1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the LoopInfo class that is used to identify natural loops 11 // and determine the loop depth of various nodes of the CFG. Note that the 12 // loops identified may actually be several natural loops that share the same 13 // header node... not just a single natural loop. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/LoopInfoImpl.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DebugLoc.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/PassManager.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> 35 using namespace llvm; 36 37 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 38 template class llvm::LoopBase<BasicBlock, Loop>; 39 template class llvm::LoopInfoBase<BasicBlock, Loop>; 40 41 // Always verify loopinfo if expensive checking is enabled. 42 #ifdef EXPENSIVE_CHECKS 43 static bool VerifyLoopInfo = true; 44 #else 45 static bool VerifyLoopInfo = false; 46 #endif 47 static cl::opt<bool,true> 48 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 49 cl::desc("Verify loop info (time consuming)")); 50 51 //===----------------------------------------------------------------------===// 52 // Loop implementation 53 // 54 55 bool Loop::isLoopInvariant(const Value *V) const { 56 if (const Instruction *I = dyn_cast<Instruction>(V)) 57 return !contains(I); 58 return true; // All non-instructions are loop invariant 59 } 60 61 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 62 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 63 } 64 65 bool Loop::makeLoopInvariant(Value *V, bool &Changed, 66 Instruction *InsertPt) const { 67 if (Instruction *I = dyn_cast<Instruction>(V)) 68 return makeLoopInvariant(I, Changed, InsertPt); 69 return true; // All non-instructions are loop-invariant. 70 } 71 72 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 73 Instruction *InsertPt) const { 74 // Test if the value is already loop-invariant. 75 if (isLoopInvariant(I)) 76 return true; 77 if (!isSafeToSpeculativelyExecute(I)) 78 return false; 79 if (I->mayReadFromMemory()) 80 return false; 81 // EH block instructions are immobile. 82 if (I->isEHPad()) 83 return false; 84 // Determine the insertion point, unless one was given. 85 if (!InsertPt) { 86 BasicBlock *Preheader = getLoopPreheader(); 87 // Without a preheader, hoisting is not feasible. 88 if (!Preheader) 89 return false; 90 InsertPt = Preheader->getTerminator(); 91 } 92 // Don't hoist instructions with loop-variant operands. 93 for (Value *Operand : I->operands()) 94 if (!makeLoopInvariant(Operand, Changed, InsertPt)) 95 return false; 96 97 // Hoist. 98 I->moveBefore(InsertPt); 99 100 // There is possibility of hoisting this instruction above some arbitrary 101 // condition. Any metadata defined on it can be control dependent on this 102 // condition. Conservatively strip it here so that we don't give any wrong 103 // information to the optimizer. 104 I->dropUnknownNonDebugMetadata(); 105 106 Changed = true; 107 return true; 108 } 109 110 PHINode *Loop::getCanonicalInductionVariable() const { 111 BasicBlock *H = getHeader(); 112 113 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 114 pred_iterator PI = pred_begin(H); 115 assert(PI != pred_end(H) && 116 "Loop must have at least one backedge!"); 117 Backedge = *PI++; 118 if (PI == pred_end(H)) return nullptr; // dead loop 119 Incoming = *PI++; 120 if (PI != pred_end(H)) return nullptr; // multiple backedges? 121 122 if (contains(Incoming)) { 123 if (contains(Backedge)) 124 return nullptr; 125 std::swap(Incoming, Backedge); 126 } else if (!contains(Backedge)) 127 return nullptr; 128 129 // Loop over all of the PHI nodes, looking for a canonical indvar. 130 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 131 PHINode *PN = cast<PHINode>(I); 132 if (ConstantInt *CI = 133 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 134 if (CI->isNullValue()) 135 if (Instruction *Inc = 136 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 137 if (Inc->getOpcode() == Instruction::Add && 138 Inc->getOperand(0) == PN) 139 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 140 if (CI->equalsInt(1)) 141 return PN; 142 } 143 return nullptr; 144 } 145 146 // Check that 'BB' doesn't have any uses outside of the 'L' 147 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, 148 DominatorTree &DT) { 149 for (const Instruction &I : BB) { 150 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 151 // optimizations, so for the purposes of considered LCSSA form, we 152 // can ignore them. 153 if (I.getType()->isTokenTy()) 154 continue; 155 156 for (const Use &U : I.uses()) { 157 const Instruction *UI = cast<Instruction>(U.getUser()); 158 const BasicBlock *UserBB = UI->getParent(); 159 if (const PHINode *P = dyn_cast<PHINode>(UI)) 160 UserBB = P->getIncomingBlock(U); 161 162 // Check the current block, as a fast-path, before checking whether 163 // the use is anywhere in the loop. Most values are used in the same 164 // block they are defined in. Also, blocks not reachable from the 165 // entry are special; uses in them don't need to go through PHIs. 166 if (UserBB != &BB && !L.contains(UserBB) && 167 DT.isReachableFromEntry(UserBB)) 168 return false; 169 } 170 } 171 return true; 172 } 173 174 bool Loop::isLCSSAForm(DominatorTree &DT) const { 175 // For each block we check that it doesn't have any uses outside of this loop. 176 return all_of(this->blocks(), [&](const BasicBlock *BB) { 177 return isBlockInLCSSAForm(*this, *BB, DT); 178 }); 179 } 180 181 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const { 182 // For each block we check that it doesn't have any uses outside of it's 183 // innermost loop. This process will transitivelly guarntee that current loop 184 // and all of the nested loops are in the LCSSA form. 185 return all_of(this->blocks(), [&](const BasicBlock *BB) { 186 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT); 187 }); 188 } 189 190 bool Loop::isLoopSimplifyForm() const { 191 // Normal-form loops have a preheader, a single backedge, and all of their 192 // exits have all their predecessors inside the loop. 193 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 194 } 195 196 // Routines that reform the loop CFG and split edges often fail on indirectbr. 197 bool Loop::isSafeToClone() const { 198 // Return false if any loop blocks contain indirectbrs, or there are any calls 199 // to noduplicate functions. 200 for (BasicBlock *BB : this->blocks()) { 201 if (isa<IndirectBrInst>(BB->getTerminator())) 202 return false; 203 204 for (Instruction &I : *BB) 205 if (auto CS = CallSite(&I)) 206 if (CS.cannotDuplicate()) 207 return false; 208 } 209 return true; 210 } 211 212 MDNode *Loop::getLoopID() const { 213 MDNode *LoopID = nullptr; 214 if (isLoopSimplifyForm()) { 215 LoopID = getLoopLatch()->getTerminator()->getMetadata(LLVMContext::MD_loop); 216 } else { 217 // Go through each predecessor of the loop header and check the 218 // terminator for the metadata. 219 BasicBlock *H = getHeader(); 220 for (BasicBlock *BB : this->blocks()) { 221 TerminatorInst *TI = BB->getTerminator(); 222 MDNode *MD = nullptr; 223 224 // Check if this terminator branches to the loop header. 225 for (BasicBlock *Successor : TI->successors()) { 226 if (Successor == H) { 227 MD = TI->getMetadata(LLVMContext::MD_loop); 228 break; 229 } 230 } 231 if (!MD) 232 return nullptr; 233 234 if (!LoopID) 235 LoopID = MD; 236 else if (MD != LoopID) 237 return nullptr; 238 } 239 } 240 if (!LoopID || LoopID->getNumOperands() == 0 || 241 LoopID->getOperand(0) != LoopID) 242 return nullptr; 243 return LoopID; 244 } 245 246 void Loop::setLoopID(MDNode *LoopID) const { 247 assert(LoopID && "Loop ID should not be null"); 248 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand"); 249 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself"); 250 251 if (isLoopSimplifyForm()) { 252 getLoopLatch()->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); 253 return; 254 } 255 256 BasicBlock *H = getHeader(); 257 for (BasicBlock *BB : this->blocks()) { 258 TerminatorInst *TI = BB->getTerminator(); 259 for (BasicBlock *Successor : TI->successors()) { 260 if (Successor == H) 261 TI->setMetadata(LLVMContext::MD_loop, LoopID); 262 } 263 } 264 } 265 266 bool Loop::isAnnotatedParallel() const { 267 MDNode *DesiredLoopIdMetadata = getLoopID(); 268 269 if (!DesiredLoopIdMetadata) 270 return false; 271 272 // The loop branch contains the parallel loop metadata. In order to ensure 273 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 274 // dependencies (thus converted the loop back to a sequential loop), check 275 // that all the memory instructions in the loop contain parallelism metadata 276 // that point to the same unique "loop id metadata" the loop branch does. 277 for (BasicBlock *BB : this->blocks()) { 278 for (Instruction &I : *BB) { 279 if (!I.mayReadOrWriteMemory()) 280 continue; 281 282 // The memory instruction can refer to the loop identifier metadata 283 // directly or indirectly through another list metadata (in case of 284 // nested parallel loops). The loop identifier metadata refers to 285 // itself so we can check both cases with the same routine. 286 MDNode *LoopIdMD = 287 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 288 289 if (!LoopIdMD) 290 return false; 291 292 bool LoopIdMDFound = false; 293 for (const MDOperand &MDOp : LoopIdMD->operands()) { 294 if (MDOp == DesiredLoopIdMetadata) { 295 LoopIdMDFound = true; 296 break; 297 } 298 } 299 300 if (!LoopIdMDFound) 301 return false; 302 } 303 } 304 return true; 305 } 306 307 DebugLoc Loop::getStartLoc() const { 308 // If we have a debug location in the loop ID, then use it. 309 if (MDNode *LoopID = getLoopID()) 310 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) 311 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) 312 return DebugLoc(L); 313 314 // Try the pre-header first. 315 if (BasicBlock *PHeadBB = getLoopPreheader()) 316 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) 317 return DL; 318 319 // If we have no pre-header or there are no instructions with debug 320 // info in it, try the header. 321 if (BasicBlock *HeadBB = getHeader()) 322 return HeadBB->getTerminator()->getDebugLoc(); 323 324 return DebugLoc(); 325 } 326 327 bool Loop::hasDedicatedExits() const { 328 // Each predecessor of each exit block of a normal loop is contained 329 // within the loop. 330 SmallVector<BasicBlock *, 4> ExitBlocks; 331 getExitBlocks(ExitBlocks); 332 for (BasicBlock *BB : ExitBlocks) 333 for (BasicBlock *Predecessor : predecessors(BB)) 334 if (!contains(Predecessor)) 335 return false; 336 // All the requirements are met. 337 return true; 338 } 339 340 void 341 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const { 342 assert(hasDedicatedExits() && 343 "getUniqueExitBlocks assumes the loop has canonical form exits!"); 344 345 SmallVector<BasicBlock *, 32> SwitchExitBlocks; 346 for (BasicBlock *BB : this->blocks()) { 347 SwitchExitBlocks.clear(); 348 for (BasicBlock *Successor : successors(BB)) { 349 // If block is inside the loop then it is not an exit block. 350 if (contains(Successor)) 351 continue; 352 353 pred_iterator PI = pred_begin(Successor); 354 BasicBlock *FirstPred = *PI; 355 356 // If current basic block is this exit block's first predecessor 357 // then only insert exit block in to the output ExitBlocks vector. 358 // This ensures that same exit block is not inserted twice into 359 // ExitBlocks vector. 360 if (BB != FirstPred) 361 continue; 362 363 // If a terminator has more then two successors, for example SwitchInst, 364 // then it is possible that there are multiple edges from current block 365 // to one exit block. 366 if (std::distance(succ_begin(BB), succ_end(BB)) <= 2) { 367 ExitBlocks.push_back(Successor); 368 continue; 369 } 370 371 // In case of multiple edges from current block to exit block, collect 372 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of 373 // duplicate edges. 374 if (!is_contained(SwitchExitBlocks, Successor)) { 375 SwitchExitBlocks.push_back(Successor); 376 ExitBlocks.push_back(Successor); 377 } 378 } 379 } 380 } 381 382 BasicBlock *Loop::getUniqueExitBlock() const { 383 SmallVector<BasicBlock *, 8> UniqueExitBlocks; 384 getUniqueExitBlocks(UniqueExitBlocks); 385 if (UniqueExitBlocks.size() == 1) 386 return UniqueExitBlocks[0]; 387 return nullptr; 388 } 389 390 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 391 LLVM_DUMP_METHOD void Loop::dump() const { 392 print(dbgs()); 393 } 394 395 LLVM_DUMP_METHOD void Loop::dumpVerbose() const { 396 print(dbgs(), /*Depth=*/ 0, /*Verbose=*/ true); 397 } 398 #endif 399 400 //===----------------------------------------------------------------------===// 401 // UnloopUpdater implementation 402 // 403 404 namespace { 405 /// Find the new parent loop for all blocks within the "unloop" whose last 406 /// backedges has just been removed. 407 class UnloopUpdater { 408 Loop &Unloop; 409 LoopInfo *LI; 410 411 LoopBlocksDFS DFS; 412 413 // Map unloop's immediate subloops to their nearest reachable parents. Nested 414 // loops within these subloops will not change parents. However, an immediate 415 // subloop's new parent will be the nearest loop reachable from either its own 416 // exits *or* any of its nested loop's exits. 417 DenseMap<Loop*, Loop*> SubloopParents; 418 419 // Flag the presence of an irreducible backedge whose destination is a block 420 // directly contained by the original unloop. 421 bool FoundIB; 422 423 public: 424 UnloopUpdater(Loop *UL, LoopInfo *LInfo) : 425 Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} 426 427 void updateBlockParents(); 428 429 void removeBlocksFromAncestors(); 430 431 void updateSubloopParents(); 432 433 protected: 434 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 435 }; 436 } // end anonymous namespace 437 438 /// Update the parent loop for all blocks that are directly contained within the 439 /// original "unloop". 440 void UnloopUpdater::updateBlockParents() { 441 if (Unloop.getNumBlocks()) { 442 // Perform a post order CFG traversal of all blocks within this loop, 443 // propagating the nearest loop from sucessors to predecessors. 444 LoopBlocksTraversal Traversal(DFS, LI); 445 for (BasicBlock *POI : Traversal) { 446 447 Loop *L = LI->getLoopFor(POI); 448 Loop *NL = getNearestLoop(POI, L); 449 450 if (NL != L) { 451 // For reducible loops, NL is now an ancestor of Unloop. 452 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && 453 "uninitialized successor"); 454 LI->changeLoopFor(POI, NL); 455 } 456 else { 457 // Or the current block is part of a subloop, in which case its parent 458 // is unchanged. 459 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); 460 } 461 } 462 } 463 // Each irreducible loop within the unloop induces a round of iteration using 464 // the DFS result cached by Traversal. 465 bool Changed = FoundIB; 466 for (unsigned NIters = 0; Changed; ++NIters) { 467 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); 468 469 // Iterate over the postorder list of blocks, propagating the nearest loop 470 // from successors to predecessors as before. 471 Changed = false; 472 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 473 POE = DFS.endPostorder(); POI != POE; ++POI) { 474 475 Loop *L = LI->getLoopFor(*POI); 476 Loop *NL = getNearestLoop(*POI, L); 477 if (NL != L) { 478 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && 479 "uninitialized successor"); 480 LI->changeLoopFor(*POI, NL); 481 Changed = true; 482 } 483 } 484 } 485 } 486 487 /// Remove unloop's blocks from all ancestors below their new parents. 488 void UnloopUpdater::removeBlocksFromAncestors() { 489 // Remove all unloop's blocks (including those in nested subloops) from 490 // ancestors below the new parent loop. 491 for (Loop::block_iterator BI = Unloop.block_begin(), 492 BE = Unloop.block_end(); BI != BE; ++BI) { 493 Loop *OuterParent = LI->getLoopFor(*BI); 494 if (Unloop.contains(OuterParent)) { 495 while (OuterParent->getParentLoop() != &Unloop) 496 OuterParent = OuterParent->getParentLoop(); 497 OuterParent = SubloopParents[OuterParent]; 498 } 499 // Remove blocks from former Ancestors except Unloop itself which will be 500 // deleted. 501 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; 502 OldParent = OldParent->getParentLoop()) { 503 assert(OldParent && "new loop is not an ancestor of the original"); 504 OldParent->removeBlockFromLoop(*BI); 505 } 506 } 507 } 508 509 /// Update the parent loop for all subloops directly nested within unloop. 510 void UnloopUpdater::updateSubloopParents() { 511 while (!Unloop.empty()) { 512 Loop *Subloop = *std::prev(Unloop.end()); 513 Unloop.removeChildLoop(std::prev(Unloop.end())); 514 515 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 516 if (Loop *Parent = SubloopParents[Subloop]) 517 Parent->addChildLoop(Subloop); 518 else 519 LI->addTopLevelLoop(Subloop); 520 } 521 } 522 523 /// Return the nearest parent loop among this block's successors. If a successor 524 /// is a subloop header, consider its parent to be the nearest parent of the 525 /// subloop's exits. 526 /// 527 /// For subloop blocks, simply update SubloopParents and return NULL. 528 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 529 530 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 531 // is considered uninitialized. 532 Loop *NearLoop = BBLoop; 533 534 Loop *Subloop = nullptr; 535 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { 536 Subloop = NearLoop; 537 // Find the subloop ancestor that is directly contained within Unloop. 538 while (Subloop->getParentLoop() != &Unloop) { 539 Subloop = Subloop->getParentLoop(); 540 assert(Subloop && "subloop is not an ancestor of the original loop"); 541 } 542 // Get the current nearest parent of the Subloop exits, initially Unloop. 543 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; 544 } 545 546 succ_iterator I = succ_begin(BB), E = succ_end(BB); 547 if (I == E) { 548 assert(!Subloop && "subloop blocks must have a successor"); 549 NearLoop = nullptr; // unloop blocks may now exit the function. 550 } 551 for (; I != E; ++I) { 552 if (*I == BB) 553 continue; // self loops are uninteresting 554 555 Loop *L = LI->getLoopFor(*I); 556 if (L == &Unloop) { 557 // This successor has not been processed. This path must lead to an 558 // irreducible backedge. 559 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 560 FoundIB = true; 561 } 562 if (L != &Unloop && Unloop.contains(L)) { 563 // Successor is in a subloop. 564 if (Subloop) 565 continue; // Branching within subloops. Ignore it. 566 567 // BB branches from the original into a subloop header. 568 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); 569 570 // Get the current nearest parent of the Subloop's exits. 571 L = SubloopParents[L]; 572 // L could be Unloop if the only exit was an irreducible backedge. 573 } 574 if (L == &Unloop) { 575 continue; 576 } 577 // Handle critical edges from Unloop into a sibling loop. 578 if (L && !L->contains(&Unloop)) { 579 L = L->getParentLoop(); 580 } 581 // Remember the nearest parent loop among successors or subloop exits. 582 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) 583 NearLoop = L; 584 } 585 if (Subloop) { 586 SubloopParents[Subloop] = NearLoop; 587 return BBLoop; 588 } 589 return NearLoop; 590 } 591 592 LoopInfo::LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree) { 593 analyze(DomTree); 594 } 595 596 void LoopInfo::markAsRemoved(Loop *Unloop) { 597 assert(!Unloop->isInvalid() && "Loop has already been removed"); 598 Unloop->invalidate(); 599 RemovedLoops.push_back(Unloop); 600 601 // First handle the special case of no parent loop to simplify the algorithm. 602 if (!Unloop->getParentLoop()) { 603 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 604 for (Loop::block_iterator I = Unloop->block_begin(), 605 E = Unloop->block_end(); 606 I != E; ++I) { 607 608 // Don't reparent blocks in subloops. 609 if (getLoopFor(*I) != Unloop) 610 continue; 611 612 // Blocks no longer have a parent but are still referenced by Unloop until 613 // the Unloop object is deleted. 614 changeLoopFor(*I, nullptr); 615 } 616 617 // Remove the loop from the top-level LoopInfo object. 618 for (iterator I = begin();; ++I) { 619 assert(I != end() && "Couldn't find loop"); 620 if (*I == Unloop) { 621 removeLoop(I); 622 break; 623 } 624 } 625 626 // Move all of the subloops to the top-level. 627 while (!Unloop->empty()) 628 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 629 630 return; 631 } 632 633 // Update the parent loop for all blocks within the loop. Blocks within 634 // subloops will not change parents. 635 UnloopUpdater Updater(Unloop, this); 636 Updater.updateBlockParents(); 637 638 // Remove blocks from former ancestor loops. 639 Updater.removeBlocksFromAncestors(); 640 641 // Add direct subloops as children in their new parent loop. 642 Updater.updateSubloopParents(); 643 644 // Remove unloop from its parent loop. 645 Loop *ParentLoop = Unloop->getParentLoop(); 646 for (Loop::iterator I = ParentLoop->begin();; ++I) { 647 assert(I != ParentLoop->end() && "Couldn't find loop"); 648 if (*I == Unloop) { 649 ParentLoop->removeChildLoop(I); 650 break; 651 } 652 } 653 } 654 655 char LoopAnalysis::PassID; 656 657 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 658 // FIXME: Currently we create a LoopInfo from scratch for every function. 659 // This may prove to be too wasteful due to deallocating and re-allocating 660 // memory each time for the underlying map and vector datastructures. At some 661 // point it may prove worthwhile to use a freelist and recycle LoopInfo 662 // objects. I don't want to add that kind of complexity until the scope of 663 // the problem is better understood. 664 LoopInfo LI; 665 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); 666 return LI; 667 } 668 669 PreservedAnalyses LoopPrinterPass::run(Function &F, 670 FunctionAnalysisManager &AM) { 671 AM.getResult<LoopAnalysis>(F).print(OS); 672 return PreservedAnalyses::all(); 673 } 674 675 PrintLoopPass::PrintLoopPass() : OS(dbgs()) {} 676 PrintLoopPass::PrintLoopPass(raw_ostream &OS, const std::string &Banner) 677 : OS(OS), Banner(Banner) {} 678 679 PreservedAnalyses PrintLoopPass::run(Loop &L, AnalysisManager<Loop> &) { 680 OS << Banner; 681 for (auto *Block : L.blocks()) 682 if (Block) 683 Block->print(OS); 684 else 685 OS << "Printing <null> block"; 686 return PreservedAnalyses::all(); 687 } 688 689 //===----------------------------------------------------------------------===// 690 // LoopInfo implementation 691 // 692 693 char LoopInfoWrapperPass::ID = 0; 694 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 695 true, true) 696 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 697 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 698 true, true) 699 700 bool LoopInfoWrapperPass::runOnFunction(Function &) { 701 releaseMemory(); 702 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 703 return false; 704 } 705 706 void LoopInfoWrapperPass::verifyAnalysis() const { 707 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 708 // function each time verifyAnalysis is called is very expensive. The 709 // -verify-loop-info option can enable this. In order to perform some 710 // checking by default, LoopPass has been taught to call verifyLoop manually 711 // during loop pass sequences. 712 if (VerifyLoopInfo) { 713 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 714 LI.verify(DT); 715 } 716 } 717 718 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 719 AU.setPreservesAll(); 720 AU.addRequired<DominatorTreeWrapperPass>(); 721 } 722 723 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 724 LI.print(OS); 725 } 726 727 PreservedAnalyses LoopVerifierPass::run(Function &F, 728 FunctionAnalysisManager &AM) { 729 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 730 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 731 LI.verify(DT); 732 return PreservedAnalyses::all(); 733 } 734 735 //===----------------------------------------------------------------------===// 736 // LoopBlocksDFS implementation 737 // 738 739 /// Traverse the loop blocks and store the DFS result. 740 /// Useful for clients that just want the final DFS result and don't need to 741 /// visit blocks during the initial traversal. 742 void LoopBlocksDFS::perform(LoopInfo *LI) { 743 LoopBlocksTraversal Traversal(*this, LI); 744 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 745 POE = Traversal.end(); POI != POE; ++POI) ; 746 } 747