1 //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 6 // See https://llvm.org/LICENSE.txt for license information. 7 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 8 // 9 //===----------------------------------------------------------------------===// 10 /// 11 /// \file 12 /// This file defines the implementation for the loop cache analysis. 13 /// The implementation is largely based on the following paper: 14 /// 15 /// Compiler Optimizations for Improving Data Locality 16 /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng 17 /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf 18 /// 19 /// The general approach taken to estimate the number of cache lines used by the 20 /// memory references in an inner loop is: 21 /// 1. Partition memory references that exhibit temporal or spacial reuse 22 /// into reference groups. 23 /// 2. For each loop L in the a loop nest LN: 24 /// a. Compute the cost of the reference group 25 /// b. Compute the loop cost by summing up the reference groups costs 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Analysis/LoopCacheAnalysis.h" 29 #include "llvm/ADT/BreadthFirstIterator.h" 30 #include "llvm/ADT/Sequence.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "loop-cache-cost" 38 39 static cl::opt<unsigned> DefaultTripCount( 40 "default-trip-count", cl::init(100), cl::Hidden, 41 cl::desc("Use this to specify the default trip count of a loop")); 42 43 // In this analysis two array references are considered to exhibit temporal 44 // reuse if they access either the same memory location, or a memory location 45 // with distance smaller than a configurable threshold. 46 static cl::opt<unsigned> TemporalReuseThreshold( 47 "temporal-reuse-threshold", cl::init(2), cl::Hidden, 48 cl::desc("Use this to specify the max. distance between array elements " 49 "accessed in a loop so that the elements are classified to have " 50 "temporal reuse")); 51 52 /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a 53 /// nullptr if any loops in the loop vector supplied has more than one sibling. 54 /// The loop vector is expected to contain loops collected in breadth-first 55 /// order. 56 static Loop *getInnerMostLoop(const LoopVectorTy &Loops) { 57 assert(!Loops.empty() && "Expecting a non-empy loop vector"); 58 59 Loop *LastLoop = Loops.back(); 60 Loop *ParentLoop = LastLoop->getParentLoop(); 61 62 if (ParentLoop == nullptr) { 63 assert(Loops.size() == 1 && "Expecting a single loop"); 64 return LastLoop; 65 } 66 67 return (std::is_sorted(Loops.begin(), Loops.end(), 68 [](const Loop *L1, const Loop *L2) { 69 return L1->getLoopDepth() < L2->getLoopDepth(); 70 })) 71 ? LastLoop 72 : nullptr; 73 } 74 75 static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize, 76 const Loop &L, ScalarEvolution &SE) { 77 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn); 78 if (!AR || !AR->isAffine()) 79 return false; 80 81 assert(AR->getLoop() && "AR should have a loop"); 82 83 // Check that start and increment are not add recurrences. 84 const SCEV *Start = AR->getStart(); 85 const SCEV *Step = AR->getStepRecurrence(SE); 86 if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step)) 87 return false; 88 89 // Check that start and increment are both invariant in the loop. 90 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) 91 return false; 92 93 return AR->getStepRecurrence(SE) == &ElemSize; 94 } 95 96 /// Compute the trip count for the given loop \p L. Return the SCEV expression 97 /// for the trip count or nullptr if it cannot be computed. 98 static const SCEV *computeTripCount(const Loop &L, ScalarEvolution &SE) { 99 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L); 100 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 101 !isa<SCEVConstant>(BackedgeTakenCount)) 102 return nullptr; 103 104 return SE.getAddExpr(BackedgeTakenCount, 105 SE.getOne(BackedgeTakenCount->getType())); 106 } 107 108 //===----------------------------------------------------------------------===// 109 // IndexedReference implementation 110 // 111 raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) { 112 if (!R.IsValid) { 113 OS << R.StoreOrLoadInst; 114 OS << ", IsValid=false."; 115 return OS; 116 } 117 118 OS << *R.BasePointer; 119 for (const SCEV *Subscript : R.Subscripts) 120 OS << "[" << *Subscript << "]"; 121 122 OS << ", Sizes: "; 123 for (const SCEV *Size : R.Sizes) 124 OS << "[" << *Size << "]"; 125 126 return OS; 127 } 128 129 IndexedReference::IndexedReference(Instruction &StoreOrLoadInst, 130 const LoopInfo &LI, ScalarEvolution &SE) 131 : StoreOrLoadInst(StoreOrLoadInst), SE(SE) { 132 assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) && 133 "Expecting a load or store instruction"); 134 135 IsValid = delinearize(LI); 136 if (IsValid) 137 LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this 138 << "\n"); 139 } 140 141 Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other, 142 unsigned CLS, 143 AliasAnalysis &AA) const { 144 assert(IsValid && "Expecting a valid reference"); 145 146 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { 147 LLVM_DEBUG(dbgs().indent(2) 148 << "No spacial reuse: different base pointers\n"); 149 return false; 150 } 151 152 unsigned NumSubscripts = getNumSubscripts(); 153 if (NumSubscripts != Other.getNumSubscripts()) { 154 LLVM_DEBUG(dbgs().indent(2) 155 << "No spacial reuse: different number of subscripts\n"); 156 return false; 157 } 158 159 // all subscripts must be equal, except the leftmost one (the last one). 160 for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) { 161 if (getSubscript(SubNum) != Other.getSubscript(SubNum)) { 162 LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: " 163 << "\n\t" << *getSubscript(SubNum) << "\n\t" 164 << *Other.getSubscript(SubNum) << "\n"); 165 return false; 166 } 167 } 168 169 // the difference between the last subscripts must be less than the cache line 170 // size. 171 const SCEV *LastSubscript = getLastSubscript(); 172 const SCEV *OtherLastSubscript = Other.getLastSubscript(); 173 const SCEVConstant *Diff = dyn_cast<SCEVConstant>( 174 SE.getMinusSCEV(LastSubscript, OtherLastSubscript)); 175 176 if (Diff == nullptr) { 177 LLVM_DEBUG(dbgs().indent(2) 178 << "No spacial reuse, difference between subscript:\n\t" 179 << *LastSubscript << "\n\t" << OtherLastSubscript 180 << "\nis not constant.\n"); 181 return None; 182 } 183 184 bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS); 185 186 LLVM_DEBUG({ 187 if (InSameCacheLine) 188 dbgs().indent(2) << "Found spacial reuse.\n"; 189 else 190 dbgs().indent(2) << "No spacial reuse.\n"; 191 }); 192 193 return InSameCacheLine; 194 } 195 196 Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other, 197 unsigned MaxDistance, 198 const Loop &L, 199 DependenceInfo &DI, 200 AliasAnalysis &AA) const { 201 assert(IsValid && "Expecting a valid reference"); 202 203 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { 204 LLVM_DEBUG(dbgs().indent(2) 205 << "No temporal reuse: different base pointer\n"); 206 return false; 207 } 208 209 std::unique_ptr<Dependence> D = 210 DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true); 211 212 if (D == nullptr) { 213 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n"); 214 return false; 215 } 216 217 if (D->isLoopIndependent()) { 218 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); 219 return true; 220 } 221 222 // Check the dependence distance at every loop level. There is temporal reuse 223 // if the distance at the given loop's depth is small (|d| <= MaxDistance) and 224 // it is zero at every other loop level. 225 int LoopDepth = L.getLoopDepth(); 226 int Levels = D->getLevels(); 227 for (int Level = 1; Level <= Levels; ++Level) { 228 const SCEV *Distance = D->getDistance(Level); 229 const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance); 230 231 if (SCEVConst == nullptr) { 232 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n"); 233 return None; 234 } 235 236 const ConstantInt &CI = *SCEVConst->getValue(); 237 if (Level != LoopDepth && !CI.isZero()) { 238 LLVM_DEBUG(dbgs().indent(2) 239 << "No temporal reuse: distance is not zero at depth=" << Level 240 << "\n"); 241 return false; 242 } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) { 243 LLVM_DEBUG( 244 dbgs().indent(2) 245 << "No temporal reuse: distance is greater than MaxDistance at depth=" 246 << Level << "\n"); 247 return false; 248 } 249 } 250 251 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); 252 return true; 253 } 254 255 CacheCostTy IndexedReference::computeRefCost(const Loop &L, 256 unsigned CLS) const { 257 assert(IsValid && "Expecting a valid reference"); 258 LLVM_DEBUG({ 259 dbgs().indent(2) << "Computing cache cost for:\n"; 260 dbgs().indent(4) << *this << "\n"; 261 }); 262 263 // If the indexed reference is loop invariant the cost is one. 264 if (isLoopInvariant(L)) { 265 LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n"); 266 return 1; 267 } 268 269 const SCEV *TripCount = computeTripCount(L, SE); 270 if (!TripCount) { 271 LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName() 272 << " could not be computed, using DefaultTripCount\n"); 273 const SCEV *ElemSize = Sizes.back(); 274 TripCount = SE.getConstant(ElemSize->getType(), DefaultTripCount); 275 } 276 LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n"); 277 278 // If the indexed reference is 'consecutive' the cost is 279 // (TripCount*Stride)/CLS, otherwise the cost is TripCount. 280 const SCEV *RefCost = TripCount; 281 282 if (isConsecutive(L, CLS)) { 283 const SCEV *Coeff = getLastCoefficient(); 284 const SCEV *ElemSize = Sizes.back(); 285 const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); 286 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); 287 const SCEV *Numerator = SE.getMulExpr(Stride, TripCount); 288 RefCost = SE.getUDivExpr(Numerator, CacheLineSize); 289 LLVM_DEBUG(dbgs().indent(4) 290 << "Access is consecutive: RefCost=(TripCount*Stride)/CLS=" 291 << *RefCost << "\n"); 292 } else 293 LLVM_DEBUG(dbgs().indent(4) 294 << "Access is not consecutive: RefCost=TripCount=" << *RefCost 295 << "\n"); 296 297 // Attempt to fold RefCost into a constant. 298 if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost)) 299 return ConstantCost->getValue()->getSExtValue(); 300 301 LLVM_DEBUG(dbgs().indent(4) 302 << "RefCost is not a constant! Setting to RefCost=InvalidCost " 303 "(invalid value).\n"); 304 305 return CacheCost::InvalidCost; 306 } 307 308 bool IndexedReference::delinearize(const LoopInfo &LI) { 309 assert(Subscripts.empty() && "Subscripts should be empty"); 310 assert(Sizes.empty() && "Sizes should be empty"); 311 assert(!IsValid && "Should be called once from the constructor"); 312 LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n"); 313 314 const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst); 315 const BasicBlock *BB = StoreOrLoadInst.getParent(); 316 317 if (Loop *L = LI.getLoopFor(BB)) { 318 const SCEV *AccessFn = 319 SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L); 320 321 BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn)); 322 if (BasePointer == nullptr) { 323 LLVM_DEBUG( 324 dbgs().indent(2) 325 << "ERROR: failed to delinearize, can't identify base pointer\n"); 326 return false; 327 } 328 329 AccessFn = SE.getMinusSCEV(AccessFn, BasePointer); 330 331 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() 332 << "', AccessFn: " << *AccessFn << "\n"); 333 334 SE.delinearize(AccessFn, Subscripts, Sizes, 335 SE.getElementSize(&StoreOrLoadInst)); 336 337 if (Subscripts.empty() || Sizes.empty() || 338 Subscripts.size() != Sizes.size()) { 339 // Attempt to determine whether we have a single dimensional array access. 340 // before giving up. 341 if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) { 342 LLVM_DEBUG(dbgs().indent(2) 343 << "ERROR: failed to delinearize reference\n"); 344 Subscripts.clear(); 345 Sizes.clear(); 346 return false; 347 } 348 349 const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize); 350 Subscripts.push_back(Div); 351 Sizes.push_back(ElemSize); 352 } 353 354 return all_of(Subscripts, [&](const SCEV *Subscript) { 355 return isSimpleAddRecurrence(*Subscript, *L); 356 }); 357 } 358 359 return false; 360 } 361 362 bool IndexedReference::isLoopInvariant(const Loop &L) const { 363 Value *Addr = getPointerOperand(&StoreOrLoadInst); 364 assert(Addr != nullptr && "Expecting either a load or a store instruction"); 365 assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable"); 366 367 if (SE.isLoopInvariant(SE.getSCEV(Addr), &L)) 368 return true; 369 370 // The indexed reference is loop invariant if none of the coefficients use 371 // the loop induction variable. 372 bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) { 373 return isCoeffForLoopZeroOrInvariant(*Subscript, L); 374 }); 375 376 return allCoeffForLoopAreZero; 377 } 378 379 bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const { 380 // The indexed reference is 'consecutive' if the only coefficient that uses 381 // the loop induction variable is the last one... 382 const SCEV *LastSubscript = Subscripts.back(); 383 for (const SCEV *Subscript : Subscripts) { 384 if (Subscript == LastSubscript) 385 continue; 386 if (!isCoeffForLoopZeroOrInvariant(*Subscript, L)) 387 return false; 388 } 389 390 // ...and the access stride is less than the cache line size. 391 const SCEV *Coeff = getLastCoefficient(); 392 const SCEV *ElemSize = Sizes.back(); 393 const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); 394 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); 395 396 return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize); 397 } 398 399 const SCEV *IndexedReference::getLastCoefficient() const { 400 const SCEV *LastSubscript = getLastSubscript(); 401 assert(isa<SCEVAddRecExpr>(LastSubscript) && 402 "Expecting a SCEV add recurrence expression"); 403 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LastSubscript); 404 return AR->getStepRecurrence(SE); 405 } 406 407 bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript, 408 const Loop &L) const { 409 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript); 410 return (AR != nullptr) ? AR->getLoop() != &L 411 : SE.isLoopInvariant(&Subscript, &L); 412 } 413 414 bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript, 415 const Loop &L) const { 416 if (!isa<SCEVAddRecExpr>(Subscript)) 417 return false; 418 419 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript); 420 assert(AR->getLoop() && "AR should have a loop"); 421 422 if (!AR->isAffine()) 423 return false; 424 425 const SCEV *Start = AR->getStart(); 426 const SCEV *Step = AR->getStepRecurrence(SE); 427 428 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) 429 return false; 430 431 return true; 432 } 433 434 bool IndexedReference::isAliased(const IndexedReference &Other, 435 AliasAnalysis &AA) const { 436 const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst); 437 const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst); 438 return AA.isMustAlias(Loc1, Loc2); 439 } 440 441 //===----------------------------------------------------------------------===// 442 // CacheCost implementation 443 // 444 raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) { 445 for (const auto &LC : CC.LoopCosts) { 446 const Loop *L = LC.first; 447 OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n"; 448 } 449 return OS; 450 } 451 452 CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI, 453 ScalarEvolution &SE, TargetTransformInfo &TTI, 454 AliasAnalysis &AA, DependenceInfo &DI, 455 Optional<unsigned> TRT) 456 : Loops(Loops), TripCounts(), LoopCosts(), 457 TRT((TRT == None) ? Optional<unsigned>(TemporalReuseThreshold) : TRT), 458 LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) { 459 assert(!Loops.empty() && "Expecting a non-empty loop vector."); 460 461 for (const Loop *L : Loops) { 462 unsigned TripCount = SE.getSmallConstantTripCount(L); 463 TripCount = (TripCount == 0) ? DefaultTripCount : TripCount; 464 TripCounts.push_back({L, TripCount}); 465 } 466 467 calculateCacheFootprint(); 468 } 469 470 std::unique_ptr<CacheCost> 471 CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR, 472 DependenceInfo &DI, Optional<unsigned> TRT) { 473 if (Root.getParentLoop()) { 474 LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n"); 475 return nullptr; 476 } 477 478 LoopVectorTy Loops; 479 for (Loop *L : breadth_first(&Root)) 480 Loops.push_back(L); 481 482 if (!getInnerMostLoop(Loops)) { 483 LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more " 484 "than one innermost loop\n"); 485 return nullptr; 486 } 487 488 return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT); 489 } 490 491 void CacheCost::calculateCacheFootprint() { 492 LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n"); 493 ReferenceGroupsTy RefGroups; 494 if (!populateReferenceGroups(RefGroups)) 495 return; 496 497 LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n"); 498 for (const Loop *L : Loops) { 499 assert((std::find_if(LoopCosts.begin(), LoopCosts.end(), 500 [L](const LoopCacheCostTy &LCC) { 501 return LCC.first == L; 502 }) == LoopCosts.end()) && 503 "Should not add duplicate element"); 504 CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups); 505 LoopCosts.push_back(std::make_pair(L, LoopCost)); 506 } 507 508 sortLoopCosts(); 509 RefGroups.clear(); 510 } 511 512 bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const { 513 assert(RefGroups.empty() && "Reference groups should be empty"); 514 515 unsigned CLS = TTI.getCacheLineSize(); 516 Loop *InnerMostLoop = getInnerMostLoop(Loops); 517 assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop"); 518 519 for (BasicBlock *BB : InnerMostLoop->getBlocks()) { 520 for (Instruction &I : *BB) { 521 if (!isa<StoreInst>(I) && !isa<LoadInst>(I)) 522 continue; 523 524 std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE)); 525 if (!R->isValid()) 526 continue; 527 528 bool Added = false; 529 for (ReferenceGroupTy &RefGroup : RefGroups) { 530 const IndexedReference &Representative = *RefGroup.front().get(); 531 LLVM_DEBUG({ 532 dbgs() << "References:\n"; 533 dbgs().indent(2) << *R << "\n"; 534 dbgs().indent(2) << Representative << "\n"; 535 }); 536 537 Optional<bool> HasTemporalReuse = 538 R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA); 539 Optional<bool> HasSpacialReuse = 540 R->hasSpacialReuse(Representative, CLS, AA); 541 542 if ((HasTemporalReuse.hasValue() && *HasTemporalReuse) || 543 (HasSpacialReuse.hasValue() && *HasSpacialReuse)) { 544 RefGroup.push_back(std::move(R)); 545 Added = true; 546 break; 547 } 548 } 549 550 if (!Added) { 551 ReferenceGroupTy RG; 552 RG.push_back(std::move(R)); 553 RefGroups.push_back(std::move(RG)); 554 } 555 } 556 } 557 558 if (RefGroups.empty()) 559 return false; 560 561 LLVM_DEBUG({ 562 dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n"; 563 int n = 1; 564 for (const ReferenceGroupTy &RG : RefGroups) { 565 dbgs().indent(2) << "RefGroup " << n << ":\n"; 566 for (const auto &IR : RG) 567 dbgs().indent(4) << *IR << "\n"; 568 n++; 569 } 570 dbgs() << "\n"; 571 }); 572 573 return true; 574 } 575 576 CacheCostTy 577 CacheCost::computeLoopCacheCost(const Loop &L, 578 const ReferenceGroupsTy &RefGroups) const { 579 if (!L.isLoopSimplifyForm()) 580 return InvalidCost; 581 582 LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName() 583 << "' as innermost loop.\n"); 584 585 // Compute the product of the trip counts of each other loop in the nest. 586 CacheCostTy TripCountsProduct = 1; 587 for (const auto &TC : TripCounts) { 588 if (TC.first == &L) 589 continue; 590 TripCountsProduct *= TC.second; 591 } 592 593 CacheCostTy LoopCost = 0; 594 for (const ReferenceGroupTy &RG : RefGroups) { 595 CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L); 596 LoopCost += RefGroupCost * TripCountsProduct; 597 } 598 599 LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName() 600 << "' has cost=" << LoopCost << "\n"); 601 602 return LoopCost; 603 } 604 605 CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG, 606 const Loop &L) const { 607 assert(!RG.empty() && "Reference group should have at least one member."); 608 609 const IndexedReference *Representative = RG.front().get(); 610 return Representative->computeRefCost(L, TTI.getCacheLineSize()); 611 } 612 613 //===----------------------------------------------------------------------===// 614 // LoopCachePrinterPass implementation 615 // 616 PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM, 617 LoopStandardAnalysisResults &AR, 618 LPMUpdater &U) { 619 Function *F = L.getHeader()->getParent(); 620 DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI); 621 622 if (auto CC = CacheCost::getCacheCost(L, AR, DI)) 623 OS << *CC; 624 625 return PreservedAnalyses::all(); 626 } 627