const { 270 assert(LoopID && "Loop ID should not be null"); 271 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand"); 272 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself"); 273 274 if (isLoopSimplifyForm()) { 275 getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID); 276 return; 277 } 278 279 BasicBlock *H = getHeader(); 280 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) { 281 TerminatorInst *TI = (*I)->getTerminator(); 282 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) { 283 if (TI->getSuccessor(i) == H) 284 TI->setMetadata(LoopMDName, LoopID); 285 } 286 } 287 } 288 289 bool Loop::isAnnotatedParallel() const { 290 MDNode *desiredLoopIdMetadata = getLoopID(); 291 292 if (!desiredLoopIdMetadata) 293 return false; 294 295 // The loop branch contains the parallel loop metadata. In order to ensure 296 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 297 // dependencies (thus converted the loop back to a sequential loop), check 298 // that all the memory instructions in the loop contain parallelism metadata 299 // that point to the same unique "loop id metadata" the loop branch does. 300 for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) { 301 for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end(); 302 II != EE; II++) { 303 304 if (!II->mayReadOrWriteMemory()) 305 continue; 306 307 // The memory instruction can refer to the loop identifier metadata 308 // directly or indirectly through another list metadata (in case of 309 // nested parallel loops). The loop identifier metadata refers to 310 // itself so we can check both cases with the same routine. 311 MDNode *loopIdMD = II->getMetadata("llvm.mem.parallel_loop_access"); 312 313 if (!loopIdMD) 314 return false; 315 316 bool loopIdMDFound = false; 317 for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) { 318 if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) { 319 loopIdMDFound = true; 320 break; 321 } 322 } 323 324 if (!loopIdMDFound) 325 return false; 326 } 327 } 328 return true; 329 } 330 331 332 /// hasDedicatedExits - Return true if no exit block for the loop 333 /// has a predecessor that is outside the loop. 334 bool Loop::hasDedicatedExits() const { 335 // Each predecessor of each exit block of a normal loop is contained 336 // within the loop. 337 SmallVector<BasicBlock *, 4> ExitBlocks; 338 getExitBlocks(ExitBlocks); 339 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 340 for (pred_iterator PI = pred_begin(ExitBlocks[i]), 341 PE = pred_end(ExitBlocks[i]); PI != PE; ++PI) 342 if (!contains(*PI)) 343 return false; 344 // All the requirements are met. 345 return true; 346 } 347 348 /// getUniqueExitBlocks - Return all unique successor blocks of this loop. 349 /// These are the blocks _outside of the current loop_ which are branched to. 350 /// This assumes that loop exits are in canonical form. 351 /// 352 void 353 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const { 354 assert(hasDedicatedExits() && 355 "getUniqueExitBlocks assumes the loop has canonical form exits!"); 356 357 SmallVector<BasicBlock *, 32> switchExitBlocks; 358 359 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) { 360 361 BasicBlock *current = *BI; 362 switchExitBlocks.clear(); 363 364 for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) { 365 // If block is inside the loop then it is not a exit block. 366 if (contains(*I)) 367 continue; 368 369 pred_iterator PI = pred_begin(*I); 370 BasicBlock *firstPred = *PI; 371 372 // If current basic block is this exit block's first predecessor 373 // then only insert exit block in to the output ExitBlocks vector. 374 // This ensures that same exit block is not inserted twice into 375 // ExitBlocks vector. 376 if (current != firstPred) 377 continue; 378 379 // If a terminator has more then two successors, for example SwitchInst, 380 // then it is possible that there are multiple edges from current block 381 // to one exit block. 382 if (std::distance(succ_begin(current), succ_end(current)) <= 2) { 383 ExitBlocks.push_back(*I); 384 continue; 385 } 386 387 // In case of multiple edges from current block to exit block, collect 388 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of 389 // duplicate edges. 390 if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) 391 == switchExitBlocks.end()) { 392 switchExitBlocks.push_back(*I); 393 ExitBlocks.push_back(*I); 394 } 395 } 396 } 397 } 398 399 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one 400 /// block, return that block. Otherwise return null. 401 BasicBlock *Loop::getUniqueExitBlock() const { 402 SmallVector<BasicBlock *, 8> UniqueExitBlocks; 403 getUniqueExitBlocks(UniqueExitBlocks); 404 if (UniqueExitBlocks.size() == 1) 405 return UniqueExitBlocks[0]; 406 return 0; 407 } 408 409 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 410 void Loop::dump() const { 411 print(dbgs()); 412 } 413 #endif 414 415 //===----------------------------------------------------------------------===// 416 // UnloopUpdater implementation 417 // 418 419 namespace { 420 /// Find the new parent loop for all blocks within the "unloop" whose last 421 /// backedges has just been removed. 422 class UnloopUpdater { 423 Loop *Unloop; 424 LoopInfo *LI; 425 426 LoopBlocksDFS DFS; 427 428 // Map unloop's immediate subloops to their nearest reachable parents. Nested 429 // loops within these subloops will not change parents. However, an immediate 430 // subloop's new parent will be the nearest loop reachable from either its own 431 // exits *or* any of its nested loop's exits. 432 DenseMap<Loop*, Loop*> SubloopParents; 433 434 // Flag the presence of an irreducible backedge whose destination is a block 435 // directly contained by the original unloop. 436 bool FoundIB; 437 438 public: 439 UnloopUpdater(Loop *UL, LoopInfo *LInfo) : 440 Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {} 441 442 void updateBlockParents(); 443 444 void removeBlocksFromAncestors(); 445 446 void updateSubloopParents(); 447 448 protected: 449 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 450 }; 451 } // end anonymous namespace 452 453 /// updateBlockParents - Update the parent loop for all blocks that are directly 454 /// contained within the original "unloop". 455 void UnloopUpdater::updateBlockParents() { 456 if (Unloop->getNumBlocks()) { 457 // Perform a post order CFG traversal of all blocks within this loop, 458 // propagating the nearest loop from sucessors to predecessors. 459 LoopBlocksTraversal Traversal(DFS, LI); 460 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 461 POE = Traversal.end(); POI != POE; ++POI) { 462 463 Loop *L = LI->getLoopFor(*POI); 464 Loop *NL = getNearestLoop(*POI, L); 465 466 if (NL != L) { 467 // For reducible loops, NL is now an ancestor of Unloop. 468 assert((NL != Unloop && (!NL || NL->contains(Unloop))) && 469 "uninitialized successor"); 470 LI->changeLoopFor(*POI, NL); 471 } 472 else { 473 // Or the current block is part of a subloop, in which case its parent 474 // is unchanged. 475 assert((FoundIB || Unloop->contains(L)) && "uninitialized successor"); 476 } 477 } 478 } 479 // Each irreducible loop within the unloop induces a round of iteration using 480 // the DFS result cached by Traversal. 481 bool Changed = FoundIB; 482 for (unsigned NIters = 0; Changed; ++NIters) { 483 assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm"); 484 485 // Iterate over the postorder list of blocks, propagating the nearest loop 486 // from successors to predecessors as before. 487 Changed = false; 488 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 489 POE = DFS.endPostorder(); POI != POE; ++POI) { 490 491 Loop *L = LI->getLoopFor(*POI); 492 Loop *NL = getNearestLoop(*POI, L); 493 if (NL != L) { 494 assert(NL != Unloop && (!NL || NL->contains(Unloop)) && 495 "uninitialized successor"); 496 LI->changeLoopFor(*POI, NL); 497 Changed = true; 498 } 499 } 500 } 501 } 502 503 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below 504 /// their new parents. 505 void UnloopUpdater::removeBlocksFromAncestors() { 506 // Remove all unloop's blocks (including those in nested subloops) from 507 // ancestors below the new parent loop. 508 for (Loop::block_iterator BI = Unloop->block_begin(), 509 BE = Unloop->block_end(); BI != BE; ++BI) { 510 Loop *OuterParent = LI->getLoopFor(*BI); 511 if (Unloop->contains(OuterParent)) { 512 while (OuterParent->getParentLoop() != Unloop) 513 OuterParent = OuterParent->getParentLoop(); 514 OuterParent = SubloopParents[OuterParent]; 515 } 516 // Remove blocks from former Ancestors except Unloop itself which will be 517 // deleted. 518 for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent; 519 OldParent = OldParent->getParentLoop()) { 520 assert(OldParent && "new loop is not an ancestor of the original"); 521 OldParent->removeBlockFromLoop(*BI); 522 } 523 } 524 } 525 526 /// updateSubloopParents - Update the parent loop for all subloops directly 527 /// nested within unloop. 528 void UnloopUpdater::updateSubloopParents() { 529 while (!Unloop->empty()) { 530 Loop *Subloop = *llvm::prior(Unloop->end()); 531 Unloop->removeChildLoop(llvm::prior(Unloop->end())); 532 533 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 534 if (Loop *Parent = SubloopParents[Subloop]) 535 Parent->addChildLoop(Subloop); 536 else 537 LI->addTopLevelLoop(Subloop); 538 } 539 } 540 541 /// getNearestLoop - Return the nearest parent loop among this block's 542 /// successors. If a successor is a subloop header, consider its parent to be 543 /// the nearest parent of the subloop's exits. 544 /// 545 /// For subloop blocks, simply update SubloopParents and return NULL. 546 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 547 548 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 549 // is considered uninitialized. 550 Loop *NearLoop = BBLoop; 551 552 Loop *Subloop = 0; 553 if (NearLoop != Unloop && Unloop->contains(NearLoop)) { 554 Subloop = NearLoop; 555 // Find the subloop ancestor that is directly contained within Unloop. 556 while (Subloop->getParentLoop() != Unloop) { 557 Subloop = Subloop->getParentLoop(); 558 assert(Subloop && "subloop is not an ancestor of the original loop"); 559 } 560 // Get the current nearest parent of the Subloop exits, initially Unloop. 561 NearLoop = 562 SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second; 563 } 564 565 succ_iterator I = succ_begin(BB), E = succ_end(BB); 566 if (I == E) { 567 assert(!Subloop && "subloop blocks must have a successor"); 568 NearLoop = 0; // unloop blocks may now exit the function. 569 } 570 for (; I != E; ++I) { 571 if (*I == BB) 572 continue; // self loops are uninteresting 573 574 Loop *L = LI->getLoopFor(*I); 575 if (L == Unloop) { 576 // This successor has not been processed. This path must lead to an 577 // irreducible backedge. 578 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 579 FoundIB = true; 580 } 581 if (L != Unloop && Unloop->contains(L)) { 582 // Successor is in a subloop. 583 if (Subloop) 584 continue; // Branching within subloops. Ignore it. 585 586 // BB branches from the original into a subloop header. 587 assert(L->getParentLoop() == Unloop && "cannot skip into nested loops"); 588 589 // Get the current nearest parent of the Subloop's exits. 590 L = SubloopParents[L]; 591 // L could be Unloop if the only exit was an irreducible backedge. 592 } 593 if (L == Unloop) { 594 continue; 595 } 596 // Handle critical edges from Unloop into a sibling loop. 597 if (L && !L->contains(Unloop)) { 598 L = L->getParentLoop(); 599 } 600 // Remember the nearest parent loop among successors or subloop exits. 601 if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L)) 602 NearLoop = L; 603 } 604 if (Subloop) { 605 SubloopParents[Subloop] = NearLoop; 606 return BBLoop; 607 } 608 return NearLoop; 609 } 610 611 //===----------------------------------------------------------------------===// 612 // LoopInfo implementation 613 // 614 bool LoopInfo::runOnFunction(Function &) { 615 releaseMemory(); 616 LI.Analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 617 return false; 618 } 619 620 /// updateUnloop - The last backedge has been removed from a loop--now the 621 /// "unloop". Find a new parent for the blocks contained within unloop and 622 /// update the loop tree. We don't necessarily have valid dominators at this 623 /// point, but LoopInfo is still valid except for the removal of this loop. 624 /// 625 /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without 626 /// checking first is illegal. 627 void LoopInfo::updateUnloop(Loop *Unloop) { 628 629 // First handle the special case of no parent loop to simplify the algorithm. 630 if (!Unloop->getParentLoop()) { 631 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 632 for (Loop::block_iterator I = Unloop->block_begin(), 633 E = Unloop->block_end(); I != E; ++I) { 634 635 // Don't reparent blocks in subloops. 636 if (getLoopFor(*I) != Unloop) 637 continue; 638 639 // Blocks no longer have a parent but are still referenced by Unloop until 640 // the Unloop object is deleted. 641 LI.changeLoopFor(*I, 0); 642 } 643 644 // Remove the loop from the top-level LoopInfo object. 645 for (LoopInfo::iterator I = LI.begin();; ++I) { 646 assert(I != LI.end() && "Couldn't find loop"); 647 if (*I == Unloop) { 648 LI.removeLoop(I); 649 break; 650 } 651 } 652 653 // Move all of the subloops to the top-level. 654 while (!Unloop->empty()) 655 LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end()))); 656 657 return; 658 } 659 660 // Update the parent loop for all blocks within the loop. Blocks within 661 // subloops will not change parents. 662 UnloopUpdater Updater(Unloop, this); 663 Updater.updateBlockParents(); 664 665 // Remove blocks from former ancestor loops. 666 Updater.removeBlocksFromAncestors(); 667 668 // Add direct subloops as children in their new parent loop. 669 Updater.updateSubloopParents(); 670 671 // Remove unloop from its parent loop. 672 Loop *ParentLoop = Unloop->getParentLoop(); 673 for (Loop::iterator I = ParentLoop->begin();; ++I) { 674 assert(I != ParentLoop->end() && "Couldn't find loop"); 675 if (*I == Unloop) { 676 ParentLoop->removeChildLoop(I); 677 break; 678 } 679 } 680 } 681 682 void LoopInfo::verifyAnalysis() const { 683 // LoopInfo is a FunctionPass, but verifying every loop in the function 684 // each time verifyAnalysis is called is very expensive. The 685 // -verify-loop-info option can enable this. In order to perform some 686 // checking by default, LoopPass has been taught to call verifyLoop 687 // manually during loop pass sequences. 688 689 if (!VerifyLoopInfo) return; 690 691 DenseSet<const Loop*> Loops; 692 for (iterator I = begin(), E = end(); I != E; ++I) { 693 assert(!(*I)->getParentLoop() && "Top-level loop has a parent!"); 694 (*I)->verifyLoopNest(&Loops); 695 } 696 697 // Verify that blocks are mapped to valid loops. 698 for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(), 699 E = LI.BBMap.end(); I != E; ++I) { 700 assert(Loops.count(I->second) && "orphaned loop"); 701 assert(I->second->contains(I->first) && "orphaned block"); 702 } 703 } 704 705 void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { 706 AU.setPreservesAll(); 707 AU.addRequired<DominatorTreeWrapperPass>(); 708 } 709 710 void LoopInfo::print(raw_ostream &OS, const Module*) const { 711 LI.print(OS); 712 } 713 714 //===----------------------------------------------------------------------===// 715 // LoopBlocksDFS implementation 716 // 717 718 /// Traverse the loop blocks and store the DFS result. 719 /// Useful for clients that just want the final DFS result and don't need to 720 /// visit blocks during the initial traversal. 721 void LoopBlocksDFS::perform(LoopInfo *LI) { 722 LoopBlocksTraversal Traversal(*this, LI); 723 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 724 POE = Traversal.end(); POI != POE; ++POI) ; 725 } 726