1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG.  Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/Analysis/LoopInfoImpl.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/IRPrintingPasses.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/PassManager.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
41 template class llvm::LoopBase<BasicBlock, Loop>;
42 template class llvm::LoopInfoBase<BasicBlock, Loop>;
43 
44 // Always verify loopinfo if expensive checking is enabled.
45 #ifdef EXPENSIVE_CHECKS
46 bool llvm::VerifyLoopInfo = true;
47 #else
48 bool llvm::VerifyLoopInfo = false;
49 #endif
50 static cl::opt<bool, true>
51     VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
52                     cl::Hidden, cl::desc("Verify loop info (time consuming)"));
53 
54 //===----------------------------------------------------------------------===//
55 // Loop implementation
56 //
57 
58 bool Loop::isLoopInvariant(const Value *V) const {
59   if (const Instruction *I = dyn_cast<Instruction>(V))
60     return !contains(I);
61   return true; // All non-instructions are loop invariant
62 }
63 
64 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
65   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
66 }
67 
68 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
69                              Instruction *InsertPt) const {
70   if (Instruction *I = dyn_cast<Instruction>(V))
71     return makeLoopInvariant(I, Changed, InsertPt);
72   return true; // All non-instructions are loop-invariant.
73 }
74 
75 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
76                              Instruction *InsertPt) const {
77   // Test if the value is already loop-invariant.
78   if (isLoopInvariant(I))
79     return true;
80   if (!isSafeToSpeculativelyExecute(I))
81     return false;
82   if (I->mayReadFromMemory())
83     return false;
84   // EH block instructions are immobile.
85   if (I->isEHPad())
86     return false;
87   // Determine the insertion point, unless one was given.
88   if (!InsertPt) {
89     BasicBlock *Preheader = getLoopPreheader();
90     // Without a preheader, hoisting is not feasible.
91     if (!Preheader)
92       return false;
93     InsertPt = Preheader->getTerminator();
94   }
95   // Don't hoist instructions with loop-variant operands.
96   for (Value *Operand : I->operands())
97     if (!makeLoopInvariant(Operand, Changed, InsertPt))
98       return false;
99 
100   // Hoist.
101   I->moveBefore(InsertPt);
102 
103   // There is possibility of hoisting this instruction above some arbitrary
104   // condition. Any metadata defined on it can be control dependent on this
105   // condition. Conservatively strip it here so that we don't give any wrong
106   // information to the optimizer.
107   I->dropUnknownNonDebugMetadata();
108 
109   Changed = true;
110   return true;
111 }
112 
113 PHINode *Loop::getCanonicalInductionVariable() const {
114   BasicBlock *H = getHeader();
115 
116   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
117   pred_iterator PI = pred_begin(H);
118   assert(PI != pred_end(H) && "Loop must have at least one backedge!");
119   Backedge = *PI++;
120   if (PI == pred_end(H))
121     return nullptr; // dead loop
122   Incoming = *PI++;
123   if (PI != pred_end(H))
124     return nullptr; // multiple backedges?
125 
126   if (contains(Incoming)) {
127     if (contains(Backedge))
128       return nullptr;
129     std::swap(Incoming, Backedge);
130   } else if (!contains(Backedge))
131     return nullptr;
132 
133   // Loop over all of the PHI nodes, looking for a canonical indvar.
134   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
135     PHINode *PN = cast<PHINode>(I);
136     if (ConstantInt *CI =
137             dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
138       if (CI->isZero())
139         if (Instruction *Inc =
140                 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
141           if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
142             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
143               if (CI->isOne())
144                 return PN;
145   }
146   return nullptr;
147 }
148 
149 // Check that 'BB' doesn't have any uses outside of the 'L'
150 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
151                                DominatorTree &DT) {
152   for (const Instruction &I : BB) {
153     // Tokens can't be used in PHI nodes and live-out tokens prevent loop
154     // optimizations, so for the purposes of considered LCSSA form, we
155     // can ignore them.
156     if (I.getType()->isTokenTy())
157       continue;
158 
159     for (const Use &U : I.uses()) {
160       const Instruction *UI = cast<Instruction>(U.getUser());
161       const BasicBlock *UserBB = UI->getParent();
162       if (const PHINode *P = dyn_cast<PHINode>(UI))
163         UserBB = P->getIncomingBlock(U);
164 
165       // Check the current block, as a fast-path, before checking whether
166       // the use is anywhere in the loop.  Most values are used in the same
167       // block they are defined in.  Also, blocks not reachable from the
168       // entry are special; uses in them don't need to go through PHIs.
169       if (UserBB != &BB && !L.contains(UserBB) &&
170           DT.isReachableFromEntry(UserBB))
171         return false;
172     }
173   }
174   return true;
175 }
176 
177 bool Loop::isLCSSAForm(DominatorTree &DT) const {
178   // For each block we check that it doesn't have any uses outside of this loop.
179   return all_of(this->blocks(), [&](const BasicBlock *BB) {
180     return isBlockInLCSSAForm(*this, *BB, DT);
181   });
182 }
183 
184 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const {
185   // For each block we check that it doesn't have any uses outside of its
186   // innermost loop. This process will transitively guarantee that the current
187   // loop and all of the nested loops are in LCSSA form.
188   return all_of(this->blocks(), [&](const BasicBlock *BB) {
189     return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
190   });
191 }
192 
193 bool Loop::isLoopSimplifyForm() const {
194   // Normal-form loops have a preheader, a single backedge, and all of their
195   // exits have all their predecessors inside the loop.
196   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
197 }
198 
199 // Routines that reform the loop CFG and split edges often fail on indirectbr.
200 bool Loop::isSafeToClone() const {
201   // Return false if any loop blocks contain indirectbrs, or there are any calls
202   // to noduplicate functions.
203   for (BasicBlock *BB : this->blocks()) {
204     if (isa<IndirectBrInst>(BB->getTerminator()))
205       return false;
206 
207     for (Instruction &I : *BB)
208       if (auto CS = CallSite(&I))
209         if (CS.cannotDuplicate())
210           return false;
211   }
212   return true;
213 }
214 
215 MDNode *Loop::getLoopID() const {
216   MDNode *LoopID = nullptr;
217 
218   // Go through the latch blocks and check the terminator for the metadata.
219   SmallVector<BasicBlock *, 4> LatchesBlocks;
220   getLoopLatches(LatchesBlocks);
221   for (BasicBlock *BB : LatchesBlocks) {
222     Instruction *TI = BB->getTerminator();
223     MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);
224 
225     if (!MD)
226       return nullptr;
227 
228     if (!LoopID)
229       LoopID = MD;
230     else if (MD != LoopID)
231       return nullptr;
232   }
233   if (!LoopID || LoopID->getNumOperands() == 0 ||
234       LoopID->getOperand(0) != LoopID)
235     return nullptr;
236   return LoopID;
237 }
238 
239 void Loop::setLoopID(MDNode *LoopID) const {
240   assert(LoopID && "Loop ID should not be null");
241   assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
242   assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
243 
244   if (BasicBlock *Latch = getLoopLatch()) {
245     Latch->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
246     return;
247   }
248 
249   assert(!getLoopLatch() &&
250          "The loop should have no single latch at this point");
251   BasicBlock *H = getHeader();
252   for (BasicBlock *BB : this->blocks()) {
253     Instruction *TI = BB->getTerminator();
254     for (BasicBlock *Successor : successors(TI)) {
255       if (Successor == H)
256         TI->setMetadata(LLVMContext::MD_loop, LoopID);
257     }
258   }
259 }
260 
261 void Loop::setLoopAlreadyUnrolled() {
262   MDNode *LoopID = getLoopID();
263   // First remove any existing loop unrolling metadata.
264   SmallVector<Metadata *, 4> MDs;
265   // Reserve first location for self reference to the LoopID metadata node.
266   MDs.push_back(nullptr);
267 
268   if (LoopID) {
269     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
270       bool IsUnrollMetadata = false;
271       MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
272       if (MD) {
273         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
274         IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
275       }
276       if (!IsUnrollMetadata)
277         MDs.push_back(LoopID->getOperand(i));
278     }
279   }
280 
281   // Add unroll(disable) metadata to disable future unrolling.
282   LLVMContext &Context = getHeader()->getContext();
283   SmallVector<Metadata *, 1> DisableOperands;
284   DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
285   MDNode *DisableNode = MDNode::get(Context, DisableOperands);
286   MDs.push_back(DisableNode);
287 
288   MDNode *NewLoopID = MDNode::get(Context, MDs);
289   // Set operand 0 to refer to the loop id itself.
290   NewLoopID->replaceOperandWith(0, NewLoopID);
291   setLoopID(NewLoopID);
292 }
293 
294 bool Loop::isAnnotatedParallel() const {
295   MDNode *DesiredLoopIdMetadata = getLoopID();
296 
297   if (!DesiredLoopIdMetadata)
298     return false;
299 
300   // The loop branch contains the parallel loop metadata. In order to ensure
301   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
302   // dependencies (thus converted the loop back to a sequential loop), check
303   // that all the memory instructions in the loop contain parallelism metadata
304   // that point to the same unique "loop id metadata" the loop branch does.
305   for (BasicBlock *BB : this->blocks()) {
306     for (Instruction &I : *BB) {
307       if (!I.mayReadOrWriteMemory())
308         continue;
309 
310       // The memory instruction can refer to the loop identifier metadata
311       // directly or indirectly through another list metadata (in case of
312       // nested parallel loops). The loop identifier metadata refers to
313       // itself so we can check both cases with the same routine.
314       MDNode *LoopIdMD =
315           I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
316 
317       if (!LoopIdMD)
318         return false;
319 
320       bool LoopIdMDFound = false;
321       for (const MDOperand &MDOp : LoopIdMD->operands()) {
322         if (MDOp == DesiredLoopIdMetadata) {
323           LoopIdMDFound = true;
324           break;
325         }
326       }
327 
328       if (!LoopIdMDFound)
329         return false;
330     }
331   }
332   return true;
333 }
334 
335 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
336 
337 Loop::LocRange Loop::getLocRange() const {
338   // If we have a debug location in the loop ID, then use it.
339   if (MDNode *LoopID = getLoopID()) {
340     DebugLoc Start;
341     // We use the first DebugLoc in the header as the start location of the loop
342     // and if there is a second DebugLoc in the header we use it as end location
343     // of the loop.
344     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
345       if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
346         if (!Start)
347           Start = DebugLoc(L);
348         else
349           return LocRange(Start, DebugLoc(L));
350       }
351     }
352 
353     if (Start)
354       return LocRange(Start);
355   }
356 
357   // Try the pre-header first.
358   if (BasicBlock *PHeadBB = getLoopPreheader())
359     if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
360       return LocRange(DL);
361 
362   // If we have no pre-header or there are no instructions with debug
363   // info in it, try the header.
364   if (BasicBlock *HeadBB = getHeader())
365     return LocRange(HeadBB->getTerminator()->getDebugLoc());
366 
367   return LocRange();
368 }
369 
370 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
371 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
372 
373 LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
374   print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
375 }
376 #endif
377 
378 //===----------------------------------------------------------------------===//
379 // UnloopUpdater implementation
380 //
381 
382 namespace {
383 /// Find the new parent loop for all blocks within the "unloop" whose last
384 /// backedges has just been removed.
385 class UnloopUpdater {
386   Loop &Unloop;
387   LoopInfo *LI;
388 
389   LoopBlocksDFS DFS;
390 
391   // Map unloop's immediate subloops to their nearest reachable parents. Nested
392   // loops within these subloops will not change parents. However, an immediate
393   // subloop's new parent will be the nearest loop reachable from either its own
394   // exits *or* any of its nested loop's exits.
395   DenseMap<Loop *, Loop *> SubloopParents;
396 
397   // Flag the presence of an irreducible backedge whose destination is a block
398   // directly contained by the original unloop.
399   bool FoundIB;
400 
401 public:
402   UnloopUpdater(Loop *UL, LoopInfo *LInfo)
403       : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
404 
405   void updateBlockParents();
406 
407   void removeBlocksFromAncestors();
408 
409   void updateSubloopParents();
410 
411 protected:
412   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
413 };
414 } // end anonymous namespace
415 
416 /// Update the parent loop for all blocks that are directly contained within the
417 /// original "unloop".
418 void UnloopUpdater::updateBlockParents() {
419   if (Unloop.getNumBlocks()) {
420     // Perform a post order CFG traversal of all blocks within this loop,
421     // propagating the nearest loop from successors to predecessors.
422     LoopBlocksTraversal Traversal(DFS, LI);
423     for (BasicBlock *POI : Traversal) {
424 
425       Loop *L = LI->getLoopFor(POI);
426       Loop *NL = getNearestLoop(POI, L);
427 
428       if (NL != L) {
429         // For reducible loops, NL is now an ancestor of Unloop.
430         assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
431                "uninitialized successor");
432         LI->changeLoopFor(POI, NL);
433       } else {
434         // Or the current block is part of a subloop, in which case its parent
435         // is unchanged.
436         assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
437       }
438     }
439   }
440   // Each irreducible loop within the unloop induces a round of iteration using
441   // the DFS result cached by Traversal.
442   bool Changed = FoundIB;
443   for (unsigned NIters = 0; Changed; ++NIters) {
444     assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
445 
446     // Iterate over the postorder list of blocks, propagating the nearest loop
447     // from successors to predecessors as before.
448     Changed = false;
449     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
450                                    POE = DFS.endPostorder();
451          POI != POE; ++POI) {
452 
453       Loop *L = LI->getLoopFor(*POI);
454       Loop *NL = getNearestLoop(*POI, L);
455       if (NL != L) {
456         assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
457                "uninitialized successor");
458         LI->changeLoopFor(*POI, NL);
459         Changed = true;
460       }
461     }
462   }
463 }
464 
465 /// Remove unloop's blocks from all ancestors below their new parents.
466 void UnloopUpdater::removeBlocksFromAncestors() {
467   // Remove all unloop's blocks (including those in nested subloops) from
468   // ancestors below the new parent loop.
469   for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end();
470        BI != BE; ++BI) {
471     Loop *OuterParent = LI->getLoopFor(*BI);
472     if (Unloop.contains(OuterParent)) {
473       while (OuterParent->getParentLoop() != &Unloop)
474         OuterParent = OuterParent->getParentLoop();
475       OuterParent = SubloopParents[OuterParent];
476     }
477     // Remove blocks from former Ancestors except Unloop itself which will be
478     // deleted.
479     for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
480          OldParent = OldParent->getParentLoop()) {
481       assert(OldParent && "new loop is not an ancestor of the original");
482       OldParent->removeBlockFromLoop(*BI);
483     }
484   }
485 }
486 
487 /// Update the parent loop for all subloops directly nested within unloop.
488 void UnloopUpdater::updateSubloopParents() {
489   while (!Unloop.empty()) {
490     Loop *Subloop = *std::prev(Unloop.end());
491     Unloop.removeChildLoop(std::prev(Unloop.end()));
492 
493     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
494     if (Loop *Parent = SubloopParents[Subloop])
495       Parent->addChildLoop(Subloop);
496     else
497       LI->addTopLevelLoop(Subloop);
498   }
499 }
500 
501 /// Return the nearest parent loop among this block's successors. If a successor
502 /// is a subloop header, consider its parent to be the nearest parent of the
503 /// subloop's exits.
504 ///
505 /// For subloop blocks, simply update SubloopParents and return NULL.
506 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
507 
508   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
509   // is considered uninitialized.
510   Loop *NearLoop = BBLoop;
511 
512   Loop *Subloop = nullptr;
513   if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
514     Subloop = NearLoop;
515     // Find the subloop ancestor that is directly contained within Unloop.
516     while (Subloop->getParentLoop() != &Unloop) {
517       Subloop = Subloop->getParentLoop();
518       assert(Subloop && "subloop is not an ancestor of the original loop");
519     }
520     // Get the current nearest parent of the Subloop exits, initially Unloop.
521     NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
522   }
523 
524   succ_iterator I = succ_begin(BB), E = succ_end(BB);
525   if (I == E) {
526     assert(!Subloop && "subloop blocks must have a successor");
527     NearLoop = nullptr; // unloop blocks may now exit the function.
528   }
529   for (; I != E; ++I) {
530     if (*I == BB)
531       continue; // self loops are uninteresting
532 
533     Loop *L = LI->getLoopFor(*I);
534     if (L == &Unloop) {
535       // This successor has not been processed. This path must lead to an
536       // irreducible backedge.
537       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
538       FoundIB = true;
539     }
540     if (L != &Unloop && Unloop.contains(L)) {
541       // Successor is in a subloop.
542       if (Subloop)
543         continue; // Branching within subloops. Ignore it.
544 
545       // BB branches from the original into a subloop header.
546       assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
547 
548       // Get the current nearest parent of the Subloop's exits.
549       L = SubloopParents[L];
550       // L could be Unloop if the only exit was an irreducible backedge.
551     }
552     if (L == &Unloop) {
553       continue;
554     }
555     // Handle critical edges from Unloop into a sibling loop.
556     if (L && !L->contains(&Unloop)) {
557       L = L->getParentLoop();
558     }
559     // Remember the nearest parent loop among successors or subloop exits.
560     if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
561       NearLoop = L;
562   }
563   if (Subloop) {
564     SubloopParents[Subloop] = NearLoop;
565     return BBLoop;
566   }
567   return NearLoop;
568 }
569 
570 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
571 
572 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
573                           FunctionAnalysisManager::Invalidator &) {
574   // Check whether the analysis, all analyses on functions, or the function's
575   // CFG have been preserved.
576   auto PAC = PA.getChecker<LoopAnalysis>();
577   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
578            PAC.preservedSet<CFGAnalyses>());
579 }
580 
581 void LoopInfo::erase(Loop *Unloop) {
582   assert(!Unloop->isInvalid() && "Loop has already been erased!");
583 
584   auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
585 
586   // First handle the special case of no parent loop to simplify the algorithm.
587   if (!Unloop->getParentLoop()) {
588     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
589     for (Loop::block_iterator I = Unloop->block_begin(),
590                               E = Unloop->block_end();
591          I != E; ++I) {
592 
593       // Don't reparent blocks in subloops.
594       if (getLoopFor(*I) != Unloop)
595         continue;
596 
597       // Blocks no longer have a parent but are still referenced by Unloop until
598       // the Unloop object is deleted.
599       changeLoopFor(*I, nullptr);
600     }
601 
602     // Remove the loop from the top-level LoopInfo object.
603     for (iterator I = begin();; ++I) {
604       assert(I != end() && "Couldn't find loop");
605       if (*I == Unloop) {
606         removeLoop(I);
607         break;
608       }
609     }
610 
611     // Move all of the subloops to the top-level.
612     while (!Unloop->empty())
613       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
614 
615     return;
616   }
617 
618   // Update the parent loop for all blocks within the loop. Blocks within
619   // subloops will not change parents.
620   UnloopUpdater Updater(Unloop, this);
621   Updater.updateBlockParents();
622 
623   // Remove blocks from former ancestor loops.
624   Updater.removeBlocksFromAncestors();
625 
626   // Add direct subloops as children in their new parent loop.
627   Updater.updateSubloopParents();
628 
629   // Remove unloop from its parent loop.
630   Loop *ParentLoop = Unloop->getParentLoop();
631   for (Loop::iterator I = ParentLoop->begin();; ++I) {
632     assert(I != ParentLoop->end() && "Couldn't find loop");
633     if (*I == Unloop) {
634       ParentLoop->removeChildLoop(I);
635       break;
636     }
637   }
638 }
639 
640 AnalysisKey LoopAnalysis::Key;
641 
642 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
643   // FIXME: Currently we create a LoopInfo from scratch for every function.
644   // This may prove to be too wasteful due to deallocating and re-allocating
645   // memory each time for the underlying map and vector datastructures. At some
646   // point it may prove worthwhile to use a freelist and recycle LoopInfo
647   // objects. I don't want to add that kind of complexity until the scope of
648   // the problem is better understood.
649   LoopInfo LI;
650   LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
651   return LI;
652 }
653 
654 PreservedAnalyses LoopPrinterPass::run(Function &F,
655                                        FunctionAnalysisManager &AM) {
656   AM.getResult<LoopAnalysis>(F).print(OS);
657   return PreservedAnalyses::all();
658 }
659 
660 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
661 
662   if (forcePrintModuleIR()) {
663     // handling -print-module-scope
664     OS << Banner << " (loop: ";
665     L.getHeader()->printAsOperand(OS, false);
666     OS << ")\n";
667 
668     // printing whole module
669     OS << *L.getHeader()->getModule();
670     return;
671   }
672 
673   OS << Banner;
674 
675   auto *PreHeader = L.getLoopPreheader();
676   if (PreHeader) {
677     OS << "\n; Preheader:";
678     PreHeader->print(OS);
679     OS << "\n; Loop:";
680   }
681 
682   for (auto *Block : L.blocks())
683     if (Block)
684       Block->print(OS);
685     else
686       OS << "Printing <null> block";
687 
688   SmallVector<BasicBlock *, 8> ExitBlocks;
689   L.getExitBlocks(ExitBlocks);
690   if (!ExitBlocks.empty()) {
691     OS << "\n; Exit blocks";
692     for (auto *Block : ExitBlocks)
693       if (Block)
694         Block->print(OS);
695       else
696         OS << "Printing <null> block";
697   }
698 }
699 
700 //===----------------------------------------------------------------------===//
701 // LoopInfo implementation
702 //
703 
704 char LoopInfoWrapperPass::ID = 0;
705 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
706                       true, true)
707 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
708 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
709                     true, true)
710 
711 bool LoopInfoWrapperPass::runOnFunction(Function &) {
712   releaseMemory();
713   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
714   return false;
715 }
716 
717 void LoopInfoWrapperPass::verifyAnalysis() const {
718   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
719   // function each time verifyAnalysis is called is very expensive. The
720   // -verify-loop-info option can enable this. In order to perform some
721   // checking by default, LoopPass has been taught to call verifyLoop manually
722   // during loop pass sequences.
723   if (VerifyLoopInfo) {
724     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
725     LI.verify(DT);
726   }
727 }
728 
729 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
730   AU.setPreservesAll();
731   AU.addRequired<DominatorTreeWrapperPass>();
732 }
733 
734 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
735   LI.print(OS);
736 }
737 
738 PreservedAnalyses LoopVerifierPass::run(Function &F,
739                                         FunctionAnalysisManager &AM) {
740   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
741   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
742   LI.verify(DT);
743   return PreservedAnalyses::all();
744 }
745 
746 //===----------------------------------------------------------------------===//
747 // LoopBlocksDFS implementation
748 //
749 
750 /// Traverse the loop blocks and store the DFS result.
751 /// Useful for clients that just want the final DFS result and don't need to
752 /// visit blocks during the initial traversal.
753 void LoopBlocksDFS::perform(LoopInfo *LI) {
754   LoopBlocksTraversal Traversal(*this, LI);
755   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
756                                         POE = Traversal.end();
757        POI != POE; ++POI)
758     ;
759 }
760