1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG.  Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/LoopInfoImpl.h"
21 #include "llvm/Analysis/LoopIterator.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DebugLoc.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/PassManager.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35 using namespace llvm;
36 
37 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
38 template class llvm::LoopBase<BasicBlock, Loop>;
39 template class llvm::LoopInfoBase<BasicBlock, Loop>;
40 
41 // Always verify loopinfo if expensive checking is enabled.
42 #ifdef EXPENSIVE_CHECKS
43 static bool VerifyLoopInfo = true;
44 #else
45 static bool VerifyLoopInfo = false;
46 #endif
47 static cl::opt<bool,true>
48 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
49                 cl::desc("Verify loop info (time consuming)"));
50 
51 //===----------------------------------------------------------------------===//
52 // Loop implementation
53 //
54 
55 bool Loop::isLoopInvariant(const Value *V) const {
56   if (const Instruction *I = dyn_cast<Instruction>(V))
57     return !contains(I);
58   return true;  // All non-instructions are loop invariant
59 }
60 
61 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
62   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
63 }
64 
65 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
66                              Instruction *InsertPt) const {
67   if (Instruction *I = dyn_cast<Instruction>(V))
68     return makeLoopInvariant(I, Changed, InsertPt);
69   return true;  // All non-instructions are loop-invariant.
70 }
71 
72 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
73                              Instruction *InsertPt) const {
74   // Test if the value is already loop-invariant.
75   if (isLoopInvariant(I))
76     return true;
77   if (!isSafeToSpeculativelyExecute(I))
78     return false;
79   if (I->mayReadFromMemory())
80     return false;
81   // EH block instructions are immobile.
82   if (I->isEHPad())
83     return false;
84   // Determine the insertion point, unless one was given.
85   if (!InsertPt) {
86     BasicBlock *Preheader = getLoopPreheader();
87     // Without a preheader, hoisting is not feasible.
88     if (!Preheader)
89       return false;
90     InsertPt = Preheader->getTerminator();
91   }
92   // Don't hoist instructions with loop-variant operands.
93   for (Value *Operand : I->operands())
94     if (!makeLoopInvariant(Operand, Changed, InsertPt))
95       return false;
96 
97   // Hoist.
98   I->moveBefore(InsertPt);
99 
100   // There is possibility of hoisting this instruction above some arbitrary
101   // condition. Any metadata defined on it can be control dependent on this
102   // condition. Conservatively strip it here so that we don't give any wrong
103   // information to the optimizer.
104   I->dropUnknownNonDebugMetadata();
105 
106   Changed = true;
107   return true;
108 }
109 
110 PHINode *Loop::getCanonicalInductionVariable() const {
111   BasicBlock *H = getHeader();
112 
113   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
114   pred_iterator PI = pred_begin(H);
115   assert(PI != pred_end(H) &&
116          "Loop must have at least one backedge!");
117   Backedge = *PI++;
118   if (PI == pred_end(H)) return nullptr;  // dead loop
119   Incoming = *PI++;
120   if (PI != pred_end(H)) return nullptr;  // multiple backedges?
121 
122   if (contains(Incoming)) {
123     if (contains(Backedge))
124       return nullptr;
125     std::swap(Incoming, Backedge);
126   } else if (!contains(Backedge))
127     return nullptr;
128 
129   // Loop over all of the PHI nodes, looking for a canonical indvar.
130   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
131     PHINode *PN = cast<PHINode>(I);
132     if (ConstantInt *CI =
133         dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
134       if (CI->isNullValue())
135         if (Instruction *Inc =
136             dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
137           if (Inc->getOpcode() == Instruction::Add &&
138                 Inc->getOperand(0) == PN)
139             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
140               if (CI->equalsInt(1))
141                 return PN;
142   }
143   return nullptr;
144 }
145 
146 bool Loop::isLCSSAForm(DominatorTree &DT) const {
147   for (BasicBlock *BB : this->blocks()) {
148     for (Instruction &I : *BB) {
149       // Tokens can't be used in PHI nodes and live-out tokens prevent loop
150       // optimizations, so for the purposes of considered LCSSA form, we
151       // can ignore them.
152       if (I.getType()->isTokenTy())
153         continue;
154 
155       for (Use &U : I.uses()) {
156         Instruction *UI = cast<Instruction>(U.getUser());
157         BasicBlock *UserBB = UI->getParent();
158         if (PHINode *P = dyn_cast<PHINode>(UI))
159           UserBB = P->getIncomingBlock(U);
160 
161         // Check the current block, as a fast-path, before checking whether
162         // the use is anywhere in the loop.  Most values are used in the same
163         // block they are defined in.  Also, blocks not reachable from the
164         // entry are special; uses in them don't need to go through PHIs.
165         if (UserBB != BB &&
166             !contains(UserBB) &&
167             DT.isReachableFromEntry(UserBB))
168           return false;
169       }
170     }
171   }
172 
173   return true;
174 }
175 
176 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT) const {
177   if (!isLCSSAForm(DT))
178     return false;
179 
180   return all_of(*this,
181                 [&](const Loop *L) { return L->isRecursivelyLCSSAForm(DT); });
182 }
183 
184 bool Loop::isLoopSimplifyForm() const {
185   // Normal-form loops have a preheader, a single backedge, and all of their
186   // exits have all their predecessors inside the loop.
187   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
188 }
189 
190 // Routines that reform the loop CFG and split edges often fail on indirectbr.
191 bool Loop::isSafeToClone() const {
192   // Return false if any loop blocks contain indirectbrs, or there are any calls
193   // to noduplicate functions.
194   for (BasicBlock *BB : this->blocks()) {
195     if (isa<IndirectBrInst>(BB->getTerminator()))
196       return false;
197 
198     for (Instruction &I : *BB)
199       if (auto CS = CallSite(&I))
200         if (CS.cannotDuplicate())
201           return false;
202   }
203   return true;
204 }
205 
206 MDNode *Loop::getLoopID() const {
207   MDNode *LoopID = nullptr;
208   if (isLoopSimplifyForm()) {
209     LoopID = getLoopLatch()->getTerminator()->getMetadata(LLVMContext::MD_loop);
210   } else {
211     // Go through each predecessor of the loop header and check the
212     // terminator for the metadata.
213     BasicBlock *H = getHeader();
214     for (BasicBlock *BB : this->blocks()) {
215       TerminatorInst *TI = BB->getTerminator();
216       MDNode *MD = nullptr;
217 
218       // Check if this terminator branches to the loop header.
219       for (BasicBlock *Successor : TI->successors()) {
220         if (Successor == H) {
221           MD = TI->getMetadata(LLVMContext::MD_loop);
222           break;
223         }
224       }
225       if (!MD)
226         return nullptr;
227 
228       if (!LoopID)
229         LoopID = MD;
230       else if (MD != LoopID)
231         return nullptr;
232     }
233   }
234   if (!LoopID || LoopID->getNumOperands() == 0 ||
235       LoopID->getOperand(0) != LoopID)
236     return nullptr;
237   return LoopID;
238 }
239 
240 void Loop::setLoopID(MDNode *LoopID) const {
241   assert(LoopID && "Loop ID should not be null");
242   assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
243   assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
244 
245   if (isLoopSimplifyForm()) {
246     getLoopLatch()->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
247     return;
248   }
249 
250   BasicBlock *H = getHeader();
251   for (BasicBlock *BB : this->blocks()) {
252     TerminatorInst *TI = BB->getTerminator();
253     for (BasicBlock *Successor : TI->successors()) {
254       if (Successor == H)
255         TI->setMetadata(LLVMContext::MD_loop, LoopID);
256     }
257   }
258 }
259 
260 bool Loop::isAnnotatedParallel() const {
261   MDNode *DesiredLoopIdMetadata = getLoopID();
262 
263   if (!DesiredLoopIdMetadata)
264       return false;
265 
266   // The loop branch contains the parallel loop metadata. In order to ensure
267   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
268   // dependencies (thus converted the loop back to a sequential loop), check
269   // that all the memory instructions in the loop contain parallelism metadata
270   // that point to the same unique "loop id metadata" the loop branch does.
271   for (BasicBlock *BB : this->blocks()) {
272     for (Instruction &I : *BB) {
273       if (!I.mayReadOrWriteMemory())
274         continue;
275 
276       // The memory instruction can refer to the loop identifier metadata
277       // directly or indirectly through another list metadata (in case of
278       // nested parallel loops). The loop identifier metadata refers to
279       // itself so we can check both cases with the same routine.
280       MDNode *LoopIdMD =
281           I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
282 
283       if (!LoopIdMD)
284         return false;
285 
286       bool LoopIdMDFound = false;
287       for (const MDOperand &MDOp : LoopIdMD->operands()) {
288         if (MDOp == DesiredLoopIdMetadata) {
289           LoopIdMDFound = true;
290           break;
291         }
292       }
293 
294       if (!LoopIdMDFound)
295         return false;
296     }
297   }
298   return true;
299 }
300 
301 DebugLoc Loop::getStartLoc() const {
302   // If we have a debug location in the loop ID, then use it.
303   if (MDNode *LoopID = getLoopID())
304     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
305       if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i)))
306         return DebugLoc(L);
307 
308   // Try the pre-header first.
309   if (BasicBlock *PHeadBB = getLoopPreheader())
310     if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
311       return DL;
312 
313   // If we have no pre-header or there are no instructions with debug
314   // info in it, try the header.
315   if (BasicBlock *HeadBB = getHeader())
316     return HeadBB->getTerminator()->getDebugLoc();
317 
318   return DebugLoc();
319 }
320 
321 bool Loop::hasDedicatedExits() const {
322   // Each predecessor of each exit block of a normal loop is contained
323   // within the loop.
324   SmallVector<BasicBlock *, 4> ExitBlocks;
325   getExitBlocks(ExitBlocks);
326   for (BasicBlock *BB : ExitBlocks)
327     for (BasicBlock *Predecessor : predecessors(BB))
328       if (!contains(Predecessor))
329         return false;
330   // All the requirements are met.
331   return true;
332 }
333 
334 void
335 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
336   assert(hasDedicatedExits() &&
337          "getUniqueExitBlocks assumes the loop has canonical form exits!");
338 
339   SmallVector<BasicBlock *, 32> SwitchExitBlocks;
340   for (BasicBlock *BB : this->blocks()) {
341     SwitchExitBlocks.clear();
342     for (BasicBlock *Successor : successors(BB)) {
343       // If block is inside the loop then it is not an exit block.
344       if (contains(Successor))
345         continue;
346 
347       pred_iterator PI = pred_begin(Successor);
348       BasicBlock *FirstPred = *PI;
349 
350       // If current basic block is this exit block's first predecessor
351       // then only insert exit block in to the output ExitBlocks vector.
352       // This ensures that same exit block is not inserted twice into
353       // ExitBlocks vector.
354       if (BB != FirstPred)
355         continue;
356 
357       // If a terminator has more then two successors, for example SwitchInst,
358       // then it is possible that there are multiple edges from current block
359       // to one exit block.
360       if (std::distance(succ_begin(BB), succ_end(BB)) <= 2) {
361         ExitBlocks.push_back(Successor);
362         continue;
363       }
364 
365       // In case of multiple edges from current block to exit block, collect
366       // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
367       // duplicate edges.
368       if (!is_contained(SwitchExitBlocks, Successor)) {
369         SwitchExitBlocks.push_back(Successor);
370         ExitBlocks.push_back(Successor);
371       }
372     }
373   }
374 }
375 
376 BasicBlock *Loop::getUniqueExitBlock() const {
377   SmallVector<BasicBlock *, 8> UniqueExitBlocks;
378   getUniqueExitBlocks(UniqueExitBlocks);
379   if (UniqueExitBlocks.size() == 1)
380     return UniqueExitBlocks[0];
381   return nullptr;
382 }
383 
384 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
385 LLVM_DUMP_METHOD void Loop::dump() const {
386   print(dbgs());
387 }
388 
389 LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
390   print(dbgs(), /*Depth=*/ 0, /*Verbose=*/ true);
391 }
392 #endif
393 
394 //===----------------------------------------------------------------------===//
395 // UnloopUpdater implementation
396 //
397 
398 namespace {
399 /// Find the new parent loop for all blocks within the "unloop" whose last
400 /// backedges has just been removed.
401 class UnloopUpdater {
402   Loop &Unloop;
403   LoopInfo *LI;
404 
405   LoopBlocksDFS DFS;
406 
407   // Map unloop's immediate subloops to their nearest reachable parents. Nested
408   // loops within these subloops will not change parents. However, an immediate
409   // subloop's new parent will be the nearest loop reachable from either its own
410   // exits *or* any of its nested loop's exits.
411   DenseMap<Loop*, Loop*> SubloopParents;
412 
413   // Flag the presence of an irreducible backedge whose destination is a block
414   // directly contained by the original unloop.
415   bool FoundIB;
416 
417 public:
418   UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
419     Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
420 
421   void updateBlockParents();
422 
423   void removeBlocksFromAncestors();
424 
425   void updateSubloopParents();
426 
427 protected:
428   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
429 };
430 } // end anonymous namespace
431 
432 /// Update the parent loop for all blocks that are directly contained within the
433 /// original "unloop".
434 void UnloopUpdater::updateBlockParents() {
435   if (Unloop.getNumBlocks()) {
436     // Perform a post order CFG traversal of all blocks within this loop,
437     // propagating the nearest loop from sucessors to predecessors.
438     LoopBlocksTraversal Traversal(DFS, LI);
439     for (BasicBlock *POI : Traversal) {
440 
441       Loop *L = LI->getLoopFor(POI);
442       Loop *NL = getNearestLoop(POI, L);
443 
444       if (NL != L) {
445         // For reducible loops, NL is now an ancestor of Unloop.
446         assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
447                "uninitialized successor");
448         LI->changeLoopFor(POI, NL);
449       }
450       else {
451         // Or the current block is part of a subloop, in which case its parent
452         // is unchanged.
453         assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
454       }
455     }
456   }
457   // Each irreducible loop within the unloop induces a round of iteration using
458   // the DFS result cached by Traversal.
459   bool Changed = FoundIB;
460   for (unsigned NIters = 0; Changed; ++NIters) {
461     assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
462 
463     // Iterate over the postorder list of blocks, propagating the nearest loop
464     // from successors to predecessors as before.
465     Changed = false;
466     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
467            POE = DFS.endPostorder(); POI != POE; ++POI) {
468 
469       Loop *L = LI->getLoopFor(*POI);
470       Loop *NL = getNearestLoop(*POI, L);
471       if (NL != L) {
472         assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
473                "uninitialized successor");
474         LI->changeLoopFor(*POI, NL);
475         Changed = true;
476       }
477     }
478   }
479 }
480 
481 /// Remove unloop's blocks from all ancestors below their new parents.
482 void UnloopUpdater::removeBlocksFromAncestors() {
483   // Remove all unloop's blocks (including those in nested subloops) from
484   // ancestors below the new parent loop.
485   for (Loop::block_iterator BI = Unloop.block_begin(),
486          BE = Unloop.block_end(); BI != BE; ++BI) {
487     Loop *OuterParent = LI->getLoopFor(*BI);
488     if (Unloop.contains(OuterParent)) {
489       while (OuterParent->getParentLoop() != &Unloop)
490         OuterParent = OuterParent->getParentLoop();
491       OuterParent = SubloopParents[OuterParent];
492     }
493     // Remove blocks from former Ancestors except Unloop itself which will be
494     // deleted.
495     for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
496          OldParent = OldParent->getParentLoop()) {
497       assert(OldParent && "new loop is not an ancestor of the original");
498       OldParent->removeBlockFromLoop(*BI);
499     }
500   }
501 }
502 
503 /// Update the parent loop for all subloops directly nested within unloop.
504 void UnloopUpdater::updateSubloopParents() {
505   while (!Unloop.empty()) {
506     Loop *Subloop = *std::prev(Unloop.end());
507     Unloop.removeChildLoop(std::prev(Unloop.end()));
508 
509     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
510     if (Loop *Parent = SubloopParents[Subloop])
511       Parent->addChildLoop(Subloop);
512     else
513       LI->addTopLevelLoop(Subloop);
514   }
515 }
516 
517 /// Return the nearest parent loop among this block's successors. If a successor
518 /// is a subloop header, consider its parent to be the nearest parent of the
519 /// subloop's exits.
520 ///
521 /// For subloop blocks, simply update SubloopParents and return NULL.
522 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
523 
524   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
525   // is considered uninitialized.
526   Loop *NearLoop = BBLoop;
527 
528   Loop *Subloop = nullptr;
529   if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
530     Subloop = NearLoop;
531     // Find the subloop ancestor that is directly contained within Unloop.
532     while (Subloop->getParentLoop() != &Unloop) {
533       Subloop = Subloop->getParentLoop();
534       assert(Subloop && "subloop is not an ancestor of the original loop");
535     }
536     // Get the current nearest parent of the Subloop exits, initially Unloop.
537     NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
538   }
539 
540   succ_iterator I = succ_begin(BB), E = succ_end(BB);
541   if (I == E) {
542     assert(!Subloop && "subloop blocks must have a successor");
543     NearLoop = nullptr; // unloop blocks may now exit the function.
544   }
545   for (; I != E; ++I) {
546     if (*I == BB)
547       continue; // self loops are uninteresting
548 
549     Loop *L = LI->getLoopFor(*I);
550     if (L == &Unloop) {
551       // This successor has not been processed. This path must lead to an
552       // irreducible backedge.
553       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
554       FoundIB = true;
555     }
556     if (L != &Unloop && Unloop.contains(L)) {
557       // Successor is in a subloop.
558       if (Subloop)
559         continue; // Branching within subloops. Ignore it.
560 
561       // BB branches from the original into a subloop header.
562       assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
563 
564       // Get the current nearest parent of the Subloop's exits.
565       L = SubloopParents[L];
566       // L could be Unloop if the only exit was an irreducible backedge.
567     }
568     if (L == &Unloop) {
569       continue;
570     }
571     // Handle critical edges from Unloop into a sibling loop.
572     if (L && !L->contains(&Unloop)) {
573       L = L->getParentLoop();
574     }
575     // Remember the nearest parent loop among successors or subloop exits.
576     if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
577       NearLoop = L;
578   }
579   if (Subloop) {
580     SubloopParents[Subloop] = NearLoop;
581     return BBLoop;
582   }
583   return NearLoop;
584 }
585 
586 LoopInfo::LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree) {
587   analyze(DomTree);
588 }
589 
590 void LoopInfo::markAsRemoved(Loop *Unloop) {
591   assert(!Unloop->isInvalid() && "Loop has already been removed");
592   Unloop->invalidate();
593   RemovedLoops.push_back(Unloop);
594 
595   // First handle the special case of no parent loop to simplify the algorithm.
596   if (!Unloop->getParentLoop()) {
597     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
598     for (Loop::block_iterator I = Unloop->block_begin(),
599                               E = Unloop->block_end();
600          I != E; ++I) {
601 
602       // Don't reparent blocks in subloops.
603       if (getLoopFor(*I) != Unloop)
604         continue;
605 
606       // Blocks no longer have a parent but are still referenced by Unloop until
607       // the Unloop object is deleted.
608       changeLoopFor(*I, nullptr);
609     }
610 
611     // Remove the loop from the top-level LoopInfo object.
612     for (iterator I = begin();; ++I) {
613       assert(I != end() && "Couldn't find loop");
614       if (*I == Unloop) {
615         removeLoop(I);
616         break;
617       }
618     }
619 
620     // Move all of the subloops to the top-level.
621     while (!Unloop->empty())
622       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
623 
624     return;
625   }
626 
627   // Update the parent loop for all blocks within the loop. Blocks within
628   // subloops will not change parents.
629   UnloopUpdater Updater(Unloop, this);
630   Updater.updateBlockParents();
631 
632   // Remove blocks from former ancestor loops.
633   Updater.removeBlocksFromAncestors();
634 
635   // Add direct subloops as children in their new parent loop.
636   Updater.updateSubloopParents();
637 
638   // Remove unloop from its parent loop.
639   Loop *ParentLoop = Unloop->getParentLoop();
640   for (Loop::iterator I = ParentLoop->begin();; ++I) {
641     assert(I != ParentLoop->end() && "Couldn't find loop");
642     if (*I == Unloop) {
643       ParentLoop->removeChildLoop(I);
644       break;
645     }
646   }
647 }
648 
649 char LoopAnalysis::PassID;
650 
651 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
652   // FIXME: Currently we create a LoopInfo from scratch for every function.
653   // This may prove to be too wasteful due to deallocating and re-allocating
654   // memory each time for the underlying map and vector datastructures. At some
655   // point it may prove worthwhile to use a freelist and recycle LoopInfo
656   // objects. I don't want to add that kind of complexity until the scope of
657   // the problem is better understood.
658   LoopInfo LI;
659   LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
660   return LI;
661 }
662 
663 PreservedAnalyses LoopPrinterPass::run(Function &F,
664                                        FunctionAnalysisManager &AM) {
665   AM.getResult<LoopAnalysis>(F).print(OS);
666   return PreservedAnalyses::all();
667 }
668 
669 PrintLoopPass::PrintLoopPass() : OS(dbgs()) {}
670 PrintLoopPass::PrintLoopPass(raw_ostream &OS, const std::string &Banner)
671     : OS(OS), Banner(Banner) {}
672 
673 PreservedAnalyses PrintLoopPass::run(Loop &L, AnalysisManager<Loop> &) {
674   OS << Banner;
675   for (auto *Block : L.blocks())
676     if (Block)
677       Block->print(OS);
678     else
679       OS << "Printing <null> block";
680   return PreservedAnalyses::all();
681 }
682 
683 //===----------------------------------------------------------------------===//
684 // LoopInfo implementation
685 //
686 
687 char LoopInfoWrapperPass::ID = 0;
688 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
689                       true, true)
690 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
691 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
692                     true, true)
693 
694 bool LoopInfoWrapperPass::runOnFunction(Function &) {
695   releaseMemory();
696   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
697   return false;
698 }
699 
700 void LoopInfoWrapperPass::verifyAnalysis() const {
701   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
702   // function each time verifyAnalysis is called is very expensive. The
703   // -verify-loop-info option can enable this. In order to perform some
704   // checking by default, LoopPass has been taught to call verifyLoop manually
705   // during loop pass sequences.
706   if (VerifyLoopInfo) {
707     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
708     LI.verify(DT);
709   }
710 }
711 
712 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
713   AU.setPreservesAll();
714   AU.addRequired<DominatorTreeWrapperPass>();
715 }
716 
717 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
718   LI.print(OS);
719 }
720 
721 PreservedAnalyses LoopVerifierPass::run(Function &F,
722                                         FunctionAnalysisManager &AM) {
723   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
724   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
725   LI.verify(DT);
726   return PreservedAnalyses::all();
727 }
728 
729 //===----------------------------------------------------------------------===//
730 // LoopBlocksDFS implementation
731 //
732 
733 /// Traverse the loop blocks and store the DFS result.
734 /// Useful for clients that just want the final DFS result and don't need to
735 /// visit blocks during the initial traversal.
736 void LoopBlocksDFS::perform(LoopInfo *LI) {
737   LoopBlocksTraversal Traversal(*this, LI);
738   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
739          POE = Traversal.end(); POI != POE; ++POI) ;
740 }
741