1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the LoopInfo class that is used to identify natural loops 10 // and determine the loop depth of various nodes of the CFG. Note that the 11 // loops identified may actually be several natural loops that share the same 12 // header node... not just a single natural loop. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/LoopInfoImpl.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/Config/llvm-config.h" 24 #include "llvm/IR/CFG.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugLoc.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/IRPrintingPasses.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/PassManager.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 40 template class llvm::LoopBase<BasicBlock, Loop>; 41 template class llvm::LoopInfoBase<BasicBlock, Loop>; 42 43 // Always verify loopinfo if expensive checking is enabled. 44 #ifdef EXPENSIVE_CHECKS 45 bool llvm::VerifyLoopInfo = true; 46 #else 47 bool llvm::VerifyLoopInfo = false; 48 #endif 49 static cl::opt<bool, true> 50 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 51 cl::Hidden, cl::desc("Verify loop info (time consuming)")); 52 53 //===----------------------------------------------------------------------===// 54 // Loop implementation 55 // 56 57 bool Loop::isLoopInvariant(const Value *V) const { 58 if (const Instruction *I = dyn_cast<Instruction>(V)) 59 return !contains(I); 60 return true; // All non-instructions are loop invariant 61 } 62 63 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 64 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 65 } 66 67 bool Loop::makeLoopInvariant(Value *V, bool &Changed, 68 Instruction *InsertPt) const { 69 if (Instruction *I = dyn_cast<Instruction>(V)) 70 return makeLoopInvariant(I, Changed, InsertPt); 71 return true; // All non-instructions are loop-invariant. 72 } 73 74 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 75 Instruction *InsertPt) const { 76 // Test if the value is already loop-invariant. 77 if (isLoopInvariant(I)) 78 return true; 79 if (!isSafeToSpeculativelyExecute(I)) 80 return false; 81 if (I->mayReadFromMemory()) 82 return false; 83 // EH block instructions are immobile. 84 if (I->isEHPad()) 85 return false; 86 // Determine the insertion point, unless one was given. 87 if (!InsertPt) { 88 BasicBlock *Preheader = getLoopPreheader(); 89 // Without a preheader, hoisting is not feasible. 90 if (!Preheader) 91 return false; 92 InsertPt = Preheader->getTerminator(); 93 } 94 // Don't hoist instructions with loop-variant operands. 95 for (Value *Operand : I->operands()) 96 if (!makeLoopInvariant(Operand, Changed, InsertPt)) 97 return false; 98 99 // Hoist. 100 I->moveBefore(InsertPt); 101 102 // There is possibility of hoisting this instruction above some arbitrary 103 // condition. Any metadata defined on it can be control dependent on this 104 // condition. Conservatively strip it here so that we don't give any wrong 105 // information to the optimizer. 106 I->dropUnknownNonDebugMetadata(); 107 108 Changed = true; 109 return true; 110 } 111 112 PHINode *Loop::getCanonicalInductionVariable() const { 113 BasicBlock *H = getHeader(); 114 115 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 116 pred_iterator PI = pred_begin(H); 117 assert(PI != pred_end(H) && "Loop must have at least one backedge!"); 118 Backedge = *PI++; 119 if (PI == pred_end(H)) 120 return nullptr; // dead loop 121 Incoming = *PI++; 122 if (PI != pred_end(H)) 123 return nullptr; // multiple backedges? 124 125 if (contains(Incoming)) { 126 if (contains(Backedge)) 127 return nullptr; 128 std::swap(Incoming, Backedge); 129 } else if (!contains(Backedge)) 130 return nullptr; 131 132 // Loop over all of the PHI nodes, looking for a canonical indvar. 133 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 134 PHINode *PN = cast<PHINode>(I); 135 if (ConstantInt *CI = 136 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 137 if (CI->isZero()) 138 if (Instruction *Inc = 139 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 140 if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) 141 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 142 if (CI->isOne()) 143 return PN; 144 } 145 return nullptr; 146 } 147 148 // Check that 'BB' doesn't have any uses outside of the 'L' 149 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, 150 DominatorTree &DT) { 151 for (const Instruction &I : BB) { 152 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 153 // optimizations, so for the purposes of considered LCSSA form, we 154 // can ignore them. 155 if (I.getType()->isTokenTy()) 156 continue; 157 158 for (const Use &U : I.uses()) { 159 const Instruction *UI = cast<Instruction>(U.getUser()); 160 const BasicBlock *UserBB = UI->getParent(); 161 if (const PHINode *P = dyn_cast<PHINode>(UI)) 162 UserBB = P->getIncomingBlock(U); 163 164 // Check the current block, as a fast-path, before checking whether 165 // the use is anywhere in the loop. Most values are used in the same 166 // block they are defined in. Also, blocks not reachable from the 167 // entry are special; uses in them don't need to go through PHIs. 168 if (UserBB != &BB && !L.contains(UserBB) && 169 DT.isReachableFromEntry(UserBB)) 170 return false; 171 } 172 } 173 return true; 174 } 175 176 bool Loop::isLCSSAForm(DominatorTree &DT) const { 177 // For each block we check that it doesn't have any uses outside of this loop. 178 return all_of(this->blocks(), [&](const BasicBlock *BB) { 179 return isBlockInLCSSAForm(*this, *BB, DT); 180 }); 181 } 182 183 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const { 184 // For each block we check that it doesn't have any uses outside of its 185 // innermost loop. This process will transitively guarantee that the current 186 // loop and all of the nested loops are in LCSSA form. 187 return all_of(this->blocks(), [&](const BasicBlock *BB) { 188 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT); 189 }); 190 } 191 192 bool Loop::isLoopSimplifyForm() const { 193 // Normal-form loops have a preheader, a single backedge, and all of their 194 // exits have all their predecessors inside the loop. 195 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 196 } 197 198 // Routines that reform the loop CFG and split edges often fail on indirectbr. 199 bool Loop::isSafeToClone() const { 200 // Return false if any loop blocks contain indirectbrs, or there are any calls 201 // to noduplicate functions. 202 for (BasicBlock *BB : this->blocks()) { 203 if (isa<IndirectBrInst>(BB->getTerminator())) 204 return false; 205 206 for (Instruction &I : *BB) 207 if (auto CS = CallSite(&I)) 208 if (CS.cannotDuplicate()) 209 return false; 210 } 211 return true; 212 } 213 214 MDNode *Loop::getLoopID() const { 215 MDNode *LoopID = nullptr; 216 217 // Go through the latch blocks and check the terminator for the metadata. 218 SmallVector<BasicBlock *, 4> LatchesBlocks; 219 getLoopLatches(LatchesBlocks); 220 for (BasicBlock *BB : LatchesBlocks) { 221 Instruction *TI = BB->getTerminator(); 222 MDNode *MD = TI->getMetadata(LLVMContext::MD_loop); 223 224 if (!MD) 225 return nullptr; 226 227 if (!LoopID) 228 LoopID = MD; 229 else if (MD != LoopID) 230 return nullptr; 231 } 232 if (!LoopID || LoopID->getNumOperands() == 0 || 233 LoopID->getOperand(0) != LoopID) 234 return nullptr; 235 return LoopID; 236 } 237 238 void Loop::setLoopID(MDNode *LoopID) const { 239 assert((!LoopID || LoopID->getNumOperands() > 0) && 240 "Loop ID needs at least one operand"); 241 assert((!LoopID || LoopID->getOperand(0) == LoopID) && 242 "Loop ID should refer to itself"); 243 244 BasicBlock *H = getHeader(); 245 for (BasicBlock *BB : this->blocks()) { 246 Instruction *TI = BB->getTerminator(); 247 for (BasicBlock *Successor : successors(TI)) { 248 if (Successor == H) { 249 TI->setMetadata(LLVMContext::MD_loop, LoopID); 250 break; 251 } 252 } 253 } 254 } 255 256 void Loop::setLoopAlreadyUnrolled() { 257 MDNode *LoopID = getLoopID(); 258 // First remove any existing loop unrolling metadata. 259 SmallVector<Metadata *, 4> MDs; 260 // Reserve first location for self reference to the LoopID metadata node. 261 MDs.push_back(nullptr); 262 263 if (LoopID) { 264 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 265 bool IsUnrollMetadata = false; 266 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 267 if (MD) { 268 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 269 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 270 } 271 if (!IsUnrollMetadata) 272 MDs.push_back(LoopID->getOperand(i)); 273 } 274 } 275 276 // Add unroll(disable) metadata to disable future unrolling. 277 LLVMContext &Context = getHeader()->getContext(); 278 SmallVector<Metadata *, 1> DisableOperands; 279 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 280 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 281 MDs.push_back(DisableNode); 282 283 MDNode *NewLoopID = MDNode::get(Context, MDs); 284 // Set operand 0 to refer to the loop id itself. 285 NewLoopID->replaceOperandWith(0, NewLoopID); 286 setLoopID(NewLoopID); 287 } 288 289 bool Loop::isAnnotatedParallel() const { 290 MDNode *DesiredLoopIdMetadata = getLoopID(); 291 292 if (!DesiredLoopIdMetadata) 293 return false; 294 295 MDNode *ParallelAccesses = 296 findOptionMDForLoop(this, "llvm.loop.parallel_accesses"); 297 SmallPtrSet<MDNode *, 4> 298 ParallelAccessGroups; // For scalable 'contains' check. 299 if (ParallelAccesses) { 300 for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) { 301 MDNode *AccGroup = cast<MDNode>(MD.get()); 302 assert(isValidAsAccessGroup(AccGroup) && 303 "List item must be an access group"); 304 ParallelAccessGroups.insert(AccGroup); 305 } 306 } 307 308 // The loop branch contains the parallel loop metadata. In order to ensure 309 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 310 // dependencies (thus converted the loop back to a sequential loop), check 311 // that all the memory instructions in the loop belong to an access group that 312 // is parallel to this loop. 313 for (BasicBlock *BB : this->blocks()) { 314 for (Instruction &I : *BB) { 315 if (!I.mayReadOrWriteMemory()) 316 continue; 317 318 if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) { 319 auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool { 320 if (AG->getNumOperands() == 0) { 321 assert(isValidAsAccessGroup(AG) && "Item must be an access group"); 322 return ParallelAccessGroups.count(AG); 323 } 324 325 for (const MDOperand &AccessListItem : AG->operands()) { 326 MDNode *AccGroup = cast<MDNode>(AccessListItem.get()); 327 assert(isValidAsAccessGroup(AccGroup) && 328 "List item must be an access group"); 329 if (ParallelAccessGroups.count(AccGroup)) 330 return true; 331 } 332 return false; 333 }; 334 335 if (ContainsAccessGroup(AccessGroup)) 336 continue; 337 } 338 339 // The memory instruction can refer to the loop identifier metadata 340 // directly or indirectly through another list metadata (in case of 341 // nested parallel loops). The loop identifier metadata refers to 342 // itself so we can check both cases with the same routine. 343 MDNode *LoopIdMD = 344 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 345 346 if (!LoopIdMD) 347 return false; 348 349 bool LoopIdMDFound = false; 350 for (const MDOperand &MDOp : LoopIdMD->operands()) { 351 if (MDOp == DesiredLoopIdMetadata) { 352 LoopIdMDFound = true; 353 break; 354 } 355 } 356 357 if (!LoopIdMDFound) 358 return false; 359 } 360 } 361 return true; 362 } 363 364 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } 365 366 Loop::LocRange Loop::getLocRange() const { 367 // If we have a debug location in the loop ID, then use it. 368 if (MDNode *LoopID = getLoopID()) { 369 DebugLoc Start; 370 // We use the first DebugLoc in the header as the start location of the loop 371 // and if there is a second DebugLoc in the header we use it as end location 372 // of the loop. 373 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 374 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) { 375 if (!Start) 376 Start = DebugLoc(L); 377 else 378 return LocRange(Start, DebugLoc(L)); 379 } 380 } 381 382 if (Start) 383 return LocRange(Start); 384 } 385 386 // Try the pre-header first. 387 if (BasicBlock *PHeadBB = getLoopPreheader()) 388 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) 389 return LocRange(DL); 390 391 // If we have no pre-header or there are no instructions with debug 392 // info in it, try the header. 393 if (BasicBlock *HeadBB = getHeader()) 394 return LocRange(HeadBB->getTerminator()->getDebugLoc()); 395 396 return LocRange(); 397 } 398 399 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 400 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } 401 402 LLVM_DUMP_METHOD void Loop::dumpVerbose() const { 403 print(dbgs(), /*Depth=*/0, /*Verbose=*/true); 404 } 405 #endif 406 407 //===----------------------------------------------------------------------===// 408 // UnloopUpdater implementation 409 // 410 411 namespace { 412 /// Find the new parent loop for all blocks within the "unloop" whose last 413 /// backedges has just been removed. 414 class UnloopUpdater { 415 Loop &Unloop; 416 LoopInfo *LI; 417 418 LoopBlocksDFS DFS; 419 420 // Map unloop's immediate subloops to their nearest reachable parents. Nested 421 // loops within these subloops will not change parents. However, an immediate 422 // subloop's new parent will be the nearest loop reachable from either its own 423 // exits *or* any of its nested loop's exits. 424 DenseMap<Loop *, Loop *> SubloopParents; 425 426 // Flag the presence of an irreducible backedge whose destination is a block 427 // directly contained by the original unloop. 428 bool FoundIB; 429 430 public: 431 UnloopUpdater(Loop *UL, LoopInfo *LInfo) 432 : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} 433 434 void updateBlockParents(); 435 436 void removeBlocksFromAncestors(); 437 438 void updateSubloopParents(); 439 440 protected: 441 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 442 }; 443 } // end anonymous namespace 444 445 /// Update the parent loop for all blocks that are directly contained within the 446 /// original "unloop". 447 void UnloopUpdater::updateBlockParents() { 448 if (Unloop.getNumBlocks()) { 449 // Perform a post order CFG traversal of all blocks within this loop, 450 // propagating the nearest loop from successors to predecessors. 451 LoopBlocksTraversal Traversal(DFS, LI); 452 for (BasicBlock *POI : Traversal) { 453 454 Loop *L = LI->getLoopFor(POI); 455 Loop *NL = getNearestLoop(POI, L); 456 457 if (NL != L) { 458 // For reducible loops, NL is now an ancestor of Unloop. 459 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && 460 "uninitialized successor"); 461 LI->changeLoopFor(POI, NL); 462 } else { 463 // Or the current block is part of a subloop, in which case its parent 464 // is unchanged. 465 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); 466 } 467 } 468 } 469 // Each irreducible loop within the unloop induces a round of iteration using 470 // the DFS result cached by Traversal. 471 bool Changed = FoundIB; 472 for (unsigned NIters = 0; Changed; ++NIters) { 473 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); 474 475 // Iterate over the postorder list of blocks, propagating the nearest loop 476 // from successors to predecessors as before. 477 Changed = false; 478 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 479 POE = DFS.endPostorder(); 480 POI != POE; ++POI) { 481 482 Loop *L = LI->getLoopFor(*POI); 483 Loop *NL = getNearestLoop(*POI, L); 484 if (NL != L) { 485 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && 486 "uninitialized successor"); 487 LI->changeLoopFor(*POI, NL); 488 Changed = true; 489 } 490 } 491 } 492 } 493 494 /// Remove unloop's blocks from all ancestors below their new parents. 495 void UnloopUpdater::removeBlocksFromAncestors() { 496 // Remove all unloop's blocks (including those in nested subloops) from 497 // ancestors below the new parent loop. 498 for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end(); 499 BI != BE; ++BI) { 500 Loop *OuterParent = LI->getLoopFor(*BI); 501 if (Unloop.contains(OuterParent)) { 502 while (OuterParent->getParentLoop() != &Unloop) 503 OuterParent = OuterParent->getParentLoop(); 504 OuterParent = SubloopParents[OuterParent]; 505 } 506 // Remove blocks from former Ancestors except Unloop itself which will be 507 // deleted. 508 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; 509 OldParent = OldParent->getParentLoop()) { 510 assert(OldParent && "new loop is not an ancestor of the original"); 511 OldParent->removeBlockFromLoop(*BI); 512 } 513 } 514 } 515 516 /// Update the parent loop for all subloops directly nested within unloop. 517 void UnloopUpdater::updateSubloopParents() { 518 while (!Unloop.empty()) { 519 Loop *Subloop = *std::prev(Unloop.end()); 520 Unloop.removeChildLoop(std::prev(Unloop.end())); 521 522 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 523 if (Loop *Parent = SubloopParents[Subloop]) 524 Parent->addChildLoop(Subloop); 525 else 526 LI->addTopLevelLoop(Subloop); 527 } 528 } 529 530 /// Return the nearest parent loop among this block's successors. If a successor 531 /// is a subloop header, consider its parent to be the nearest parent of the 532 /// subloop's exits. 533 /// 534 /// For subloop blocks, simply update SubloopParents and return NULL. 535 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 536 537 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 538 // is considered uninitialized. 539 Loop *NearLoop = BBLoop; 540 541 Loop *Subloop = nullptr; 542 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { 543 Subloop = NearLoop; 544 // Find the subloop ancestor that is directly contained within Unloop. 545 while (Subloop->getParentLoop() != &Unloop) { 546 Subloop = Subloop->getParentLoop(); 547 assert(Subloop && "subloop is not an ancestor of the original loop"); 548 } 549 // Get the current nearest parent of the Subloop exits, initially Unloop. 550 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; 551 } 552 553 succ_iterator I = succ_begin(BB), E = succ_end(BB); 554 if (I == E) { 555 assert(!Subloop && "subloop blocks must have a successor"); 556 NearLoop = nullptr; // unloop blocks may now exit the function. 557 } 558 for (; I != E; ++I) { 559 if (*I == BB) 560 continue; // self loops are uninteresting 561 562 Loop *L = LI->getLoopFor(*I); 563 if (L == &Unloop) { 564 // This successor has not been processed. This path must lead to an 565 // irreducible backedge. 566 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 567 FoundIB = true; 568 } 569 if (L != &Unloop && Unloop.contains(L)) { 570 // Successor is in a subloop. 571 if (Subloop) 572 continue; // Branching within subloops. Ignore it. 573 574 // BB branches from the original into a subloop header. 575 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); 576 577 // Get the current nearest parent of the Subloop's exits. 578 L = SubloopParents[L]; 579 // L could be Unloop if the only exit was an irreducible backedge. 580 } 581 if (L == &Unloop) { 582 continue; 583 } 584 // Handle critical edges from Unloop into a sibling loop. 585 if (L && !L->contains(&Unloop)) { 586 L = L->getParentLoop(); 587 } 588 // Remember the nearest parent loop among successors or subloop exits. 589 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) 590 NearLoop = L; 591 } 592 if (Subloop) { 593 SubloopParents[Subloop] = NearLoop; 594 return BBLoop; 595 } 596 return NearLoop; 597 } 598 599 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); } 600 601 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, 602 FunctionAnalysisManager::Invalidator &) { 603 // Check whether the analysis, all analyses on functions, or the function's 604 // CFG have been preserved. 605 auto PAC = PA.getChecker<LoopAnalysis>(); 606 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 607 PAC.preservedSet<CFGAnalyses>()); 608 } 609 610 void LoopInfo::erase(Loop *Unloop) { 611 assert(!Unloop->isInvalid() && "Loop has already been erased!"); 612 613 auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); 614 615 // First handle the special case of no parent loop to simplify the algorithm. 616 if (!Unloop->getParentLoop()) { 617 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 618 for (Loop::block_iterator I = Unloop->block_begin(), 619 E = Unloop->block_end(); 620 I != E; ++I) { 621 622 // Don't reparent blocks in subloops. 623 if (getLoopFor(*I) != Unloop) 624 continue; 625 626 // Blocks no longer have a parent but are still referenced by Unloop until 627 // the Unloop object is deleted. 628 changeLoopFor(*I, nullptr); 629 } 630 631 // Remove the loop from the top-level LoopInfo object. 632 for (iterator I = begin();; ++I) { 633 assert(I != end() && "Couldn't find loop"); 634 if (*I == Unloop) { 635 removeLoop(I); 636 break; 637 } 638 } 639 640 // Move all of the subloops to the top-level. 641 while (!Unloop->empty()) 642 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 643 644 return; 645 } 646 647 // Update the parent loop for all blocks within the loop. Blocks within 648 // subloops will not change parents. 649 UnloopUpdater Updater(Unloop, this); 650 Updater.updateBlockParents(); 651 652 // Remove blocks from former ancestor loops. 653 Updater.removeBlocksFromAncestors(); 654 655 // Add direct subloops as children in their new parent loop. 656 Updater.updateSubloopParents(); 657 658 // Remove unloop from its parent loop. 659 Loop *ParentLoop = Unloop->getParentLoop(); 660 for (Loop::iterator I = ParentLoop->begin();; ++I) { 661 assert(I != ParentLoop->end() && "Couldn't find loop"); 662 if (*I == Unloop) { 663 ParentLoop->removeChildLoop(I); 664 break; 665 } 666 } 667 } 668 669 AnalysisKey LoopAnalysis::Key; 670 671 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 672 // FIXME: Currently we create a LoopInfo from scratch for every function. 673 // This may prove to be too wasteful due to deallocating and re-allocating 674 // memory each time for the underlying map and vector datastructures. At some 675 // point it may prove worthwhile to use a freelist and recycle LoopInfo 676 // objects. I don't want to add that kind of complexity until the scope of 677 // the problem is better understood. 678 LoopInfo LI; 679 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); 680 return LI; 681 } 682 683 PreservedAnalyses LoopPrinterPass::run(Function &F, 684 FunctionAnalysisManager &AM) { 685 AM.getResult<LoopAnalysis>(F).print(OS); 686 return PreservedAnalyses::all(); 687 } 688 689 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { 690 691 if (forcePrintModuleIR()) { 692 // handling -print-module-scope 693 OS << Banner << " (loop: "; 694 L.getHeader()->printAsOperand(OS, false); 695 OS << ")\n"; 696 697 // printing whole module 698 OS << *L.getHeader()->getModule(); 699 return; 700 } 701 702 OS << Banner; 703 704 auto *PreHeader = L.getLoopPreheader(); 705 if (PreHeader) { 706 OS << "\n; Preheader:"; 707 PreHeader->print(OS); 708 OS << "\n; Loop:"; 709 } 710 711 for (auto *Block : L.blocks()) 712 if (Block) 713 Block->print(OS); 714 else 715 OS << "Printing <null> block"; 716 717 SmallVector<BasicBlock *, 8> ExitBlocks; 718 L.getExitBlocks(ExitBlocks); 719 if (!ExitBlocks.empty()) { 720 OS << "\n; Exit blocks"; 721 for (auto *Block : ExitBlocks) 722 if (Block) 723 Block->print(OS); 724 else 725 OS << "Printing <null> block"; 726 } 727 } 728 729 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) { 730 // No loop metadata node, no loop properties. 731 if (!LoopID) 732 return nullptr; 733 734 // First operand should refer to the metadata node itself, for legacy reasons. 735 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 736 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 737 738 // Iterate over the metdata node operands and look for MDString metadata. 739 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 740 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 741 if (!MD || MD->getNumOperands() < 1) 742 continue; 743 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 744 if (!S) 745 continue; 746 // Return the operand node if MDString holds expected metadata. 747 if (Name.equals(S->getString())) 748 return MD; 749 } 750 751 // Loop property not found. 752 return nullptr; 753 } 754 755 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) { 756 return findOptionMDForLoopID(TheLoop->getLoopID(), Name); 757 } 758 759 bool llvm::isValidAsAccessGroup(MDNode *Node) { 760 return Node->getNumOperands() == 0 && Node->isDistinct(); 761 } 762 763 //===----------------------------------------------------------------------===// 764 // LoopInfo implementation 765 // 766 767 char LoopInfoWrapperPass::ID = 0; 768 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 769 true, true) 770 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 771 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 772 true, true) 773 774 bool LoopInfoWrapperPass::runOnFunction(Function &) { 775 releaseMemory(); 776 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 777 return false; 778 } 779 780 void LoopInfoWrapperPass::verifyAnalysis() const { 781 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 782 // function each time verifyAnalysis is called is very expensive. The 783 // -verify-loop-info option can enable this. In order to perform some 784 // checking by default, LoopPass has been taught to call verifyLoop manually 785 // during loop pass sequences. 786 if (VerifyLoopInfo) { 787 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 788 LI.verify(DT); 789 } 790 } 791 792 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 793 AU.setPreservesAll(); 794 AU.addRequired<DominatorTreeWrapperPass>(); 795 } 796 797 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 798 LI.print(OS); 799 } 800 801 PreservedAnalyses LoopVerifierPass::run(Function &F, 802 FunctionAnalysisManager &AM) { 803 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 804 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 805 LI.verify(DT); 806 return PreservedAnalyses::all(); 807 } 808 809 //===----------------------------------------------------------------------===// 810 // LoopBlocksDFS implementation 811 // 812 813 /// Traverse the loop blocks and store the DFS result. 814 /// Useful for clients that just want the final DFS result and don't need to 815 /// visit blocks during the initial traversal. 816 void LoopBlocksDFS::perform(LoopInfo *LI) { 817 LoopBlocksTraversal Traversal(*this, LI); 818 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 819 POE = Traversal.end(); 820 POI != POE; ++POI) 821 ; 822 } 823