1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the LoopInfo class that is used to identify natural loops
10 // and determine the loop depth of various nodes of the CFG.  Note that the
11 // loops identified may actually be several natural loops that share the same
12 // header node... not just a single natural loop.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/IVDescriptors.h"
21 #include "llvm/Analysis/LoopInfoImpl.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DebugLoc.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/IRPrintingPasses.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/PassManager.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 using namespace llvm;
42 
43 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
44 template class llvm::LoopBase<BasicBlock, Loop>;
45 template class llvm::LoopInfoBase<BasicBlock, Loop>;
46 
47 // Always verify loopinfo if expensive checking is enabled.
48 #ifdef EXPENSIVE_CHECKS
49 bool llvm::VerifyLoopInfo = true;
50 #else
51 bool llvm::VerifyLoopInfo = false;
52 #endif
53 static cl::opt<bool, true>
54     VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
55                     cl::Hidden, cl::desc("Verify loop info (time consuming)"));
56 
57 //===----------------------------------------------------------------------===//
58 // Loop implementation
59 //
60 
61 bool Loop::isLoopInvariant(const Value *V) const {
62   if (const Instruction *I = dyn_cast<Instruction>(V))
63     return !contains(I);
64   return true; // All non-instructions are loop invariant
65 }
66 
67 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
68   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
69 }
70 
71 bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt,
72                              MemorySSAUpdater *MSSAU) const {
73   if (Instruction *I = dyn_cast<Instruction>(V))
74     return makeLoopInvariant(I, Changed, InsertPt, MSSAU);
75   return true; // All non-instructions are loop-invariant.
76 }
77 
78 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
79                              Instruction *InsertPt,
80                              MemorySSAUpdater *MSSAU) const {
81   // Test if the value is already loop-invariant.
82   if (isLoopInvariant(I))
83     return true;
84   if (!isSafeToSpeculativelyExecute(I))
85     return false;
86   if (I->mayReadFromMemory())
87     return false;
88   // EH block instructions are immobile.
89   if (I->isEHPad())
90     return false;
91   // Determine the insertion point, unless one was given.
92   if (!InsertPt) {
93     BasicBlock *Preheader = getLoopPreheader();
94     // Without a preheader, hoisting is not feasible.
95     if (!Preheader)
96       return false;
97     InsertPt = Preheader->getTerminator();
98   }
99   // Don't hoist instructions with loop-variant operands.
100   for (Value *Operand : I->operands())
101     if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU))
102       return false;
103 
104   // Hoist.
105   I->moveBefore(InsertPt);
106   if (MSSAU)
107     if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I))
108       MSSAU->moveToPlace(MUD, InsertPt->getParent(), MemorySSA::End);
109 
110   // There is possibility of hoisting this instruction above some arbitrary
111   // condition. Any metadata defined on it can be control dependent on this
112   // condition. Conservatively strip it here so that we don't give any wrong
113   // information to the optimizer.
114   I->dropUnknownNonDebugMetadata();
115 
116   Changed = true;
117   return true;
118 }
119 
120 bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming,
121                                   BasicBlock *&Backedge) const {
122   BasicBlock *H = getHeader();
123 
124   Incoming = nullptr;
125   Backedge = nullptr;
126   pred_iterator PI = pred_begin(H);
127   assert(PI != pred_end(H) && "Loop must have at least one backedge!");
128   Backedge = *PI++;
129   if (PI == pred_end(H))
130     return false; // dead loop
131   Incoming = *PI++;
132   if (PI != pred_end(H))
133     return false; // multiple backedges?
134 
135   if (contains(Incoming)) {
136     if (contains(Backedge))
137       return false;
138     std::swap(Incoming, Backedge);
139   } else if (!contains(Backedge))
140     return false;
141 
142   assert(Incoming && Backedge && "expected non-null incoming and backedges");
143   return true;
144 }
145 
146 PHINode *Loop::getCanonicalInductionVariable() const {
147   BasicBlock *H = getHeader();
148 
149   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
150   if (!getIncomingAndBackEdge(Incoming, Backedge))
151     return nullptr;
152 
153   // Loop over all of the PHI nodes, looking for a canonical indvar.
154   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
155     PHINode *PN = cast<PHINode>(I);
156     if (ConstantInt *CI =
157             dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
158       if (CI->isZero())
159         if (Instruction *Inc =
160                 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
161           if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
162             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
163               if (CI->isOne())
164                 return PN;
165   }
166   return nullptr;
167 }
168 
169 /// Get the latch condition instruction.
170 static ICmpInst *getLatchCmpInst(const Loop &L) {
171   if (BasicBlock *Latch = L.getLoopLatch())
172     if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()))
173       if (BI->isConditional())
174         return dyn_cast<ICmpInst>(BI->getCondition());
175 
176   return nullptr;
177 }
178 
179 /// Return the final value of the loop induction variable if found.
180 static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar,
181                                const Instruction &StepInst) {
182   ICmpInst *LatchCmpInst = getLatchCmpInst(L);
183   if (!LatchCmpInst)
184     return nullptr;
185 
186   Value *Op0 = LatchCmpInst->getOperand(0);
187   Value *Op1 = LatchCmpInst->getOperand(1);
188   if (Op0 == &IndVar || Op0 == &StepInst)
189     return Op1;
190 
191   if (Op1 == &IndVar || Op1 == &StepInst)
192     return Op0;
193 
194   return nullptr;
195 }
196 
197 Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L,
198                                                        PHINode &IndVar,
199                                                        ScalarEvolution &SE) {
200   InductionDescriptor IndDesc;
201   if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc))
202     return None;
203 
204   Value *InitialIVValue = IndDesc.getStartValue();
205   Instruction *StepInst = IndDesc.getInductionBinOp();
206   if (!InitialIVValue || !StepInst)
207     return None;
208 
209   const SCEV *Step = IndDesc.getStep();
210   Value *StepInstOp1 = StepInst->getOperand(1);
211   Value *StepInstOp0 = StepInst->getOperand(0);
212   Value *StepValue = nullptr;
213   if (SE.getSCEV(StepInstOp1) == Step)
214     StepValue = StepInstOp1;
215   else if (SE.getSCEV(StepInstOp0) == Step)
216     StepValue = StepInstOp0;
217 
218   Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst);
219   if (!FinalIVValue)
220     return None;
221 
222   return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue,
223                     SE);
224 }
225 
226 using Direction = Loop::LoopBounds::Direction;
227 
228 ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const {
229   BasicBlock *Latch = L.getLoopLatch();
230   assert(Latch && "Expecting valid latch");
231 
232   BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator());
233   assert(BI && BI->isConditional() && "Expecting conditional latch branch");
234 
235   ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition());
236   assert(LatchCmpInst &&
237          "Expecting the latch compare instruction to be a CmpInst");
238 
239   // Need to inverse the predicate when first successor is not the loop
240   // header
241   ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader())
242                                  ? LatchCmpInst->getPredicate()
243                                  : LatchCmpInst->getInversePredicate();
244 
245   if (LatchCmpInst->getOperand(0) == &getFinalIVValue())
246     Pred = ICmpInst::getSwappedPredicate(Pred);
247 
248   // Need to flip strictness of the predicate when the latch compare instruction
249   // is not using StepInst
250   if (LatchCmpInst->getOperand(0) == &getStepInst() ||
251       LatchCmpInst->getOperand(1) == &getStepInst())
252     return Pred;
253 
254   // Cannot flip strictness of NE and EQ
255   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
256     return ICmpInst::getFlippedStrictnessPredicate(Pred);
257 
258   Direction D = getDirection();
259   if (D == Direction::Increasing)
260     return ICmpInst::ICMP_SLT;
261 
262   if (D == Direction::Decreasing)
263     return ICmpInst::ICMP_SGT;
264 
265   // If cannot determine the direction, then unable to find the canonical
266   // predicate
267   return ICmpInst::BAD_ICMP_PREDICATE;
268 }
269 
270 Direction Loop::LoopBounds::getDirection() const {
271   if (const SCEVAddRecExpr *StepAddRecExpr =
272           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst())))
273     if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) {
274       if (SE.isKnownPositive(StepRecur))
275         return Direction::Increasing;
276       if (SE.isKnownNegative(StepRecur))
277         return Direction::Decreasing;
278     }
279 
280   return Direction::Unknown;
281 }
282 
283 Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const {
284   if (PHINode *IndVar = getInductionVariable(SE))
285     return LoopBounds::getBounds(*this, *IndVar, SE);
286 
287   return None;
288 }
289 
290 PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const {
291   if (!isLoopSimplifyForm())
292     return nullptr;
293 
294   BasicBlock *Header = getHeader();
295   assert(Header && "Expected a valid loop header");
296   ICmpInst *CmpInst = getLatchCmpInst(*this);
297   if (!CmpInst)
298     return nullptr;
299 
300   Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0));
301   Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1));
302 
303   for (PHINode &IndVar : Header->phis()) {
304     InductionDescriptor IndDesc;
305     if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc))
306       continue;
307 
308     Instruction *StepInst = IndDesc.getInductionBinOp();
309 
310     // case 1:
311     // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
312     // StepInst = IndVar + step
313     // cmp = StepInst < FinalValue
314     if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1)
315       return &IndVar;
316 
317     // case 2:
318     // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
319     // StepInst = IndVar + step
320     // cmp = IndVar < FinalValue
321     if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1)
322       return &IndVar;
323   }
324 
325   return nullptr;
326 }
327 
328 bool Loop::getInductionDescriptor(ScalarEvolution &SE,
329                                   InductionDescriptor &IndDesc) const {
330   if (PHINode *IndVar = getInductionVariable(SE))
331     return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc);
332 
333   return false;
334 }
335 
336 bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar,
337                                         ScalarEvolution &SE) const {
338   // Located in the loop header
339   BasicBlock *Header = getHeader();
340   if (AuxIndVar.getParent() != Header)
341     return false;
342 
343   // No uses outside of the loop
344   for (User *U : AuxIndVar.users())
345     if (const Instruction *I = dyn_cast<Instruction>(U))
346       if (!contains(I))
347         return false;
348 
349   InductionDescriptor IndDesc;
350   if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc))
351     return false;
352 
353   // The step instruction opcode should be add or sub.
354   if (IndDesc.getInductionOpcode() != Instruction::Add &&
355       IndDesc.getInductionOpcode() != Instruction::Sub)
356     return false;
357 
358   // Incremented by a loop invariant step for each loop iteration
359   return SE.isLoopInvariant(IndDesc.getStep(), this);
360 }
361 
362 BranchInst *Loop::getLoopGuardBranch() const {
363   assert(isLoopSimplifyForm() && "Only valid for loop in simplify form");
364   BasicBlock *Preheader = getLoopPreheader();
365   assert(Preheader && getLoopLatch() &&
366          "Expecting a loop with valid preheader and latch");
367   assert(isLoopExiting(getLoopLatch()) && "Only valid for rotated loop");
368 
369   // Disallow loops with more than one unique exit block, as we do not verify
370   // that GuardOtherSucc post dominates all exit blocks.
371   BasicBlock *ExitFromLatch = getUniqueExitBlock();
372   if (!ExitFromLatch)
373     return nullptr;
374 
375   BasicBlock *ExitFromLatchSucc = ExitFromLatch->getUniqueSuccessor();
376   if (!ExitFromLatchSucc)
377     return nullptr;
378 
379   BasicBlock *GuardBB = Preheader->getUniquePredecessor();
380   if (!GuardBB)
381     return nullptr;
382 
383   assert(GuardBB->getTerminator() && "Expecting valid guard terminator");
384 
385   BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator());
386   if (!GuardBI || GuardBI->isUnconditional())
387     return nullptr;
388 
389   BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader)
390                                    ? GuardBI->getSuccessor(1)
391                                    : GuardBI->getSuccessor(0);
392   return (GuardOtherSucc == ExitFromLatchSucc) ? GuardBI : nullptr;
393 }
394 
395 bool Loop::isCanonical(ScalarEvolution &SE) const {
396   InductionDescriptor IndDesc;
397   if (!getInductionDescriptor(SE, IndDesc))
398     return false;
399 
400   ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue());
401   if (!Init || !Init->isZero())
402     return false;
403 
404   if (IndDesc.getInductionOpcode() != Instruction::Add)
405     return false;
406 
407   ConstantInt *Step = IndDesc.getConstIntStepValue();
408   if (!Step || !Step->isOne())
409     return false;
410 
411   return true;
412 }
413 
414 // Check that 'BB' doesn't have any uses outside of the 'L'
415 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
416                                DominatorTree &DT) {
417   for (const Instruction &I : BB) {
418     // Tokens can't be used in PHI nodes and live-out tokens prevent loop
419     // optimizations, so for the purposes of considered LCSSA form, we
420     // can ignore them.
421     if (I.getType()->isTokenTy())
422       continue;
423 
424     for (const Use &U : I.uses()) {
425       const Instruction *UI = cast<Instruction>(U.getUser());
426       const BasicBlock *UserBB = UI->getParent();
427       if (const PHINode *P = dyn_cast<PHINode>(UI))
428         UserBB = P->getIncomingBlock(U);
429 
430       // Check the current block, as a fast-path, before checking whether
431       // the use is anywhere in the loop.  Most values are used in the same
432       // block they are defined in.  Also, blocks not reachable from the
433       // entry are special; uses in them don't need to go through PHIs.
434       if (UserBB != &BB && !L.contains(UserBB) &&
435           DT.isReachableFromEntry(UserBB))
436         return false;
437     }
438   }
439   return true;
440 }
441 
442 bool Loop::isLCSSAForm(DominatorTree &DT) const {
443   // For each block we check that it doesn't have any uses outside of this loop.
444   return all_of(this->blocks(), [&](const BasicBlock *BB) {
445     return isBlockInLCSSAForm(*this, *BB, DT);
446   });
447 }
448 
449 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const {
450   // For each block we check that it doesn't have any uses outside of its
451   // innermost loop. This process will transitively guarantee that the current
452   // loop and all of the nested loops are in LCSSA form.
453   return all_of(this->blocks(), [&](const BasicBlock *BB) {
454     return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
455   });
456 }
457 
458 bool Loop::isLoopSimplifyForm() const {
459   // Normal-form loops have a preheader, a single backedge, and all of their
460   // exits have all their predecessors inside the loop.
461   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
462 }
463 
464 // Routines that reform the loop CFG and split edges often fail on indirectbr.
465 bool Loop::isSafeToClone() const {
466   // Return false if any loop blocks contain indirectbrs, or there are any calls
467   // to noduplicate functions.
468   // FIXME: it should be ok to clone CallBrInst's if we correctly update the
469   // operand list to reflect the newly cloned labels.
470   for (BasicBlock *BB : this->blocks()) {
471     if (isa<IndirectBrInst>(BB->getTerminator()) ||
472         isa<CallBrInst>(BB->getTerminator()))
473       return false;
474 
475     for (Instruction &I : *BB)
476       if (auto CS = CallSite(&I))
477         if (CS.cannotDuplicate())
478           return false;
479   }
480   return true;
481 }
482 
483 MDNode *Loop::getLoopID() const {
484   MDNode *LoopID = nullptr;
485 
486   // Go through the latch blocks and check the terminator for the metadata.
487   SmallVector<BasicBlock *, 4> LatchesBlocks;
488   getLoopLatches(LatchesBlocks);
489   for (BasicBlock *BB : LatchesBlocks) {
490     Instruction *TI = BB->getTerminator();
491     MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);
492 
493     if (!MD)
494       return nullptr;
495 
496     if (!LoopID)
497       LoopID = MD;
498     else if (MD != LoopID)
499       return nullptr;
500   }
501   if (!LoopID || LoopID->getNumOperands() == 0 ||
502       LoopID->getOperand(0) != LoopID)
503     return nullptr;
504   return LoopID;
505 }
506 
507 void Loop::setLoopID(MDNode *LoopID) const {
508   assert((!LoopID || LoopID->getNumOperands() > 0) &&
509          "Loop ID needs at least one operand");
510   assert((!LoopID || LoopID->getOperand(0) == LoopID) &&
511          "Loop ID should refer to itself");
512 
513   SmallVector<BasicBlock *, 4> LoopLatches;
514   getLoopLatches(LoopLatches);
515   for (BasicBlock *BB : LoopLatches)
516     BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
517 }
518 
519 void Loop::setLoopAlreadyUnrolled() {
520   LLVMContext &Context = getHeader()->getContext();
521 
522   MDNode *DisableUnrollMD =
523       MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable"));
524   MDNode *LoopID = getLoopID();
525   MDNode *NewLoopID = makePostTransformationMetadata(
526       Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD});
527   setLoopID(NewLoopID);
528 }
529 
530 bool Loop::isAnnotatedParallel() const {
531   MDNode *DesiredLoopIdMetadata = getLoopID();
532 
533   if (!DesiredLoopIdMetadata)
534     return false;
535 
536   MDNode *ParallelAccesses =
537       findOptionMDForLoop(this, "llvm.loop.parallel_accesses");
538   SmallPtrSet<MDNode *, 4>
539       ParallelAccessGroups; // For scalable 'contains' check.
540   if (ParallelAccesses) {
541     for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) {
542       MDNode *AccGroup = cast<MDNode>(MD.get());
543       assert(isValidAsAccessGroup(AccGroup) &&
544              "List item must be an access group");
545       ParallelAccessGroups.insert(AccGroup);
546     }
547   }
548 
549   // The loop branch contains the parallel loop metadata. In order to ensure
550   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
551   // dependencies (thus converted the loop back to a sequential loop), check
552   // that all the memory instructions in the loop belong to an access group that
553   // is parallel to this loop.
554   for (BasicBlock *BB : this->blocks()) {
555     for (Instruction &I : *BB) {
556       if (!I.mayReadOrWriteMemory())
557         continue;
558 
559       if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) {
560         auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool {
561           if (AG->getNumOperands() == 0) {
562             assert(isValidAsAccessGroup(AG) && "Item must be an access group");
563             return ParallelAccessGroups.count(AG);
564           }
565 
566           for (const MDOperand &AccessListItem : AG->operands()) {
567             MDNode *AccGroup = cast<MDNode>(AccessListItem.get());
568             assert(isValidAsAccessGroup(AccGroup) &&
569                    "List item must be an access group");
570             if (ParallelAccessGroups.count(AccGroup))
571               return true;
572           }
573           return false;
574         };
575 
576         if (ContainsAccessGroup(AccessGroup))
577           continue;
578       }
579 
580       // The memory instruction can refer to the loop identifier metadata
581       // directly or indirectly through another list metadata (in case of
582       // nested parallel loops). The loop identifier metadata refers to
583       // itself so we can check both cases with the same routine.
584       MDNode *LoopIdMD =
585           I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
586 
587       if (!LoopIdMD)
588         return false;
589 
590       bool LoopIdMDFound = false;
591       for (const MDOperand &MDOp : LoopIdMD->operands()) {
592         if (MDOp == DesiredLoopIdMetadata) {
593           LoopIdMDFound = true;
594           break;
595         }
596       }
597 
598       if (!LoopIdMDFound)
599         return false;
600     }
601   }
602   return true;
603 }
604 
605 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
606 
607 Loop::LocRange Loop::getLocRange() const {
608   // If we have a debug location in the loop ID, then use it.
609   if (MDNode *LoopID = getLoopID()) {
610     DebugLoc Start;
611     // We use the first DebugLoc in the header as the start location of the loop
612     // and if there is a second DebugLoc in the header we use it as end location
613     // of the loop.
614     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
615       if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
616         if (!Start)
617           Start = DebugLoc(L);
618         else
619           return LocRange(Start, DebugLoc(L));
620       }
621     }
622 
623     if (Start)
624       return LocRange(Start);
625   }
626 
627   // Try the pre-header first.
628   if (BasicBlock *PHeadBB = getLoopPreheader())
629     if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
630       return LocRange(DL);
631 
632   // If we have no pre-header or there are no instructions with debug
633   // info in it, try the header.
634   if (BasicBlock *HeadBB = getHeader())
635     return LocRange(HeadBB->getTerminator()->getDebugLoc());
636 
637   return LocRange();
638 }
639 
640 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
641 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
642 
643 LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
644   print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
645 }
646 #endif
647 
648 //===----------------------------------------------------------------------===//
649 // UnloopUpdater implementation
650 //
651 
652 namespace {
653 /// Find the new parent loop for all blocks within the "unloop" whose last
654 /// backedges has just been removed.
655 class UnloopUpdater {
656   Loop &Unloop;
657   LoopInfo *LI;
658 
659   LoopBlocksDFS DFS;
660 
661   // Map unloop's immediate subloops to their nearest reachable parents. Nested
662   // loops within these subloops will not change parents. However, an immediate
663   // subloop's new parent will be the nearest loop reachable from either its own
664   // exits *or* any of its nested loop's exits.
665   DenseMap<Loop *, Loop *> SubloopParents;
666 
667   // Flag the presence of an irreducible backedge whose destination is a block
668   // directly contained by the original unloop.
669   bool FoundIB;
670 
671 public:
672   UnloopUpdater(Loop *UL, LoopInfo *LInfo)
673       : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
674 
675   void updateBlockParents();
676 
677   void removeBlocksFromAncestors();
678 
679   void updateSubloopParents();
680 
681 protected:
682   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
683 };
684 } // end anonymous namespace
685 
686 /// Update the parent loop for all blocks that are directly contained within the
687 /// original "unloop".
688 void UnloopUpdater::updateBlockParents() {
689   if (Unloop.getNumBlocks()) {
690     // Perform a post order CFG traversal of all blocks within this loop,
691     // propagating the nearest loop from successors to predecessors.
692     LoopBlocksTraversal Traversal(DFS, LI);
693     for (BasicBlock *POI : Traversal) {
694 
695       Loop *L = LI->getLoopFor(POI);
696       Loop *NL = getNearestLoop(POI, L);
697 
698       if (NL != L) {
699         // For reducible loops, NL is now an ancestor of Unloop.
700         assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
701                "uninitialized successor");
702         LI->changeLoopFor(POI, NL);
703       } else {
704         // Or the current block is part of a subloop, in which case its parent
705         // is unchanged.
706         assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
707       }
708     }
709   }
710   // Each irreducible loop within the unloop induces a round of iteration using
711   // the DFS result cached by Traversal.
712   bool Changed = FoundIB;
713   for (unsigned NIters = 0; Changed; ++NIters) {
714     assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
715 
716     // Iterate over the postorder list of blocks, propagating the nearest loop
717     // from successors to predecessors as before.
718     Changed = false;
719     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
720                                    POE = DFS.endPostorder();
721          POI != POE; ++POI) {
722 
723       Loop *L = LI->getLoopFor(*POI);
724       Loop *NL = getNearestLoop(*POI, L);
725       if (NL != L) {
726         assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
727                "uninitialized successor");
728         LI->changeLoopFor(*POI, NL);
729         Changed = true;
730       }
731     }
732   }
733 }
734 
735 /// Remove unloop's blocks from all ancestors below their new parents.
736 void UnloopUpdater::removeBlocksFromAncestors() {
737   // Remove all unloop's blocks (including those in nested subloops) from
738   // ancestors below the new parent loop.
739   for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end();
740        BI != BE; ++BI) {
741     Loop *OuterParent = LI->getLoopFor(*BI);
742     if (Unloop.contains(OuterParent)) {
743       while (OuterParent->getParentLoop() != &Unloop)
744         OuterParent = OuterParent->getParentLoop();
745       OuterParent = SubloopParents[OuterParent];
746     }
747     // Remove blocks from former Ancestors except Unloop itself which will be
748     // deleted.
749     for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
750          OldParent = OldParent->getParentLoop()) {
751       assert(OldParent && "new loop is not an ancestor of the original");
752       OldParent->removeBlockFromLoop(*BI);
753     }
754   }
755 }
756 
757 /// Update the parent loop for all subloops directly nested within unloop.
758 void UnloopUpdater::updateSubloopParents() {
759   while (!Unloop.empty()) {
760     Loop *Subloop = *std::prev(Unloop.end());
761     Unloop.removeChildLoop(std::prev(Unloop.end()));
762 
763     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
764     if (Loop *Parent = SubloopParents[Subloop])
765       Parent->addChildLoop(Subloop);
766     else
767       LI->addTopLevelLoop(Subloop);
768   }
769 }
770 
771 /// Return the nearest parent loop among this block's successors. If a successor
772 /// is a subloop header, consider its parent to be the nearest parent of the
773 /// subloop's exits.
774 ///
775 /// For subloop blocks, simply update SubloopParents and return NULL.
776 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
777 
778   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
779   // is considered uninitialized.
780   Loop *NearLoop = BBLoop;
781 
782   Loop *Subloop = nullptr;
783   if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
784     Subloop = NearLoop;
785     // Find the subloop ancestor that is directly contained within Unloop.
786     while (Subloop->getParentLoop() != &Unloop) {
787       Subloop = Subloop->getParentLoop();
788       assert(Subloop && "subloop is not an ancestor of the original loop");
789     }
790     // Get the current nearest parent of the Subloop exits, initially Unloop.
791     NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
792   }
793 
794   succ_iterator I = succ_begin(BB), E = succ_end(BB);
795   if (I == E) {
796     assert(!Subloop && "subloop blocks must have a successor");
797     NearLoop = nullptr; // unloop blocks may now exit the function.
798   }
799   for (; I != E; ++I) {
800     if (*I == BB)
801       continue; // self loops are uninteresting
802 
803     Loop *L = LI->getLoopFor(*I);
804     if (L == &Unloop) {
805       // This successor has not been processed. This path must lead to an
806       // irreducible backedge.
807       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
808       FoundIB = true;
809     }
810     if (L != &Unloop && Unloop.contains(L)) {
811       // Successor is in a subloop.
812       if (Subloop)
813         continue; // Branching within subloops. Ignore it.
814 
815       // BB branches from the original into a subloop header.
816       assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
817 
818       // Get the current nearest parent of the Subloop's exits.
819       L = SubloopParents[L];
820       // L could be Unloop if the only exit was an irreducible backedge.
821     }
822     if (L == &Unloop) {
823       continue;
824     }
825     // Handle critical edges from Unloop into a sibling loop.
826     if (L && !L->contains(&Unloop)) {
827       L = L->getParentLoop();
828     }
829     // Remember the nearest parent loop among successors or subloop exits.
830     if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
831       NearLoop = L;
832   }
833   if (Subloop) {
834     SubloopParents[Subloop] = NearLoop;
835     return BBLoop;
836   }
837   return NearLoop;
838 }
839 
840 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
841 
842 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
843                           FunctionAnalysisManager::Invalidator &) {
844   // Check whether the analysis, all analyses on functions, or the function's
845   // CFG have been preserved.
846   auto PAC = PA.getChecker<LoopAnalysis>();
847   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
848            PAC.preservedSet<CFGAnalyses>());
849 }
850 
851 void LoopInfo::erase(Loop *Unloop) {
852   assert(!Unloop->isInvalid() && "Loop has already been erased!");
853 
854   auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
855 
856   // First handle the special case of no parent loop to simplify the algorithm.
857   if (!Unloop->getParentLoop()) {
858     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
859     for (Loop::block_iterator I = Unloop->block_begin(),
860                               E = Unloop->block_end();
861          I != E; ++I) {
862 
863       // Don't reparent blocks in subloops.
864       if (getLoopFor(*I) != Unloop)
865         continue;
866 
867       // Blocks no longer have a parent but are still referenced by Unloop until
868       // the Unloop object is deleted.
869       changeLoopFor(*I, nullptr);
870     }
871 
872     // Remove the loop from the top-level LoopInfo object.
873     for (iterator I = begin();; ++I) {
874       assert(I != end() && "Couldn't find loop");
875       if (*I == Unloop) {
876         removeLoop(I);
877         break;
878       }
879     }
880 
881     // Move all of the subloops to the top-level.
882     while (!Unloop->empty())
883       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
884 
885     return;
886   }
887 
888   // Update the parent loop for all blocks within the loop. Blocks within
889   // subloops will not change parents.
890   UnloopUpdater Updater(Unloop, this);
891   Updater.updateBlockParents();
892 
893   // Remove blocks from former ancestor loops.
894   Updater.removeBlocksFromAncestors();
895 
896   // Add direct subloops as children in their new parent loop.
897   Updater.updateSubloopParents();
898 
899   // Remove unloop from its parent loop.
900   Loop *ParentLoop = Unloop->getParentLoop();
901   for (Loop::iterator I = ParentLoop->begin();; ++I) {
902     assert(I != ParentLoop->end() && "Couldn't find loop");
903     if (*I == Unloop) {
904       ParentLoop->removeChildLoop(I);
905       break;
906     }
907   }
908 }
909 
910 AnalysisKey LoopAnalysis::Key;
911 
912 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
913   // FIXME: Currently we create a LoopInfo from scratch for every function.
914   // This may prove to be too wasteful due to deallocating and re-allocating
915   // memory each time for the underlying map and vector datastructures. At some
916   // point it may prove worthwhile to use a freelist and recycle LoopInfo
917   // objects. I don't want to add that kind of complexity until the scope of
918   // the problem is better understood.
919   LoopInfo LI;
920   LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
921   return LI;
922 }
923 
924 PreservedAnalyses LoopPrinterPass::run(Function &F,
925                                        FunctionAnalysisManager &AM) {
926   AM.getResult<LoopAnalysis>(F).print(OS);
927   return PreservedAnalyses::all();
928 }
929 
930 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
931 
932   if (forcePrintModuleIR()) {
933     // handling -print-module-scope
934     OS << Banner << " (loop: ";
935     L.getHeader()->printAsOperand(OS, false);
936     OS << ")\n";
937 
938     // printing whole module
939     OS << *L.getHeader()->getModule();
940     return;
941   }
942 
943   OS << Banner;
944 
945   auto *PreHeader = L.getLoopPreheader();
946   if (PreHeader) {
947     OS << "\n; Preheader:";
948     PreHeader->print(OS);
949     OS << "\n; Loop:";
950   }
951 
952   for (auto *Block : L.blocks())
953     if (Block)
954       Block->print(OS);
955     else
956       OS << "Printing <null> block";
957 
958   SmallVector<BasicBlock *, 8> ExitBlocks;
959   L.getExitBlocks(ExitBlocks);
960   if (!ExitBlocks.empty()) {
961     OS << "\n; Exit blocks";
962     for (auto *Block : ExitBlocks)
963       if (Block)
964         Block->print(OS);
965       else
966         OS << "Printing <null> block";
967   }
968 }
969 
970 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) {
971   // No loop metadata node, no loop properties.
972   if (!LoopID)
973     return nullptr;
974 
975   // First operand should refer to the metadata node itself, for legacy reasons.
976   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
977   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
978 
979   // Iterate over the metdata node operands and look for MDString metadata.
980   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
981     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
982     if (!MD || MD->getNumOperands() < 1)
983       continue;
984     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
985     if (!S)
986       continue;
987     // Return the operand node if MDString holds expected metadata.
988     if (Name.equals(S->getString()))
989       return MD;
990   }
991 
992   // Loop property not found.
993   return nullptr;
994 }
995 
996 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) {
997   return findOptionMDForLoopID(TheLoop->getLoopID(), Name);
998 }
999 
1000 bool llvm::isValidAsAccessGroup(MDNode *Node) {
1001   return Node->getNumOperands() == 0 && Node->isDistinct();
1002 }
1003 
1004 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context,
1005                                              MDNode *OrigLoopID,
1006                                              ArrayRef<StringRef> RemovePrefixes,
1007                                              ArrayRef<MDNode *> AddAttrs) {
1008   // First remove any existing loop metadata related to this transformation.
1009   SmallVector<Metadata *, 4> MDs;
1010 
1011   // Reserve first location for self reference to the LoopID metadata node.
1012   TempMDTuple TempNode = MDNode::getTemporary(Context, None);
1013   MDs.push_back(TempNode.get());
1014 
1015   // Remove metadata for the transformation that has been applied or that became
1016   // outdated.
1017   if (OrigLoopID) {
1018     for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) {
1019       bool IsVectorMetadata = false;
1020       Metadata *Op = OrigLoopID->getOperand(i);
1021       if (MDNode *MD = dyn_cast<MDNode>(Op)) {
1022         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1023         if (S)
1024           IsVectorMetadata =
1025               llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool {
1026                 return S->getString().startswith(Prefix);
1027               });
1028       }
1029       if (!IsVectorMetadata)
1030         MDs.push_back(Op);
1031     }
1032   }
1033 
1034   // Add metadata to avoid reapplying a transformation, such as
1035   // llvm.loop.unroll.disable and llvm.loop.isvectorized.
1036   MDs.append(AddAttrs.begin(), AddAttrs.end());
1037 
1038   MDNode *NewLoopID = MDNode::getDistinct(Context, MDs);
1039   // Replace the temporary node with a self-reference.
1040   NewLoopID->replaceOperandWith(0, NewLoopID);
1041   return NewLoopID;
1042 }
1043 
1044 //===----------------------------------------------------------------------===//
1045 // LoopInfo implementation
1046 //
1047 
1048 char LoopInfoWrapperPass::ID = 0;
1049 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
1050                       true, true)
1051 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1052 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
1053                     true, true)
1054 
1055 bool LoopInfoWrapperPass::runOnFunction(Function &) {
1056   releaseMemory();
1057   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
1058   return false;
1059 }
1060 
1061 void LoopInfoWrapperPass::verifyAnalysis() const {
1062   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
1063   // function each time verifyAnalysis is called is very expensive. The
1064   // -verify-loop-info option can enable this. In order to perform some
1065   // checking by default, LoopPass has been taught to call verifyLoop manually
1066   // during loop pass sequences.
1067   if (VerifyLoopInfo) {
1068     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1069     LI.verify(DT);
1070   }
1071 }
1072 
1073 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1074   AU.setPreservesAll();
1075   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1076 }
1077 
1078 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
1079   LI.print(OS);
1080 }
1081 
1082 PreservedAnalyses LoopVerifierPass::run(Function &F,
1083                                         FunctionAnalysisManager &AM) {
1084   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1085   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1086   LI.verify(DT);
1087   return PreservedAnalyses::all();
1088 }
1089 
1090 //===----------------------------------------------------------------------===//
1091 // LoopBlocksDFS implementation
1092 //
1093 
1094 /// Traverse the loop blocks and store the DFS result.
1095 /// Useful for clients that just want the final DFS result and don't need to
1096 /// visit blocks during the initial traversal.
1097 void LoopBlocksDFS::perform(LoopInfo *LI) {
1098   LoopBlocksTraversal Traversal(*this, LI);
1099   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
1100                                         POE = Traversal.end();
1101        POI != POE; ++POI)
1102     ;
1103 }
1104