1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG.  Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/LoopInfoImpl.h"
21 #include "llvm/Analysis/LoopIterator.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/IR/PassManager.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm>
34 using namespace llvm;
35 
36 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
37 template class llvm::LoopBase<BasicBlock, Loop>;
38 template class llvm::LoopInfoBase<BasicBlock, Loop>;
39 
40 // Always verify loopinfo if expensive checking is enabled.
41 #ifdef XDEBUG
42 static bool VerifyLoopInfo = true;
43 #else
44 static bool VerifyLoopInfo = false;
45 #endif
46 static cl::opt<bool,true>
47 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
48                 cl::desc("Verify loop info (time consuming)"));
49 
50 //===----------------------------------------------------------------------===//
51 // Loop implementation
52 //
53 
54 bool Loop::isLoopInvariant(const Value *V) const {
55   if (const Instruction *I = dyn_cast<Instruction>(V))
56     return !contains(I);
57   return true;  // All non-instructions are loop invariant
58 }
59 
60 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
61   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
62 }
63 
64 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
65                              Instruction *InsertPt) const {
66   if (Instruction *I = dyn_cast<Instruction>(V))
67     return makeLoopInvariant(I, Changed, InsertPt);
68   return true;  // All non-instructions are loop-invariant.
69 }
70 
71 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
72                              Instruction *InsertPt) const {
73   // Test if the value is already loop-invariant.
74   if (isLoopInvariant(I))
75     return true;
76   if (!isSafeToSpeculativelyExecute(I))
77     return false;
78   if (I->mayReadFromMemory())
79     return false;
80   // EH block instructions are immobile.
81   if (I->isEHPad())
82     return false;
83   // Determine the insertion point, unless one was given.
84   if (!InsertPt) {
85     BasicBlock *Preheader = getLoopPreheader();
86     // Without a preheader, hoisting is not feasible.
87     if (!Preheader)
88       return false;
89     InsertPt = Preheader->getTerminator();
90   }
91   // Don't hoist instructions with loop-variant operands.
92   for (Value *Operand : I->operands())
93     if (!makeLoopInvariant(Operand, Changed, InsertPt))
94       return false;
95 
96   // Hoist.
97   I->moveBefore(InsertPt);
98 
99   // There is possibility of hoisting this instruction above some arbitrary
100   // condition. Any metadata defined on it can be control dependent on this
101   // condition. Conservatively strip it here so that we don't give any wrong
102   // information to the optimizer.
103   I->dropUnknownNonDebugMetadata();
104 
105   Changed = true;
106   return true;
107 }
108 
109 PHINode *Loop::getCanonicalInductionVariable() const {
110   BasicBlock *H = getHeader();
111 
112   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
113   pred_iterator PI = pred_begin(H);
114   assert(PI != pred_end(H) &&
115          "Loop must have at least one backedge!");
116   Backedge = *PI++;
117   if (PI == pred_end(H)) return nullptr;  // dead loop
118   Incoming = *PI++;
119   if (PI != pred_end(H)) return nullptr;  // multiple backedges?
120 
121   if (contains(Incoming)) {
122     if (contains(Backedge))
123       return nullptr;
124     std::swap(Incoming, Backedge);
125   } else if (!contains(Backedge))
126     return nullptr;
127 
128   // Loop over all of the PHI nodes, looking for a canonical indvar.
129   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
130     PHINode *PN = cast<PHINode>(I);
131     if (ConstantInt *CI =
132         dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
133       if (CI->isNullValue())
134         if (Instruction *Inc =
135             dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
136           if (Inc->getOpcode() == Instruction::Add &&
137                 Inc->getOperand(0) == PN)
138             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
139               if (CI->equalsInt(1))
140                 return PN;
141   }
142   return nullptr;
143 }
144 
145 bool Loop::isLCSSAForm(DominatorTree &DT) const {
146   for (BasicBlock *BB : this->blocks()) {
147     for (Instruction &I : *BB) {
148       // Tokens can't be used in PHI nodes and live-out tokens prevent loop
149       // optimizations, so for the purposes of considered LCSSA form, we
150       // can ignore them.
151       if (I.getType()->isTokenTy())
152         continue;
153 
154       for (Use &U : I.uses()) {
155         Instruction *UI = cast<Instruction>(U.getUser());
156         BasicBlock *UserBB = UI->getParent();
157         if (PHINode *P = dyn_cast<PHINode>(UI))
158           UserBB = P->getIncomingBlock(U);
159 
160         // Check the current block, as a fast-path, before checking whether
161         // the use is anywhere in the loop.  Most values are used in the same
162         // block they are defined in.  Also, blocks not reachable from the
163         // entry are special; uses in them don't need to go through PHIs.
164         if (UserBB != BB &&
165             !contains(UserBB) &&
166             DT.isReachableFromEntry(UserBB))
167           return false;
168       }
169     }
170   }
171 
172   return true;
173 }
174 
175 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT) const {
176   if (!isLCSSAForm(DT))
177     return false;
178 
179   return std::all_of(begin(), end(), [&](const Loop *L) {
180     return L->isRecursivelyLCSSAForm(DT);
181   });
182 }
183 
184 bool Loop::isLoopSimplifyForm() const {
185   // Normal-form loops have a preheader, a single backedge, and all of their
186   // exits have all their predecessors inside the loop.
187   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
188 }
189 
190 // Routines that reform the loop CFG and split edges often fail on indirectbr.
191 bool Loop::isSafeToClone() const {
192   // Return false if any loop blocks contain indirectbrs, or there are any calls
193   // to noduplicate functions.
194   for (BasicBlock *BB : this->blocks()) {
195     if (isa<IndirectBrInst>(BB->getTerminator()))
196       return false;
197 
198     if (const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
199       if (II->cannotDuplicate())
200         return false;
201       // Return false if any loop blocks contain invokes to EH-pads other than
202       // landingpads;  we don't know how to split those edges yet.
203       auto *FirstNonPHI = II->getUnwindDest()->getFirstNonPHI();
204       if (FirstNonPHI->isEHPad() && !isa<LandingPadInst>(FirstNonPHI))
205         return false;
206     }
207     for (Instruction &I : *BB) {
208       if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
209         if (CI->cannotDuplicate())
210           return false;
211       }
212       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
213         return false;
214     }
215   }
216   return true;
217 }
218 
219 MDNode *Loop::getLoopID() const {
220   MDNode *LoopID = nullptr;
221   if (isLoopSimplifyForm()) {
222     LoopID = getLoopLatch()->getTerminator()->getMetadata(LLVMContext::MD_loop);
223   } else {
224     // Go through each predecessor of the loop header and check the
225     // terminator for the metadata.
226     BasicBlock *H = getHeader();
227     for (BasicBlock *BB : this->blocks()) {
228       TerminatorInst *TI = BB->getTerminator();
229       MDNode *MD = nullptr;
230 
231       // Check if this terminator branches to the loop header.
232       for (BasicBlock *Successor : TI->successors()) {
233         if (Successor == H) {
234           MD = TI->getMetadata(LLVMContext::MD_loop);
235           break;
236         }
237       }
238       if (!MD)
239         return nullptr;
240 
241       if (!LoopID)
242         LoopID = MD;
243       else if (MD != LoopID)
244         return nullptr;
245     }
246   }
247   if (!LoopID || LoopID->getNumOperands() == 0 ||
248       LoopID->getOperand(0) != LoopID)
249     return nullptr;
250   return LoopID;
251 }
252 
253 void Loop::setLoopID(MDNode *LoopID) const {
254   assert(LoopID && "Loop ID should not be null");
255   assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
256   assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
257 
258   if (isLoopSimplifyForm()) {
259     getLoopLatch()->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
260     return;
261   }
262 
263   BasicBlock *H = getHeader();
264   for (BasicBlock *BB : this->blocks()) {
265     TerminatorInst *TI = BB->getTerminator();
266     for (BasicBlock *Successor : TI->successors()) {
267       if (Successor == H)
268         TI->setMetadata(LLVMContext::MD_loop, LoopID);
269     }
270   }
271 }
272 
273 bool Loop::isAnnotatedParallel() const {
274   MDNode *DesiredLoopIdMetadata = getLoopID();
275 
276   if (!DesiredLoopIdMetadata)
277       return false;
278 
279   // The loop branch contains the parallel loop metadata. In order to ensure
280   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
281   // dependencies (thus converted the loop back to a sequential loop), check
282   // that all the memory instructions in the loop contain parallelism metadata
283   // that point to the same unique "loop id metadata" the loop branch does.
284   for (BasicBlock *BB : this->blocks()) {
285     for (Instruction &I : *BB) {
286       if (!I.mayReadOrWriteMemory())
287         continue;
288 
289       // The memory instruction can refer to the loop identifier metadata
290       // directly or indirectly through another list metadata (in case of
291       // nested parallel loops). The loop identifier metadata refers to
292       // itself so we can check both cases with the same routine.
293       MDNode *LoopIdMD =
294           I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
295 
296       if (!LoopIdMD)
297         return false;
298 
299       bool LoopIdMDFound = false;
300       for (const MDOperand &MDOp : LoopIdMD->operands()) {
301         if (MDOp == DesiredLoopIdMetadata) {
302           LoopIdMDFound = true;
303           break;
304         }
305       }
306 
307       if (!LoopIdMDFound)
308         return false;
309     }
310   }
311   return true;
312 }
313 
314 bool Loop::hasDedicatedExits() const {
315   // Each predecessor of each exit block of a normal loop is contained
316   // within the loop.
317   SmallVector<BasicBlock *, 4> ExitBlocks;
318   getExitBlocks(ExitBlocks);
319   for (BasicBlock *BB : ExitBlocks)
320     for (BasicBlock *Predecessor : predecessors(BB))
321       if (!contains(Predecessor))
322         return false;
323   // All the requirements are met.
324   return true;
325 }
326 
327 void
328 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
329   assert(hasDedicatedExits() &&
330          "getUniqueExitBlocks assumes the loop has canonical form exits!");
331 
332   SmallVector<BasicBlock *, 32> SwitchExitBlocks;
333   for (BasicBlock *BB : this->blocks()) {
334     SwitchExitBlocks.clear();
335     for (BasicBlock *Successor : successors(BB)) {
336       // If block is inside the loop then it is not an exit block.
337       if (contains(Successor))
338         continue;
339 
340       pred_iterator PI = pred_begin(Successor);
341       BasicBlock *FirstPred = *PI;
342 
343       // If current basic block is this exit block's first predecessor
344       // then only insert exit block in to the output ExitBlocks vector.
345       // This ensures that same exit block is not inserted twice into
346       // ExitBlocks vector.
347       if (BB != FirstPred)
348         continue;
349 
350       // If a terminator has more then two successors, for example SwitchInst,
351       // then it is possible that there are multiple edges from current block
352       // to one exit block.
353       if (std::distance(succ_begin(BB), succ_end(BB)) <= 2) {
354         ExitBlocks.push_back(Successor);
355         continue;
356       }
357 
358       // In case of multiple edges from current block to exit block, collect
359       // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
360       // duplicate edges.
361       if (std::find(SwitchExitBlocks.begin(), SwitchExitBlocks.end(), Successor)
362           == SwitchExitBlocks.end()) {
363         SwitchExitBlocks.push_back(Successor);
364         ExitBlocks.push_back(Successor);
365       }
366     }
367   }
368 }
369 
370 BasicBlock *Loop::getUniqueExitBlock() const {
371   SmallVector<BasicBlock *, 8> UniqueExitBlocks;
372   getUniqueExitBlocks(UniqueExitBlocks);
373   if (UniqueExitBlocks.size() == 1)
374     return UniqueExitBlocks[0];
375   return nullptr;
376 }
377 
378 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
379 LLVM_DUMP_METHOD void Loop::dump() const {
380   print(dbgs());
381 }
382 #endif
383 
384 //===----------------------------------------------------------------------===//
385 // UnloopUpdater implementation
386 //
387 
388 namespace {
389 /// Find the new parent loop for all blocks within the "unloop" whose last
390 /// backedges has just been removed.
391 class UnloopUpdater {
392   Loop *Unloop;
393   LoopInfo *LI;
394 
395   LoopBlocksDFS DFS;
396 
397   // Map unloop's immediate subloops to their nearest reachable parents. Nested
398   // loops within these subloops will not change parents. However, an immediate
399   // subloop's new parent will be the nearest loop reachable from either its own
400   // exits *or* any of its nested loop's exits.
401   DenseMap<Loop*, Loop*> SubloopParents;
402 
403   // Flag the presence of an irreducible backedge whose destination is a block
404   // directly contained by the original unloop.
405   bool FoundIB;
406 
407 public:
408   UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
409     Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
410 
411   void updateBlockParents();
412 
413   void removeBlocksFromAncestors();
414 
415   void updateSubloopParents();
416 
417 protected:
418   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
419 };
420 } // end anonymous namespace
421 
422 /// Update the parent loop for all blocks that are directly contained within the
423 /// original "unloop".
424 void UnloopUpdater::updateBlockParents() {
425   if (Unloop->getNumBlocks()) {
426     // Perform a post order CFG traversal of all blocks within this loop,
427     // propagating the nearest loop from sucessors to predecessors.
428     LoopBlocksTraversal Traversal(DFS, LI);
429     for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
430            POE = Traversal.end(); POI != POE; ++POI) {
431 
432       Loop *L = LI->getLoopFor(*POI);
433       Loop *NL = getNearestLoop(*POI, L);
434 
435       if (NL != L) {
436         // For reducible loops, NL is now an ancestor of Unloop.
437         assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
438                "uninitialized successor");
439         LI->changeLoopFor(*POI, NL);
440       }
441       else {
442         // Or the current block is part of a subloop, in which case its parent
443         // is unchanged.
444         assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
445       }
446     }
447   }
448   // Each irreducible loop within the unloop induces a round of iteration using
449   // the DFS result cached by Traversal.
450   bool Changed = FoundIB;
451   for (unsigned NIters = 0; Changed; ++NIters) {
452     assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
453 
454     // Iterate over the postorder list of blocks, propagating the nearest loop
455     // from successors to predecessors as before.
456     Changed = false;
457     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
458            POE = DFS.endPostorder(); POI != POE; ++POI) {
459 
460       Loop *L = LI->getLoopFor(*POI);
461       Loop *NL = getNearestLoop(*POI, L);
462       if (NL != L) {
463         assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
464                "uninitialized successor");
465         LI->changeLoopFor(*POI, NL);
466         Changed = true;
467       }
468     }
469   }
470 }
471 
472 /// Remove unloop's blocks from all ancestors below their new parents.
473 void UnloopUpdater::removeBlocksFromAncestors() {
474   // Remove all unloop's blocks (including those in nested subloops) from
475   // ancestors below the new parent loop.
476   for (Loop::block_iterator BI = Unloop->block_begin(),
477          BE = Unloop->block_end(); BI != BE; ++BI) {
478     Loop *OuterParent = LI->getLoopFor(*BI);
479     if (Unloop->contains(OuterParent)) {
480       while (OuterParent->getParentLoop() != Unloop)
481         OuterParent = OuterParent->getParentLoop();
482       OuterParent = SubloopParents[OuterParent];
483     }
484     // Remove blocks from former Ancestors except Unloop itself which will be
485     // deleted.
486     for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
487          OldParent = OldParent->getParentLoop()) {
488       assert(OldParent && "new loop is not an ancestor of the original");
489       OldParent->removeBlockFromLoop(*BI);
490     }
491   }
492 }
493 
494 /// Update the parent loop for all subloops directly nested within unloop.
495 void UnloopUpdater::updateSubloopParents() {
496   while (!Unloop->empty()) {
497     Loop *Subloop = *std::prev(Unloop->end());
498     Unloop->removeChildLoop(std::prev(Unloop->end()));
499 
500     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
501     if (Loop *Parent = SubloopParents[Subloop])
502       Parent->addChildLoop(Subloop);
503     else
504       LI->addTopLevelLoop(Subloop);
505   }
506 }
507 
508 /// Return the nearest parent loop among this block's successors. If a successor
509 /// is a subloop header, consider its parent to be the nearest parent of the
510 /// subloop's exits.
511 ///
512 /// For subloop blocks, simply update SubloopParents and return NULL.
513 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
514 
515   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
516   // is considered uninitialized.
517   Loop *NearLoop = BBLoop;
518 
519   Loop *Subloop = nullptr;
520   if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
521     Subloop = NearLoop;
522     // Find the subloop ancestor that is directly contained within Unloop.
523     while (Subloop->getParentLoop() != Unloop) {
524       Subloop = Subloop->getParentLoop();
525       assert(Subloop && "subloop is not an ancestor of the original loop");
526     }
527     // Get the current nearest parent of the Subloop exits, initially Unloop.
528     NearLoop =
529       SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
530   }
531 
532   succ_iterator I = succ_begin(BB), E = succ_end(BB);
533   if (I == E) {
534     assert(!Subloop && "subloop blocks must have a successor");
535     NearLoop = nullptr; // unloop blocks may now exit the function.
536   }
537   for (; I != E; ++I) {
538     if (*I == BB)
539       continue; // self loops are uninteresting
540 
541     Loop *L = LI->getLoopFor(*I);
542     if (L == Unloop) {
543       // This successor has not been processed. This path must lead to an
544       // irreducible backedge.
545       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
546       FoundIB = true;
547     }
548     if (L != Unloop && Unloop->contains(L)) {
549       // Successor is in a subloop.
550       if (Subloop)
551         continue; // Branching within subloops. Ignore it.
552 
553       // BB branches from the original into a subloop header.
554       assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
555 
556       // Get the current nearest parent of the Subloop's exits.
557       L = SubloopParents[L];
558       // L could be Unloop if the only exit was an irreducible backedge.
559     }
560     if (L == Unloop) {
561       continue;
562     }
563     // Handle critical edges from Unloop into a sibling loop.
564     if (L && !L->contains(Unloop)) {
565       L = L->getParentLoop();
566     }
567     // Remember the nearest parent loop among successors or subloop exits.
568     if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
569       NearLoop = L;
570   }
571   if (Subloop) {
572     SubloopParents[Subloop] = NearLoop;
573     return BBLoop;
574   }
575   return NearLoop;
576 }
577 
578 LoopInfo::LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree) {
579   analyze(DomTree);
580 }
581 
582 void LoopInfo::markAsRemoved(Loop *Unloop) {
583   assert(!Unloop->isInvalid() && "Loop has already been removed");
584   Unloop->invalidate();
585   RemovedLoops.push_back(Unloop);
586 
587   // First handle the special case of no parent loop to simplify the algorithm.
588   if (!Unloop->getParentLoop()) {
589     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
590     for (Loop::block_iterator I = Unloop->block_begin(),
591                               E = Unloop->block_end();
592          I != E; ++I) {
593 
594       // Don't reparent blocks in subloops.
595       if (getLoopFor(*I) != Unloop)
596         continue;
597 
598       // Blocks no longer have a parent but are still referenced by Unloop until
599       // the Unloop object is deleted.
600       changeLoopFor(*I, nullptr);
601     }
602 
603     // Remove the loop from the top-level LoopInfo object.
604     for (iterator I = begin();; ++I) {
605       assert(I != end() && "Couldn't find loop");
606       if (*I == Unloop) {
607         removeLoop(I);
608         break;
609       }
610     }
611 
612     // Move all of the subloops to the top-level.
613     while (!Unloop->empty())
614       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
615 
616     return;
617   }
618 
619   // Update the parent loop for all blocks within the loop. Blocks within
620   // subloops will not change parents.
621   UnloopUpdater Updater(Unloop, this);
622   Updater.updateBlockParents();
623 
624   // Remove blocks from former ancestor loops.
625   Updater.removeBlocksFromAncestors();
626 
627   // Add direct subloops as children in their new parent loop.
628   Updater.updateSubloopParents();
629 
630   // Remove unloop from its parent loop.
631   Loop *ParentLoop = Unloop->getParentLoop();
632   for (Loop::iterator I = ParentLoop->begin();; ++I) {
633     assert(I != ParentLoop->end() && "Couldn't find loop");
634     if (*I == Unloop) {
635       ParentLoop->removeChildLoop(I);
636       break;
637     }
638   }
639 }
640 
641 char LoopAnalysis::PassID;
642 
643 LoopInfo LoopAnalysis::run(Function &F, AnalysisManager<Function> &AM) {
644   // FIXME: Currently we create a LoopInfo from scratch for every function.
645   // This may prove to be too wasteful due to deallocating and re-allocating
646   // memory each time for the underlying map and vector datastructures. At some
647   // point it may prove worthwhile to use a freelist and recycle LoopInfo
648   // objects. I don't want to add that kind of complexity until the scope of
649   // the problem is better understood.
650   LoopInfo LI;
651   LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
652   return LI;
653 }
654 
655 PreservedAnalyses LoopPrinterPass::run(Function &F,
656                                        AnalysisManager<Function> &AM) {
657   AM.getResult<LoopAnalysis>(F).print(OS);
658   return PreservedAnalyses::all();
659 }
660 
661 PrintLoopPass::PrintLoopPass() : OS(dbgs()) {}
662 PrintLoopPass::PrintLoopPass(raw_ostream &OS, const std::string &Banner)
663     : OS(OS), Banner(Banner) {}
664 
665 PreservedAnalyses PrintLoopPass::run(Loop &L) {
666   OS << Banner;
667   for (auto *Block : L.blocks())
668     if (Block)
669       Block->print(OS);
670     else
671       OS << "Printing <null> block";
672   return PreservedAnalyses::all();
673 }
674 
675 //===----------------------------------------------------------------------===//
676 // LoopInfo implementation
677 //
678 
679 char LoopInfoWrapperPass::ID = 0;
680 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
681                       true, true)
682 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
683 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
684                     true, true)
685 
686 bool LoopInfoWrapperPass::runOnFunction(Function &) {
687   releaseMemory();
688   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
689   return false;
690 }
691 
692 void LoopInfoWrapperPass::verifyAnalysis() const {
693   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
694   // function each time verifyAnalysis is called is very expensive. The
695   // -verify-loop-info option can enable this. In order to perform some
696   // checking by default, LoopPass has been taught to call verifyLoop manually
697   // during loop pass sequences.
698   if (VerifyLoopInfo)
699     LI.verify();
700 }
701 
702 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
703   AU.setPreservesAll();
704   AU.addRequired<DominatorTreeWrapperPass>();
705 }
706 
707 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
708   LI.print(OS);
709 }
710 
711 //===----------------------------------------------------------------------===//
712 // LoopBlocksDFS implementation
713 //
714 
715 /// Traverse the loop blocks and store the DFS result.
716 /// Useful for clients that just want the final DFS result and don't need to
717 /// visit blocks during the initial traversal.
718 void LoopBlocksDFS::perform(LoopInfo *LI) {
719   LoopBlocksTraversal Traversal(*this, LI);
720   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
721          POE = Traversal.end(); POI != POE; ++POI) ;
722 }
723