1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the LoopInfo class that is used to identify natural loops 10 // and determine the loop depth of various nodes of the CFG. Note that the 11 // loops identified may actually be several natural loops that share the same 12 // header node... not just a single natural loop. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/LoopInfoImpl.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/Config/llvm-config.h" 24 #include "llvm/IR/CFG.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugLoc.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/IRPrintingPasses.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/PassManager.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 40 template class llvm::LoopBase<BasicBlock, Loop>; 41 template class llvm::LoopInfoBase<BasicBlock, Loop>; 42 43 // Always verify loopinfo if expensive checking is enabled. 44 #ifdef EXPENSIVE_CHECKS 45 bool llvm::VerifyLoopInfo = true; 46 #else 47 bool llvm::VerifyLoopInfo = false; 48 #endif 49 static cl::opt<bool, true> 50 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 51 cl::Hidden, cl::desc("Verify loop info (time consuming)")); 52 53 //===----------------------------------------------------------------------===// 54 // Loop implementation 55 // 56 57 bool Loop::isLoopInvariant(const Value *V) const { 58 if (const Instruction *I = dyn_cast<Instruction>(V)) 59 return !contains(I); 60 return true; // All non-instructions are loop invariant 61 } 62 63 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 64 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 65 } 66 67 bool Loop::makeLoopInvariant(Value *V, bool &Changed, 68 Instruction *InsertPt) const { 69 if (Instruction *I = dyn_cast<Instruction>(V)) 70 return makeLoopInvariant(I, Changed, InsertPt); 71 return true; // All non-instructions are loop-invariant. 72 } 73 74 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 75 Instruction *InsertPt) const { 76 // Test if the value is already loop-invariant. 77 if (isLoopInvariant(I)) 78 return true; 79 if (!isSafeToSpeculativelyExecute(I)) 80 return false; 81 if (I->mayReadFromMemory()) 82 return false; 83 // EH block instructions are immobile. 84 if (I->isEHPad()) 85 return false; 86 // Determine the insertion point, unless one was given. 87 if (!InsertPt) { 88 BasicBlock *Preheader = getLoopPreheader(); 89 // Without a preheader, hoisting is not feasible. 90 if (!Preheader) 91 return false; 92 InsertPt = Preheader->getTerminator(); 93 } 94 // Don't hoist instructions with loop-variant operands. 95 for (Value *Operand : I->operands()) 96 if (!makeLoopInvariant(Operand, Changed, InsertPt)) 97 return false; 98 99 // Hoist. 100 I->moveBefore(InsertPt); 101 102 // There is possibility of hoisting this instruction above some arbitrary 103 // condition. Any metadata defined on it can be control dependent on this 104 // condition. Conservatively strip it here so that we don't give any wrong 105 // information to the optimizer. 106 I->dropUnknownNonDebugMetadata(); 107 108 Changed = true; 109 return true; 110 } 111 112 bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming, 113 BasicBlock *&Backedge) const { 114 BasicBlock *H = getHeader(); 115 116 Incoming = nullptr; 117 Backedge = nullptr; 118 pred_iterator PI = pred_begin(H); 119 assert(PI != pred_end(H) && "Loop must have at least one backedge!"); 120 Backedge = *PI++; 121 if (PI == pred_end(H)) 122 return false; // dead loop 123 Incoming = *PI++; 124 if (PI != pred_end(H)) 125 return false; // multiple backedges? 126 127 if (contains(Incoming)) { 128 if (contains(Backedge)) 129 return false; 130 std::swap(Incoming, Backedge); 131 } else if (!contains(Backedge)) 132 return false; 133 134 assert(Incoming && Backedge && "expected non-null incoming and backedges"); 135 return true; 136 } 137 138 PHINode *Loop::getCanonicalInductionVariable() const { 139 BasicBlock *H = getHeader(); 140 141 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 142 if (!getIncomingAndBackEdge(Incoming, Backedge)) 143 return nullptr; 144 145 // Loop over all of the PHI nodes, looking for a canonical indvar. 146 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 147 PHINode *PN = cast<PHINode>(I); 148 if (ConstantInt *CI = 149 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 150 if (CI->isZero()) 151 if (Instruction *Inc = 152 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 153 if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) 154 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 155 if (CI->isOne()) 156 return PN; 157 } 158 return nullptr; 159 } 160 161 // Check that 'BB' doesn't have any uses outside of the 'L' 162 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, 163 DominatorTree &DT) { 164 for (const Instruction &I : BB) { 165 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 166 // optimizations, so for the purposes of considered LCSSA form, we 167 // can ignore them. 168 if (I.getType()->isTokenTy()) 169 continue; 170 171 for (const Use &U : I.uses()) { 172 const Instruction *UI = cast<Instruction>(U.getUser()); 173 const BasicBlock *UserBB = UI->getParent(); 174 if (const PHINode *P = dyn_cast<PHINode>(UI)) 175 UserBB = P->getIncomingBlock(U); 176 177 // Check the current block, as a fast-path, before checking whether 178 // the use is anywhere in the loop. Most values are used in the same 179 // block they are defined in. Also, blocks not reachable from the 180 // entry are special; uses in them don't need to go through PHIs. 181 if (UserBB != &BB && !L.contains(UserBB) && 182 DT.isReachableFromEntry(UserBB)) 183 return false; 184 } 185 } 186 return true; 187 } 188 189 bool Loop::isLCSSAForm(DominatorTree &DT) const { 190 // For each block we check that it doesn't have any uses outside of this loop. 191 return all_of(this->blocks(), [&](const BasicBlock *BB) { 192 return isBlockInLCSSAForm(*this, *BB, DT); 193 }); 194 } 195 196 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const { 197 // For each block we check that it doesn't have any uses outside of its 198 // innermost loop. This process will transitively guarantee that the current 199 // loop and all of the nested loops are in LCSSA form. 200 return all_of(this->blocks(), [&](const BasicBlock *BB) { 201 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT); 202 }); 203 } 204 205 bool Loop::isLoopSimplifyForm() const { 206 // Normal-form loops have a preheader, a single backedge, and all of their 207 // exits have all their predecessors inside the loop. 208 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 209 } 210 211 // Routines that reform the loop CFG and split edges often fail on indirectbr. 212 bool Loop::isSafeToClone() const { 213 // Return false if any loop blocks contain indirectbrs, or there are any calls 214 // to noduplicate functions. 215 for (BasicBlock *BB : this->blocks()) { 216 if (isa<IndirectBrInst>(BB->getTerminator())) 217 return false; 218 219 for (Instruction &I : *BB) 220 if (auto CS = CallSite(&I)) 221 if (CS.cannotDuplicate()) 222 return false; 223 } 224 return true; 225 } 226 227 MDNode *Loop::getLoopID() const { 228 MDNode *LoopID = nullptr; 229 230 // Go through the latch blocks and check the terminator for the metadata. 231 SmallVector<BasicBlock *, 4> LatchesBlocks; 232 getLoopLatches(LatchesBlocks); 233 for (BasicBlock *BB : LatchesBlocks) { 234 Instruction *TI = BB->getTerminator(); 235 MDNode *MD = TI->getMetadata(LLVMContext::MD_loop); 236 237 if (!MD) 238 return nullptr; 239 240 if (!LoopID) 241 LoopID = MD; 242 else if (MD != LoopID) 243 return nullptr; 244 } 245 if (!LoopID || LoopID->getNumOperands() == 0 || 246 LoopID->getOperand(0) != LoopID) 247 return nullptr; 248 return LoopID; 249 } 250 251 void Loop::setLoopID(MDNode *LoopID) const { 252 assert((!LoopID || LoopID->getNumOperands() > 0) && 253 "Loop ID needs at least one operand"); 254 assert((!LoopID || LoopID->getOperand(0) == LoopID) && 255 "Loop ID should refer to itself"); 256 257 SmallVector<BasicBlock *, 4> LoopLatches; 258 getLoopLatches(LoopLatches); 259 for (BasicBlock *BB : LoopLatches) 260 BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); 261 } 262 263 void Loop::setLoopAlreadyUnrolled() { 264 LLVMContext &Context = getHeader()->getContext(); 265 266 MDNode *DisableUnrollMD = 267 MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable")); 268 MDNode *LoopID = getLoopID(); 269 MDNode *NewLoopID = makePostTransformationMetadata( 270 Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD}); 271 setLoopID(NewLoopID); 272 } 273 274 bool Loop::isAnnotatedParallel() const { 275 MDNode *DesiredLoopIdMetadata = getLoopID(); 276 277 if (!DesiredLoopIdMetadata) 278 return false; 279 280 MDNode *ParallelAccesses = 281 findOptionMDForLoop(this, "llvm.loop.parallel_accesses"); 282 SmallPtrSet<MDNode *, 4> 283 ParallelAccessGroups; // For scalable 'contains' check. 284 if (ParallelAccesses) { 285 for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) { 286 MDNode *AccGroup = cast<MDNode>(MD.get()); 287 assert(isValidAsAccessGroup(AccGroup) && 288 "List item must be an access group"); 289 ParallelAccessGroups.insert(AccGroup); 290 } 291 } 292 293 // The loop branch contains the parallel loop metadata. In order to ensure 294 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 295 // dependencies (thus converted the loop back to a sequential loop), check 296 // that all the memory instructions in the loop belong to an access group that 297 // is parallel to this loop. 298 for (BasicBlock *BB : this->blocks()) { 299 for (Instruction &I : *BB) { 300 if (!I.mayReadOrWriteMemory()) 301 continue; 302 303 if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) { 304 auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool { 305 if (AG->getNumOperands() == 0) { 306 assert(isValidAsAccessGroup(AG) && "Item must be an access group"); 307 return ParallelAccessGroups.count(AG); 308 } 309 310 for (const MDOperand &AccessListItem : AG->operands()) { 311 MDNode *AccGroup = cast<MDNode>(AccessListItem.get()); 312 assert(isValidAsAccessGroup(AccGroup) && 313 "List item must be an access group"); 314 if (ParallelAccessGroups.count(AccGroup)) 315 return true; 316 } 317 return false; 318 }; 319 320 if (ContainsAccessGroup(AccessGroup)) 321 continue; 322 } 323 324 // The memory instruction can refer to the loop identifier metadata 325 // directly or indirectly through another list metadata (in case of 326 // nested parallel loops). The loop identifier metadata refers to 327 // itself so we can check both cases with the same routine. 328 MDNode *LoopIdMD = 329 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 330 331 if (!LoopIdMD) 332 return false; 333 334 bool LoopIdMDFound = false; 335 for (const MDOperand &MDOp : LoopIdMD->operands()) { 336 if (MDOp == DesiredLoopIdMetadata) { 337 LoopIdMDFound = true; 338 break; 339 } 340 } 341 342 if (!LoopIdMDFound) 343 return false; 344 } 345 } 346 return true; 347 } 348 349 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } 350 351 Loop::LocRange Loop::getLocRange() const { 352 // If we have a debug location in the loop ID, then use it. 353 if (MDNode *LoopID = getLoopID()) { 354 DebugLoc Start; 355 // We use the first DebugLoc in the header as the start location of the loop 356 // and if there is a second DebugLoc in the header we use it as end location 357 // of the loop. 358 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 359 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) { 360 if (!Start) 361 Start = DebugLoc(L); 362 else 363 return LocRange(Start, DebugLoc(L)); 364 } 365 } 366 367 if (Start) 368 return LocRange(Start); 369 } 370 371 // Try the pre-header first. 372 if (BasicBlock *PHeadBB = getLoopPreheader()) 373 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) 374 return LocRange(DL); 375 376 // If we have no pre-header or there are no instructions with debug 377 // info in it, try the header. 378 if (BasicBlock *HeadBB = getHeader()) 379 return LocRange(HeadBB->getTerminator()->getDebugLoc()); 380 381 return LocRange(); 382 } 383 384 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 385 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } 386 387 LLVM_DUMP_METHOD void Loop::dumpVerbose() const { 388 print(dbgs(), /*Depth=*/0, /*Verbose=*/true); 389 } 390 #endif 391 392 //===----------------------------------------------------------------------===// 393 // UnloopUpdater implementation 394 // 395 396 namespace { 397 /// Find the new parent loop for all blocks within the "unloop" whose last 398 /// backedges has just been removed. 399 class UnloopUpdater { 400 Loop &Unloop; 401 LoopInfo *LI; 402 403 LoopBlocksDFS DFS; 404 405 // Map unloop's immediate subloops to their nearest reachable parents. Nested 406 // loops within these subloops will not change parents. However, an immediate 407 // subloop's new parent will be the nearest loop reachable from either its own 408 // exits *or* any of its nested loop's exits. 409 DenseMap<Loop *, Loop *> SubloopParents; 410 411 // Flag the presence of an irreducible backedge whose destination is a block 412 // directly contained by the original unloop. 413 bool FoundIB; 414 415 public: 416 UnloopUpdater(Loop *UL, LoopInfo *LInfo) 417 : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} 418 419 void updateBlockParents(); 420 421 void removeBlocksFromAncestors(); 422 423 void updateSubloopParents(); 424 425 protected: 426 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 427 }; 428 } // end anonymous namespace 429 430 /// Update the parent loop for all blocks that are directly contained within the 431 /// original "unloop". 432 void UnloopUpdater::updateBlockParents() { 433 if (Unloop.getNumBlocks()) { 434 // Perform a post order CFG traversal of all blocks within this loop, 435 // propagating the nearest loop from successors to predecessors. 436 LoopBlocksTraversal Traversal(DFS, LI); 437 for (BasicBlock *POI : Traversal) { 438 439 Loop *L = LI->getLoopFor(POI); 440 Loop *NL = getNearestLoop(POI, L); 441 442 if (NL != L) { 443 // For reducible loops, NL is now an ancestor of Unloop. 444 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && 445 "uninitialized successor"); 446 LI->changeLoopFor(POI, NL); 447 } else { 448 // Or the current block is part of a subloop, in which case its parent 449 // is unchanged. 450 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); 451 } 452 } 453 } 454 // Each irreducible loop within the unloop induces a round of iteration using 455 // the DFS result cached by Traversal. 456 bool Changed = FoundIB; 457 for (unsigned NIters = 0; Changed; ++NIters) { 458 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); 459 460 // Iterate over the postorder list of blocks, propagating the nearest loop 461 // from successors to predecessors as before. 462 Changed = false; 463 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 464 POE = DFS.endPostorder(); 465 POI != POE; ++POI) { 466 467 Loop *L = LI->getLoopFor(*POI); 468 Loop *NL = getNearestLoop(*POI, L); 469 if (NL != L) { 470 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && 471 "uninitialized successor"); 472 LI->changeLoopFor(*POI, NL); 473 Changed = true; 474 } 475 } 476 } 477 } 478 479 /// Remove unloop's blocks from all ancestors below their new parents. 480 void UnloopUpdater::removeBlocksFromAncestors() { 481 // Remove all unloop's blocks (including those in nested subloops) from 482 // ancestors below the new parent loop. 483 for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end(); 484 BI != BE; ++BI) { 485 Loop *OuterParent = LI->getLoopFor(*BI); 486 if (Unloop.contains(OuterParent)) { 487 while (OuterParent->getParentLoop() != &Unloop) 488 OuterParent = OuterParent->getParentLoop(); 489 OuterParent = SubloopParents[OuterParent]; 490 } 491 // Remove blocks from former Ancestors except Unloop itself which will be 492 // deleted. 493 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; 494 OldParent = OldParent->getParentLoop()) { 495 assert(OldParent && "new loop is not an ancestor of the original"); 496 OldParent->removeBlockFromLoop(*BI); 497 } 498 } 499 } 500 501 /// Update the parent loop for all subloops directly nested within unloop. 502 void UnloopUpdater::updateSubloopParents() { 503 while (!Unloop.empty()) { 504 Loop *Subloop = *std::prev(Unloop.end()); 505 Unloop.removeChildLoop(std::prev(Unloop.end())); 506 507 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 508 if (Loop *Parent = SubloopParents[Subloop]) 509 Parent->addChildLoop(Subloop); 510 else 511 LI->addTopLevelLoop(Subloop); 512 } 513 } 514 515 /// Return the nearest parent loop among this block's successors. If a successor 516 /// is a subloop header, consider its parent to be the nearest parent of the 517 /// subloop's exits. 518 /// 519 /// For subloop blocks, simply update SubloopParents and return NULL. 520 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 521 522 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 523 // is considered uninitialized. 524 Loop *NearLoop = BBLoop; 525 526 Loop *Subloop = nullptr; 527 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { 528 Subloop = NearLoop; 529 // Find the subloop ancestor that is directly contained within Unloop. 530 while (Subloop->getParentLoop() != &Unloop) { 531 Subloop = Subloop->getParentLoop(); 532 assert(Subloop && "subloop is not an ancestor of the original loop"); 533 } 534 // Get the current nearest parent of the Subloop exits, initially Unloop. 535 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; 536 } 537 538 succ_iterator I = succ_begin(BB), E = succ_end(BB); 539 if (I == E) { 540 assert(!Subloop && "subloop blocks must have a successor"); 541 NearLoop = nullptr; // unloop blocks may now exit the function. 542 } 543 for (; I != E; ++I) { 544 if (*I == BB) 545 continue; // self loops are uninteresting 546 547 Loop *L = LI->getLoopFor(*I); 548 if (L == &Unloop) { 549 // This successor has not been processed. This path must lead to an 550 // irreducible backedge. 551 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 552 FoundIB = true; 553 } 554 if (L != &Unloop && Unloop.contains(L)) { 555 // Successor is in a subloop. 556 if (Subloop) 557 continue; // Branching within subloops. Ignore it. 558 559 // BB branches from the original into a subloop header. 560 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); 561 562 // Get the current nearest parent of the Subloop's exits. 563 L = SubloopParents[L]; 564 // L could be Unloop if the only exit was an irreducible backedge. 565 } 566 if (L == &Unloop) { 567 continue; 568 } 569 // Handle critical edges from Unloop into a sibling loop. 570 if (L && !L->contains(&Unloop)) { 571 L = L->getParentLoop(); 572 } 573 // Remember the nearest parent loop among successors or subloop exits. 574 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) 575 NearLoop = L; 576 } 577 if (Subloop) { 578 SubloopParents[Subloop] = NearLoop; 579 return BBLoop; 580 } 581 return NearLoop; 582 } 583 584 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); } 585 586 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, 587 FunctionAnalysisManager::Invalidator &) { 588 // Check whether the analysis, all analyses on functions, or the function's 589 // CFG have been preserved. 590 auto PAC = PA.getChecker<LoopAnalysis>(); 591 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 592 PAC.preservedSet<CFGAnalyses>()); 593 } 594 595 void LoopInfo::erase(Loop *Unloop) { 596 assert(!Unloop->isInvalid() && "Loop has already been erased!"); 597 598 auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); 599 600 // First handle the special case of no parent loop to simplify the algorithm. 601 if (!Unloop->getParentLoop()) { 602 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 603 for (Loop::block_iterator I = Unloop->block_begin(), 604 E = Unloop->block_end(); 605 I != E; ++I) { 606 607 // Don't reparent blocks in subloops. 608 if (getLoopFor(*I) != Unloop) 609 continue; 610 611 // Blocks no longer have a parent but are still referenced by Unloop until 612 // the Unloop object is deleted. 613 changeLoopFor(*I, nullptr); 614 } 615 616 // Remove the loop from the top-level LoopInfo object. 617 for (iterator I = begin();; ++I) { 618 assert(I != end() && "Couldn't find loop"); 619 if (*I == Unloop) { 620 removeLoop(I); 621 break; 622 } 623 } 624 625 // Move all of the subloops to the top-level. 626 while (!Unloop->empty()) 627 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 628 629 return; 630 } 631 632 // Update the parent loop for all blocks within the loop. Blocks within 633 // subloops will not change parents. 634 UnloopUpdater Updater(Unloop, this); 635 Updater.updateBlockParents(); 636 637 // Remove blocks from former ancestor loops. 638 Updater.removeBlocksFromAncestors(); 639 640 // Add direct subloops as children in their new parent loop. 641 Updater.updateSubloopParents(); 642 643 // Remove unloop from its parent loop. 644 Loop *ParentLoop = Unloop->getParentLoop(); 645 for (Loop::iterator I = ParentLoop->begin();; ++I) { 646 assert(I != ParentLoop->end() && "Couldn't find loop"); 647 if (*I == Unloop) { 648 ParentLoop->removeChildLoop(I); 649 break; 650 } 651 } 652 } 653 654 AnalysisKey LoopAnalysis::Key; 655 656 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 657 // FIXME: Currently we create a LoopInfo from scratch for every function. 658 // This may prove to be too wasteful due to deallocating and re-allocating 659 // memory each time for the underlying map and vector datastructures. At some 660 // point it may prove worthwhile to use a freelist and recycle LoopInfo 661 // objects. I don't want to add that kind of complexity until the scope of 662 // the problem is better understood. 663 LoopInfo LI; 664 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); 665 return LI; 666 } 667 668 PreservedAnalyses LoopPrinterPass::run(Function &F, 669 FunctionAnalysisManager &AM) { 670 AM.getResult<LoopAnalysis>(F).print(OS); 671 return PreservedAnalyses::all(); 672 } 673 674 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { 675 676 if (forcePrintModuleIR()) { 677 // handling -print-module-scope 678 OS << Banner << " (loop: "; 679 L.getHeader()->printAsOperand(OS, false); 680 OS << ")\n"; 681 682 // printing whole module 683 OS << *L.getHeader()->getModule(); 684 return; 685 } 686 687 OS << Banner; 688 689 auto *PreHeader = L.getLoopPreheader(); 690 if (PreHeader) { 691 OS << "\n; Preheader:"; 692 PreHeader->print(OS); 693 OS << "\n; Loop:"; 694 } 695 696 for (auto *Block : L.blocks()) 697 if (Block) 698 Block->print(OS); 699 else 700 OS << "Printing <null> block"; 701 702 SmallVector<BasicBlock *, 8> ExitBlocks; 703 L.getExitBlocks(ExitBlocks); 704 if (!ExitBlocks.empty()) { 705 OS << "\n; Exit blocks"; 706 for (auto *Block : ExitBlocks) 707 if (Block) 708 Block->print(OS); 709 else 710 OS << "Printing <null> block"; 711 } 712 } 713 714 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) { 715 // No loop metadata node, no loop properties. 716 if (!LoopID) 717 return nullptr; 718 719 // First operand should refer to the metadata node itself, for legacy reasons. 720 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 721 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 722 723 // Iterate over the metdata node operands and look for MDString metadata. 724 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 725 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 726 if (!MD || MD->getNumOperands() < 1) 727 continue; 728 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 729 if (!S) 730 continue; 731 // Return the operand node if MDString holds expected metadata. 732 if (Name.equals(S->getString())) 733 return MD; 734 } 735 736 // Loop property not found. 737 return nullptr; 738 } 739 740 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) { 741 return findOptionMDForLoopID(TheLoop->getLoopID(), Name); 742 } 743 744 bool llvm::isValidAsAccessGroup(MDNode *Node) { 745 return Node->getNumOperands() == 0 && Node->isDistinct(); 746 } 747 748 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context, 749 MDNode *OrigLoopID, 750 ArrayRef<StringRef> RemovePrefixes, 751 ArrayRef<MDNode *> AddAttrs) { 752 // First remove any existing loop metadata related to this transformation. 753 SmallVector<Metadata *, 4> MDs; 754 755 // Reserve first location for self reference to the LoopID metadata node. 756 TempMDTuple TempNode = MDNode::getTemporary(Context, None); 757 MDs.push_back(TempNode.get()); 758 759 // Remove metadata for the transformation that has been applied or that became 760 // outdated. 761 if (OrigLoopID) { 762 for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) { 763 bool IsVectorMetadata = false; 764 Metadata *Op = OrigLoopID->getOperand(i); 765 if (MDNode *MD = dyn_cast<MDNode>(Op)) { 766 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 767 if (S) 768 IsVectorMetadata = 769 llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool { 770 return S->getString().startswith(Prefix); 771 }); 772 } 773 if (!IsVectorMetadata) 774 MDs.push_back(Op); 775 } 776 } 777 778 // Add metadata to avoid reapplying a transformation, such as 779 // llvm.loop.unroll.disable and llvm.loop.isvectorized. 780 MDs.append(AddAttrs.begin(), AddAttrs.end()); 781 782 MDNode *NewLoopID = MDNode::getDistinct(Context, MDs); 783 // Replace the temporary node with a self-reference. 784 NewLoopID->replaceOperandWith(0, NewLoopID); 785 return NewLoopID; 786 } 787 788 //===----------------------------------------------------------------------===// 789 // LoopInfo implementation 790 // 791 792 char LoopInfoWrapperPass::ID = 0; 793 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 794 true, true) 795 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 796 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 797 true, true) 798 799 bool LoopInfoWrapperPass::runOnFunction(Function &) { 800 releaseMemory(); 801 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 802 return false; 803 } 804 805 void LoopInfoWrapperPass::verifyAnalysis() const { 806 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 807 // function each time verifyAnalysis is called is very expensive. The 808 // -verify-loop-info option can enable this. In order to perform some 809 // checking by default, LoopPass has been taught to call verifyLoop manually 810 // during loop pass sequences. 811 if (VerifyLoopInfo) { 812 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 813 LI.verify(DT); 814 } 815 } 816 817 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 818 AU.setPreservesAll(); 819 AU.addRequired<DominatorTreeWrapperPass>(); 820 } 821 822 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 823 LI.print(OS); 824 } 825 826 PreservedAnalyses LoopVerifierPass::run(Function &F, 827 FunctionAnalysisManager &AM) { 828 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 829 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 830 LI.verify(DT); 831 return PreservedAnalyses::all(); 832 } 833 834 //===----------------------------------------------------------------------===// 835 // LoopBlocksDFS implementation 836 // 837 838 /// Traverse the loop blocks and store the DFS result. 839 /// Useful for clients that just want the final DFS result and don't need to 840 /// visit blocks during the initial traversal. 841 void LoopBlocksDFS::perform(LoopInfo *LI) { 842 LoopBlocksTraversal Traversal(*this, LI); 843 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 844 POE = Traversal.end(); 845 POI != POE; ++POI) 846 ; 847 } 848