1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the LoopInfo class that is used to identify natural loops 11 // and determine the loop depth of various nodes of the CFG. Note that the 12 // loops identified may actually be several natural loops that share the same 13 // header node... not just a single natural loop. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/LoopInfoImpl.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DebugLoc.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/PassManager.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> 35 using namespace llvm; 36 37 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 38 template class llvm::LoopBase<BasicBlock, Loop>; 39 template class llvm::LoopInfoBase<BasicBlock, Loop>; 40 41 // Always verify loopinfo if expensive checking is enabled. 42 #ifdef EXPENSIVE_CHECKS 43 bool llvm::VerifyLoopInfo = true; 44 #else 45 bool llvm::VerifyLoopInfo = false; 46 #endif 47 static cl::opt<bool,true> 48 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 49 cl::desc("Verify loop info (time consuming)")); 50 51 //===----------------------------------------------------------------------===// 52 // Loop implementation 53 // 54 55 bool Loop::isLoopInvariant(const Value *V) const { 56 if (const Instruction *I = dyn_cast<Instruction>(V)) 57 return !contains(I); 58 return true; // All non-instructions are loop invariant 59 } 60 61 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 62 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 63 } 64 65 bool Loop::makeLoopInvariant(Value *V, bool &Changed, 66 Instruction *InsertPt) const { 67 if (Instruction *I = dyn_cast<Instruction>(V)) 68 return makeLoopInvariant(I, Changed, InsertPt); 69 return true; // All non-instructions are loop-invariant. 70 } 71 72 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 73 Instruction *InsertPt) const { 74 // Test if the value is already loop-invariant. 75 if (isLoopInvariant(I)) 76 return true; 77 if (!isSafeToSpeculativelyExecute(I)) 78 return false; 79 if (I->mayReadFromMemory()) 80 return false; 81 // EH block instructions are immobile. 82 if (I->isEHPad()) 83 return false; 84 // Determine the insertion point, unless one was given. 85 if (!InsertPt) { 86 BasicBlock *Preheader = getLoopPreheader(); 87 // Without a preheader, hoisting is not feasible. 88 if (!Preheader) 89 return false; 90 InsertPt = Preheader->getTerminator(); 91 } 92 // Don't hoist instructions with loop-variant operands. 93 for (Value *Operand : I->operands()) 94 if (!makeLoopInvariant(Operand, Changed, InsertPt)) 95 return false; 96 97 // Hoist. 98 I->moveBefore(InsertPt); 99 100 // There is possibility of hoisting this instruction above some arbitrary 101 // condition. Any metadata defined on it can be control dependent on this 102 // condition. Conservatively strip it here so that we don't give any wrong 103 // information to the optimizer. 104 I->dropUnknownNonDebugMetadata(); 105 106 Changed = true; 107 return true; 108 } 109 110 PHINode *Loop::getCanonicalInductionVariable() const { 111 BasicBlock *H = getHeader(); 112 113 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 114 pred_iterator PI = pred_begin(H); 115 assert(PI != pred_end(H) && 116 "Loop must have at least one backedge!"); 117 Backedge = *PI++; 118 if (PI == pred_end(H)) return nullptr; // dead loop 119 Incoming = *PI++; 120 if (PI != pred_end(H)) return nullptr; // multiple backedges? 121 122 if (contains(Incoming)) { 123 if (contains(Backedge)) 124 return nullptr; 125 std::swap(Incoming, Backedge); 126 } else if (!contains(Backedge)) 127 return nullptr; 128 129 // Loop over all of the PHI nodes, looking for a canonical indvar. 130 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 131 PHINode *PN = cast<PHINode>(I); 132 if (ConstantInt *CI = 133 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 134 if (CI->isZero()) 135 if (Instruction *Inc = 136 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 137 if (Inc->getOpcode() == Instruction::Add && 138 Inc->getOperand(0) == PN) 139 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 140 if (CI->isOne()) 141 return PN; 142 } 143 return nullptr; 144 } 145 146 // Check that 'BB' doesn't have any uses outside of the 'L' 147 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, 148 DominatorTree &DT) { 149 for (const Instruction &I : BB) { 150 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 151 // optimizations, so for the purposes of considered LCSSA form, we 152 // can ignore them. 153 if (I.getType()->isTokenTy()) 154 continue; 155 156 for (const Use &U : I.uses()) { 157 const Instruction *UI = cast<Instruction>(U.getUser()); 158 const BasicBlock *UserBB = UI->getParent(); 159 if (const PHINode *P = dyn_cast<PHINode>(UI)) 160 UserBB = P->getIncomingBlock(U); 161 162 // Check the current block, as a fast-path, before checking whether 163 // the use is anywhere in the loop. Most values are used in the same 164 // block they are defined in. Also, blocks not reachable from the 165 // entry are special; uses in them don't need to go through PHIs. 166 if (UserBB != &BB && !L.contains(UserBB) && 167 DT.isReachableFromEntry(UserBB)) 168 return false; 169 } 170 } 171 return true; 172 } 173 174 bool Loop::isLCSSAForm(DominatorTree &DT) const { 175 // For each block we check that it doesn't have any uses outside of this loop. 176 return all_of(this->blocks(), [&](const BasicBlock *BB) { 177 return isBlockInLCSSAForm(*this, *BB, DT); 178 }); 179 } 180 181 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const { 182 // For each block we check that it doesn't have any uses outside of its 183 // innermost loop. This process will transitively guarantee that the current 184 // loop and all of the nested loops are in LCSSA form. 185 return all_of(this->blocks(), [&](const BasicBlock *BB) { 186 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT); 187 }); 188 } 189 190 bool Loop::isLoopSimplifyForm() const { 191 // Normal-form loops have a preheader, a single backedge, and all of their 192 // exits have all their predecessors inside the loop. 193 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 194 } 195 196 // Routines that reform the loop CFG and split edges often fail on indirectbr. 197 bool Loop::isSafeToClone() const { 198 // Return false if any loop blocks contain indirectbrs, or there are any calls 199 // to noduplicate functions. 200 for (BasicBlock *BB : this->blocks()) { 201 if (isa<IndirectBrInst>(BB->getTerminator())) 202 return false; 203 204 for (Instruction &I : *BB) 205 if (auto CS = CallSite(&I)) 206 if (CS.cannotDuplicate()) 207 return false; 208 } 209 return true; 210 } 211 212 MDNode *Loop::getLoopID() const { 213 MDNode *LoopID = nullptr; 214 if (BasicBlock *Latch = getLoopLatch()) { 215 LoopID = Latch->getTerminator()->getMetadata(LLVMContext::MD_loop); 216 } else { 217 assert(!getLoopLatch() && 218 "The loop should have no single latch at this point"); 219 // Go through each predecessor of the loop header and check the 220 // terminator for the metadata. 221 BasicBlock *H = getHeader(); 222 for (BasicBlock *BB : this->blocks()) { 223 TerminatorInst *TI = BB->getTerminator(); 224 MDNode *MD = nullptr; 225 226 // Check if this terminator branches to the loop header. 227 for (BasicBlock *Successor : TI->successors()) { 228 if (Successor == H) { 229 MD = TI->getMetadata(LLVMContext::MD_loop); 230 break; 231 } 232 } 233 if (!MD) 234 return nullptr; 235 236 if (!LoopID) 237 LoopID = MD; 238 else if (MD != LoopID) 239 return nullptr; 240 } 241 } 242 if (!LoopID || LoopID->getNumOperands() == 0 || 243 LoopID->getOperand(0) != LoopID) 244 return nullptr; 245 return LoopID; 246 } 247 248 void Loop::setLoopID(MDNode *LoopID) const { 249 assert(LoopID && "Loop ID should not be null"); 250 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand"); 251 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself"); 252 253 if (BasicBlock *Latch = getLoopLatch()) { 254 Latch->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); 255 return; 256 } 257 258 assert(!getLoopLatch() && "The loop should have no single latch at this point"); 259 BasicBlock *H = getHeader(); 260 for (BasicBlock *BB : this->blocks()) { 261 TerminatorInst *TI = BB->getTerminator(); 262 for (BasicBlock *Successor : TI->successors()) { 263 if (Successor == H) 264 TI->setMetadata(LLVMContext::MD_loop, LoopID); 265 } 266 } 267 } 268 269 bool Loop::isAnnotatedParallel() const { 270 MDNode *DesiredLoopIdMetadata = getLoopID(); 271 272 if (!DesiredLoopIdMetadata) 273 return false; 274 275 // The loop branch contains the parallel loop metadata. In order to ensure 276 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 277 // dependencies (thus converted the loop back to a sequential loop), check 278 // that all the memory instructions in the loop contain parallelism metadata 279 // that point to the same unique "loop id metadata" the loop branch does. 280 for (BasicBlock *BB : this->blocks()) { 281 for (Instruction &I : *BB) { 282 if (!I.mayReadOrWriteMemory()) 283 continue; 284 285 // The memory instruction can refer to the loop identifier metadata 286 // directly or indirectly through another list metadata (in case of 287 // nested parallel loops). The loop identifier metadata refers to 288 // itself so we can check both cases with the same routine. 289 MDNode *LoopIdMD = 290 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 291 292 if (!LoopIdMD) 293 return false; 294 295 bool LoopIdMDFound = false; 296 for (const MDOperand &MDOp : LoopIdMD->operands()) { 297 if (MDOp == DesiredLoopIdMetadata) { 298 LoopIdMDFound = true; 299 break; 300 } 301 } 302 303 if (!LoopIdMDFound) 304 return false; 305 } 306 } 307 return true; 308 } 309 310 DebugLoc Loop::getStartLoc() const { 311 return getLocRange().getStart(); 312 } 313 314 Loop::LocRange Loop::getLocRange() const { 315 // If we have a debug location in the loop ID, then use it. 316 if (MDNode *LoopID = getLoopID()) { 317 DebugLoc Start; 318 // We use the first DebugLoc in the header as the start location of the loop 319 // and if there is a second DebugLoc in the header we use it as end location 320 // of the loop. 321 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 322 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) { 323 if (!Start) 324 Start = DebugLoc(L); 325 else 326 return LocRange(Start, DebugLoc(L)); 327 } 328 } 329 330 if (Start) 331 return LocRange(Start); 332 } 333 334 // Try the pre-header first. 335 if (BasicBlock *PHeadBB = getLoopPreheader()) 336 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) 337 return LocRange(DL); 338 339 // If we have no pre-header or there are no instructions with debug 340 // info in it, try the header. 341 if (BasicBlock *HeadBB = getHeader()) 342 return LocRange(HeadBB->getTerminator()->getDebugLoc()); 343 344 return LocRange(); 345 } 346 347 bool Loop::hasDedicatedExits() const { 348 // Each predecessor of each exit block of a normal loop is contained 349 // within the loop. 350 SmallVector<BasicBlock *, 4> ExitBlocks; 351 getExitBlocks(ExitBlocks); 352 for (BasicBlock *BB : ExitBlocks) 353 for (BasicBlock *Predecessor : predecessors(BB)) 354 if (!contains(Predecessor)) 355 return false; 356 // All the requirements are met. 357 return true; 358 } 359 360 void 361 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const { 362 assert(hasDedicatedExits() && 363 "getUniqueExitBlocks assumes the loop has canonical form exits!"); 364 365 SmallVector<BasicBlock *, 32> SwitchExitBlocks; 366 for (BasicBlock *BB : this->blocks()) { 367 SwitchExitBlocks.clear(); 368 for (BasicBlock *Successor : successors(BB)) { 369 // If block is inside the loop then it is not an exit block. 370 if (contains(Successor)) 371 continue; 372 373 pred_iterator PI = pred_begin(Successor); 374 BasicBlock *FirstPred = *PI; 375 376 // If current basic block is this exit block's first predecessor 377 // then only insert exit block in to the output ExitBlocks vector. 378 // This ensures that same exit block is not inserted twice into 379 // ExitBlocks vector. 380 if (BB != FirstPred) 381 continue; 382 383 // If a terminator has more then two successors, for example SwitchInst, 384 // then it is possible that there are multiple edges from current block 385 // to one exit block. 386 if (std::distance(succ_begin(BB), succ_end(BB)) <= 2) { 387 ExitBlocks.push_back(Successor); 388 continue; 389 } 390 391 // In case of multiple edges from current block to exit block, collect 392 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of 393 // duplicate edges. 394 if (!is_contained(SwitchExitBlocks, Successor)) { 395 SwitchExitBlocks.push_back(Successor); 396 ExitBlocks.push_back(Successor); 397 } 398 } 399 } 400 } 401 402 BasicBlock *Loop::getUniqueExitBlock() const { 403 SmallVector<BasicBlock *, 8> UniqueExitBlocks; 404 getUniqueExitBlocks(UniqueExitBlocks); 405 if (UniqueExitBlocks.size() == 1) 406 return UniqueExitBlocks[0]; 407 return nullptr; 408 } 409 410 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 411 LLVM_DUMP_METHOD void Loop::dump() const { 412 print(dbgs()); 413 } 414 415 LLVM_DUMP_METHOD void Loop::dumpVerbose() const { 416 print(dbgs(), /*Depth=*/ 0, /*Verbose=*/ true); 417 } 418 #endif 419 420 //===----------------------------------------------------------------------===// 421 // UnloopUpdater implementation 422 // 423 424 namespace { 425 /// Find the new parent loop for all blocks within the "unloop" whose last 426 /// backedges has just been removed. 427 class UnloopUpdater { 428 Loop &Unloop; 429 LoopInfo *LI; 430 431 LoopBlocksDFS DFS; 432 433 // Map unloop's immediate subloops to their nearest reachable parents. Nested 434 // loops within these subloops will not change parents. However, an immediate 435 // subloop's new parent will be the nearest loop reachable from either its own 436 // exits *or* any of its nested loop's exits. 437 DenseMap<Loop*, Loop*> SubloopParents; 438 439 // Flag the presence of an irreducible backedge whose destination is a block 440 // directly contained by the original unloop. 441 bool FoundIB; 442 443 public: 444 UnloopUpdater(Loop *UL, LoopInfo *LInfo) : 445 Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} 446 447 void updateBlockParents(); 448 449 void removeBlocksFromAncestors(); 450 451 void updateSubloopParents(); 452 453 protected: 454 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 455 }; 456 } // end anonymous namespace 457 458 /// Update the parent loop for all blocks that are directly contained within the 459 /// original "unloop". 460 void UnloopUpdater::updateBlockParents() { 461 if (Unloop.getNumBlocks()) { 462 // Perform a post order CFG traversal of all blocks within this loop, 463 // propagating the nearest loop from successors to predecessors. 464 LoopBlocksTraversal Traversal(DFS, LI); 465 for (BasicBlock *POI : Traversal) { 466 467 Loop *L = LI->getLoopFor(POI); 468 Loop *NL = getNearestLoop(POI, L); 469 470 if (NL != L) { 471 // For reducible loops, NL is now an ancestor of Unloop. 472 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && 473 "uninitialized successor"); 474 LI->changeLoopFor(POI, NL); 475 } 476 else { 477 // Or the current block is part of a subloop, in which case its parent 478 // is unchanged. 479 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); 480 } 481 } 482 } 483 // Each irreducible loop within the unloop induces a round of iteration using 484 // the DFS result cached by Traversal. 485 bool Changed = FoundIB; 486 for (unsigned NIters = 0; Changed; ++NIters) { 487 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); 488 489 // Iterate over the postorder list of blocks, propagating the nearest loop 490 // from successors to predecessors as before. 491 Changed = false; 492 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 493 POE = DFS.endPostorder(); POI != POE; ++POI) { 494 495 Loop *L = LI->getLoopFor(*POI); 496 Loop *NL = getNearestLoop(*POI, L); 497 if (NL != L) { 498 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && 499 "uninitialized successor"); 500 LI->changeLoopFor(*POI, NL); 501 Changed = true; 502 } 503 } 504 } 505 } 506 507 /// Remove unloop's blocks from all ancestors below their new parents. 508 void UnloopUpdater::removeBlocksFromAncestors() { 509 // Remove all unloop's blocks (including those in nested subloops) from 510 // ancestors below the new parent loop. 511 for (Loop::block_iterator BI = Unloop.block_begin(), 512 BE = Unloop.block_end(); BI != BE; ++BI) { 513 Loop *OuterParent = LI->getLoopFor(*BI); 514 if (Unloop.contains(OuterParent)) { 515 while (OuterParent->getParentLoop() != &Unloop) 516 OuterParent = OuterParent->getParentLoop(); 517 OuterParent = SubloopParents[OuterParent]; 518 } 519 // Remove blocks from former Ancestors except Unloop itself which will be 520 // deleted. 521 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; 522 OldParent = OldParent->getParentLoop()) { 523 assert(OldParent && "new loop is not an ancestor of the original"); 524 OldParent->removeBlockFromLoop(*BI); 525 } 526 } 527 } 528 529 /// Update the parent loop for all subloops directly nested within unloop. 530 void UnloopUpdater::updateSubloopParents() { 531 while (!Unloop.empty()) { 532 Loop *Subloop = *std::prev(Unloop.end()); 533 Unloop.removeChildLoop(std::prev(Unloop.end())); 534 535 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 536 if (Loop *Parent = SubloopParents[Subloop]) 537 Parent->addChildLoop(Subloop); 538 else 539 LI->addTopLevelLoop(Subloop); 540 } 541 } 542 543 /// Return the nearest parent loop among this block's successors. If a successor 544 /// is a subloop header, consider its parent to be the nearest parent of the 545 /// subloop's exits. 546 /// 547 /// For subloop blocks, simply update SubloopParents and return NULL. 548 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 549 550 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 551 // is considered uninitialized. 552 Loop *NearLoop = BBLoop; 553 554 Loop *Subloop = nullptr; 555 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { 556 Subloop = NearLoop; 557 // Find the subloop ancestor that is directly contained within Unloop. 558 while (Subloop->getParentLoop() != &Unloop) { 559 Subloop = Subloop->getParentLoop(); 560 assert(Subloop && "subloop is not an ancestor of the original loop"); 561 } 562 // Get the current nearest parent of the Subloop exits, initially Unloop. 563 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; 564 } 565 566 succ_iterator I = succ_begin(BB), E = succ_end(BB); 567 if (I == E) { 568 assert(!Subloop && "subloop blocks must have a successor"); 569 NearLoop = nullptr; // unloop blocks may now exit the function. 570 } 571 for (; I != E; ++I) { 572 if (*I == BB) 573 continue; // self loops are uninteresting 574 575 Loop *L = LI->getLoopFor(*I); 576 if (L == &Unloop) { 577 // This successor has not been processed. This path must lead to an 578 // irreducible backedge. 579 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 580 FoundIB = true; 581 } 582 if (L != &Unloop && Unloop.contains(L)) { 583 // Successor is in a subloop. 584 if (Subloop) 585 continue; // Branching within subloops. Ignore it. 586 587 // BB branches from the original into a subloop header. 588 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); 589 590 // Get the current nearest parent of the Subloop's exits. 591 L = SubloopParents[L]; 592 // L could be Unloop if the only exit was an irreducible backedge. 593 } 594 if (L == &Unloop) { 595 continue; 596 } 597 // Handle critical edges from Unloop into a sibling loop. 598 if (L && !L->contains(&Unloop)) { 599 L = L->getParentLoop(); 600 } 601 // Remember the nearest parent loop among successors or subloop exits. 602 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) 603 NearLoop = L; 604 } 605 if (Subloop) { 606 SubloopParents[Subloop] = NearLoop; 607 return BBLoop; 608 } 609 return NearLoop; 610 } 611 612 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { 613 analyze(DomTree); 614 } 615 616 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, 617 FunctionAnalysisManager::Invalidator &) { 618 // Check whether the analysis, all analyses on functions, or the function's 619 // CFG have been preserved. 620 auto PAC = PA.getChecker<LoopAnalysis>(); 621 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 622 PAC.preservedSet<CFGAnalyses>()); 623 } 624 625 void LoopInfo::markAsRemoved(Loop *Unloop) { 626 assert(!Unloop->isInvalid() && "Loop has already been removed"); 627 Unloop->invalidate(); 628 RemovedLoops.push_back(Unloop); 629 630 // First handle the special case of no parent loop to simplify the algorithm. 631 if (!Unloop->getParentLoop()) { 632 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 633 for (Loop::block_iterator I = Unloop->block_begin(), 634 E = Unloop->block_end(); 635 I != E; ++I) { 636 637 // Don't reparent blocks in subloops. 638 if (getLoopFor(*I) != Unloop) 639 continue; 640 641 // Blocks no longer have a parent but are still referenced by Unloop until 642 // the Unloop object is deleted. 643 changeLoopFor(*I, nullptr); 644 } 645 646 // Remove the loop from the top-level LoopInfo object. 647 for (iterator I = begin();; ++I) { 648 assert(I != end() && "Couldn't find loop"); 649 if (*I == Unloop) { 650 removeLoop(I); 651 break; 652 } 653 } 654 655 // Move all of the subloops to the top-level. 656 while (!Unloop->empty()) 657 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 658 659 return; 660 } 661 662 // Update the parent loop for all blocks within the loop. Blocks within 663 // subloops will not change parents. 664 UnloopUpdater Updater(Unloop, this); 665 Updater.updateBlockParents(); 666 667 // Remove blocks from former ancestor loops. 668 Updater.removeBlocksFromAncestors(); 669 670 // Add direct subloops as children in their new parent loop. 671 Updater.updateSubloopParents(); 672 673 // Remove unloop from its parent loop. 674 Loop *ParentLoop = Unloop->getParentLoop(); 675 for (Loop::iterator I = ParentLoop->begin();; ++I) { 676 assert(I != ParentLoop->end() && "Couldn't find loop"); 677 if (*I == Unloop) { 678 ParentLoop->removeChildLoop(I); 679 break; 680 } 681 } 682 } 683 684 AnalysisKey LoopAnalysis::Key; 685 686 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 687 // FIXME: Currently we create a LoopInfo from scratch for every function. 688 // This may prove to be too wasteful due to deallocating and re-allocating 689 // memory each time for the underlying map and vector datastructures. At some 690 // point it may prove worthwhile to use a freelist and recycle LoopInfo 691 // objects. I don't want to add that kind of complexity until the scope of 692 // the problem is better understood. 693 LoopInfo LI; 694 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); 695 return LI; 696 } 697 698 PreservedAnalyses LoopPrinterPass::run(Function &F, 699 FunctionAnalysisManager &AM) { 700 AM.getResult<LoopAnalysis>(F).print(OS); 701 return PreservedAnalyses::all(); 702 } 703 704 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { 705 OS << Banner; 706 for (auto *Block : L.blocks()) 707 if (Block) 708 Block->print(OS); 709 else 710 OS << "Printing <null> block"; 711 } 712 713 //===----------------------------------------------------------------------===// 714 // LoopInfo implementation 715 // 716 717 char LoopInfoWrapperPass::ID = 0; 718 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 719 true, true) 720 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 721 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 722 true, true) 723 724 bool LoopInfoWrapperPass::runOnFunction(Function &) { 725 releaseMemory(); 726 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 727 return false; 728 } 729 730 void LoopInfoWrapperPass::verifyAnalysis() const { 731 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 732 // function each time verifyAnalysis is called is very expensive. The 733 // -verify-loop-info option can enable this. In order to perform some 734 // checking by default, LoopPass has been taught to call verifyLoop manually 735 // during loop pass sequences. 736 if (VerifyLoopInfo) { 737 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 738 LI.verify(DT); 739 } 740 } 741 742 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 743 AU.setPreservesAll(); 744 AU.addRequired<DominatorTreeWrapperPass>(); 745 } 746 747 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 748 LI.print(OS); 749 } 750 751 PreservedAnalyses LoopVerifierPass::run(Function &F, 752 FunctionAnalysisManager &AM) { 753 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 754 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 755 LI.verify(DT); 756 return PreservedAnalyses::all(); 757 } 758 759 //===----------------------------------------------------------------------===// 760 // LoopBlocksDFS implementation 761 // 762 763 /// Traverse the loop blocks and store the DFS result. 764 /// Useful for clients that just want the final DFS result and don't need to 765 /// visit blocks during the initial traversal. 766 void LoopBlocksDFS::perform(LoopInfo *LI) { 767 LoopBlocksTraversal Traversal(*this, LI); 768 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 769 POE = Traversal.end(); POI != POE; ++POI) ; 770 } 771