1 //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 6 // See https://llvm.org/LICENSE.txt for license information. 7 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 8 // 9 //===----------------------------------------------------------------------===// 10 /// 11 /// \file 12 /// This file defines the implementation for the loop cache analysis. 13 /// The implementation is largely based on the following paper: 14 /// 15 /// Compiler Optimizations for Improving Data Locality 16 /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng 17 /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf 18 /// 19 /// The general approach taken to estimate the number of cache lines used by the 20 /// memory references in an inner loop is: 21 /// 1. Partition memory references that exhibit temporal or spacial reuse 22 /// into reference groups. 23 /// 2. For each loop L in the a loop nest LN: 24 /// a. Compute the cost of the reference group 25 /// b. Compute the loop cost by summing up the reference groups costs 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Analysis/LoopCacheAnalysis.h" 29 #include "llvm/ADT/BreadthFirstIterator.h" 30 #include "llvm/ADT/Sequence.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "loop-cache-cost" 38 39 static cl::opt<unsigned> DefaultTripCount( 40 "default-trip-count", cl::init(100), cl::Hidden, 41 cl::desc("Use this to specify the default trip count of a loop")); 42 43 // In this analysis two array references are considered to exhibit temporal 44 // reuse if they access either the same memory location, or a memory location 45 // with distance smaller than a configurable threshold. 46 static cl::opt<unsigned> TemporalReuseThreshold( 47 "temporal-reuse-threshold", cl::init(2), cl::Hidden, 48 cl::desc("Use this to specify the max. distance between array elements " 49 "accessed in a loop so that the elements are classified to have " 50 "temporal reuse")); 51 52 /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a 53 /// nullptr if any loops in the loop vector supplied has more than one sibling. 54 /// The loop vector is expected to contain loops collected in breadth-first 55 /// order. 56 static Loop *getInnerMostLoop(const LoopVectorTy &Loops) { 57 assert(!Loops.empty() && "Expecting a non-empy loop vector"); 58 59 Loop *LastLoop = Loops.back(); 60 Loop *ParentLoop = LastLoop->getParentLoop(); 61 62 if (ParentLoop == nullptr) { 63 assert(Loops.size() == 1 && "Expecting a single loop"); 64 return LastLoop; 65 } 66 67 return (llvm::is_sorted(Loops, 68 [](const Loop *L1, const Loop *L2) { 69 return L1->getLoopDepth() < L2->getLoopDepth(); 70 })) 71 ? LastLoop 72 : nullptr; 73 } 74 75 static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize, 76 const Loop &L, ScalarEvolution &SE) { 77 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn); 78 if (!AR || !AR->isAffine()) 79 return false; 80 81 assert(AR->getLoop() && "AR should have a loop"); 82 83 // Check that start and increment are not add recurrences. 84 const SCEV *Start = AR->getStart(); 85 const SCEV *Step = AR->getStepRecurrence(SE); 86 if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step)) 87 return false; 88 89 // Check that start and increment are both invariant in the loop. 90 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) 91 return false; 92 93 const SCEV *StepRec = AR->getStepRecurrence(SE); 94 if (StepRec && SE.isKnownNegative(StepRec)) 95 StepRec = SE.getNegativeSCEV(StepRec); 96 97 return StepRec == &ElemSize; 98 } 99 100 /// Compute the trip count for the given loop \p L. Return the SCEV expression 101 /// for the trip count or nullptr if it cannot be computed. 102 static const SCEV *computeTripCount(const Loop &L, ScalarEvolution &SE) { 103 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L); 104 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 105 !isa<SCEVConstant>(BackedgeTakenCount)) 106 return nullptr; 107 108 return SE.getAddExpr(BackedgeTakenCount, 109 SE.getOne(BackedgeTakenCount->getType())); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // IndexedReference implementation 114 // 115 raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) { 116 if (!R.IsValid) { 117 OS << R.StoreOrLoadInst; 118 OS << ", IsValid=false."; 119 return OS; 120 } 121 122 OS << *R.BasePointer; 123 for (const SCEV *Subscript : R.Subscripts) 124 OS << "[" << *Subscript << "]"; 125 126 OS << ", Sizes: "; 127 for (const SCEV *Size : R.Sizes) 128 OS << "[" << *Size << "]"; 129 130 return OS; 131 } 132 133 IndexedReference::IndexedReference(Instruction &StoreOrLoadInst, 134 const LoopInfo &LI, ScalarEvolution &SE) 135 : StoreOrLoadInst(StoreOrLoadInst), SE(SE) { 136 assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) && 137 "Expecting a load or store instruction"); 138 139 IsValid = delinearize(LI); 140 if (IsValid) 141 LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this 142 << "\n"); 143 } 144 145 Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other, 146 unsigned CLS, 147 AliasAnalysis &AA) const { 148 assert(IsValid && "Expecting a valid reference"); 149 150 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { 151 LLVM_DEBUG(dbgs().indent(2) 152 << "No spacial reuse: different base pointers\n"); 153 return false; 154 } 155 156 unsigned NumSubscripts = getNumSubscripts(); 157 if (NumSubscripts != Other.getNumSubscripts()) { 158 LLVM_DEBUG(dbgs().indent(2) 159 << "No spacial reuse: different number of subscripts\n"); 160 return false; 161 } 162 163 // all subscripts must be equal, except the leftmost one (the last one). 164 for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) { 165 if (getSubscript(SubNum) != Other.getSubscript(SubNum)) { 166 LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: " 167 << "\n\t" << *getSubscript(SubNum) << "\n\t" 168 << *Other.getSubscript(SubNum) << "\n"); 169 return false; 170 } 171 } 172 173 // the difference between the last subscripts must be less than the cache line 174 // size. 175 const SCEV *LastSubscript = getLastSubscript(); 176 const SCEV *OtherLastSubscript = Other.getLastSubscript(); 177 const SCEVConstant *Diff = dyn_cast<SCEVConstant>( 178 SE.getMinusSCEV(LastSubscript, OtherLastSubscript)); 179 180 if (Diff == nullptr) { 181 LLVM_DEBUG(dbgs().indent(2) 182 << "No spacial reuse, difference between subscript:\n\t" 183 << *LastSubscript << "\n\t" << OtherLastSubscript 184 << "\nis not constant.\n"); 185 return None; 186 } 187 188 bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS); 189 190 LLVM_DEBUG({ 191 if (InSameCacheLine) 192 dbgs().indent(2) << "Found spacial reuse.\n"; 193 else 194 dbgs().indent(2) << "No spacial reuse.\n"; 195 }); 196 197 return InSameCacheLine; 198 } 199 200 Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other, 201 unsigned MaxDistance, 202 const Loop &L, 203 DependenceInfo &DI, 204 AliasAnalysis &AA) const { 205 assert(IsValid && "Expecting a valid reference"); 206 207 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { 208 LLVM_DEBUG(dbgs().indent(2) 209 << "No temporal reuse: different base pointer\n"); 210 return false; 211 } 212 213 std::unique_ptr<Dependence> D = 214 DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true); 215 216 if (D == nullptr) { 217 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n"); 218 return false; 219 } 220 221 if (D->isLoopIndependent()) { 222 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); 223 return true; 224 } 225 226 // Check the dependence distance at every loop level. There is temporal reuse 227 // if the distance at the given loop's depth is small (|d| <= MaxDistance) and 228 // it is zero at every other loop level. 229 int LoopDepth = L.getLoopDepth(); 230 int Levels = D->getLevels(); 231 for (int Level = 1; Level <= Levels; ++Level) { 232 const SCEV *Distance = D->getDistance(Level); 233 const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance); 234 235 if (SCEVConst == nullptr) { 236 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n"); 237 return None; 238 } 239 240 const ConstantInt &CI = *SCEVConst->getValue(); 241 if (Level != LoopDepth && !CI.isZero()) { 242 LLVM_DEBUG(dbgs().indent(2) 243 << "No temporal reuse: distance is not zero at depth=" << Level 244 << "\n"); 245 return false; 246 } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) { 247 LLVM_DEBUG( 248 dbgs().indent(2) 249 << "No temporal reuse: distance is greater than MaxDistance at depth=" 250 << Level << "\n"); 251 return false; 252 } 253 } 254 255 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); 256 return true; 257 } 258 259 CacheCostTy IndexedReference::computeRefCost(const Loop &L, 260 unsigned CLS) const { 261 assert(IsValid && "Expecting a valid reference"); 262 LLVM_DEBUG({ 263 dbgs().indent(2) << "Computing cache cost for:\n"; 264 dbgs().indent(4) << *this << "\n"; 265 }); 266 267 // If the indexed reference is loop invariant the cost is one. 268 if (isLoopInvariant(L)) { 269 LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n"); 270 return 1; 271 } 272 273 const SCEV *TripCount = computeTripCount(L, SE); 274 if (!TripCount) { 275 LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName() 276 << " could not be computed, using DefaultTripCount\n"); 277 const SCEV *ElemSize = Sizes.back(); 278 TripCount = SE.getConstant(ElemSize->getType(), DefaultTripCount); 279 } 280 LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n"); 281 282 // If the indexed reference is 'consecutive' the cost is 283 // (TripCount*Stride)/CLS, otherwise the cost is TripCount. 284 const SCEV *RefCost = TripCount; 285 286 if (isConsecutive(L, CLS)) { 287 const SCEV *Coeff = getLastCoefficient(); 288 const SCEV *ElemSize = Sizes.back(); 289 const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); 290 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); 291 Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType()); 292 if (SE.isKnownNegative(Stride)) 293 Stride = SE.getNegativeSCEV(Stride); 294 Stride = SE.getNoopOrAnyExtend(Stride, WiderType); 295 TripCount = SE.getNoopOrAnyExtend(TripCount, WiderType); 296 const SCEV *Numerator = SE.getMulExpr(Stride, TripCount); 297 RefCost = SE.getUDivExpr(Numerator, CacheLineSize); 298 299 LLVM_DEBUG(dbgs().indent(4) 300 << "Access is consecutive: RefCost=(TripCount*Stride)/CLS=" 301 << *RefCost << "\n"); 302 } else 303 LLVM_DEBUG(dbgs().indent(4) 304 << "Access is not consecutive: RefCost=TripCount=" << *RefCost 305 << "\n"); 306 307 // Attempt to fold RefCost into a constant. 308 if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost)) 309 return ConstantCost->getValue()->getSExtValue(); 310 311 LLVM_DEBUG(dbgs().indent(4) 312 << "RefCost is not a constant! Setting to RefCost=InvalidCost " 313 "(invalid value).\n"); 314 315 return CacheCost::InvalidCost; 316 } 317 318 bool IndexedReference::delinearize(const LoopInfo &LI) { 319 assert(Subscripts.empty() && "Subscripts should be empty"); 320 assert(Sizes.empty() && "Sizes should be empty"); 321 assert(!IsValid && "Should be called once from the constructor"); 322 LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n"); 323 324 const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst); 325 const BasicBlock *BB = StoreOrLoadInst.getParent(); 326 327 if (Loop *L = LI.getLoopFor(BB)) { 328 const SCEV *AccessFn = 329 SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L); 330 331 BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn)); 332 if (BasePointer == nullptr) { 333 LLVM_DEBUG( 334 dbgs().indent(2) 335 << "ERROR: failed to delinearize, can't identify base pointer\n"); 336 return false; 337 } 338 339 AccessFn = SE.getMinusSCEV(AccessFn, BasePointer); 340 341 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() 342 << "', AccessFn: " << *AccessFn << "\n"); 343 344 SE.delinearize(AccessFn, Subscripts, Sizes, 345 SE.getElementSize(&StoreOrLoadInst)); 346 347 if (Subscripts.empty() || Sizes.empty() || 348 Subscripts.size() != Sizes.size()) { 349 // Attempt to determine whether we have a single dimensional array access. 350 // before giving up. 351 if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) { 352 LLVM_DEBUG(dbgs().indent(2) 353 << "ERROR: failed to delinearize reference\n"); 354 Subscripts.clear(); 355 Sizes.clear(); 356 return false; 357 } 358 359 // The array may be accessed in reverse, for example: 360 // for (i = N; i > 0; i--) 361 // A[i] = 0; 362 // In this case, reconstruct the access function using the absolute value 363 // of the step recurrence. 364 const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(AccessFn); 365 const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr; 366 367 if (StepRec && SE.isKnownNegative(StepRec)) 368 AccessFn = SE.getAddRecExpr(AccessFnAR->getStart(), 369 SE.getNegativeSCEV(StepRec), 370 AccessFnAR->getLoop(), 371 AccessFnAR->getNoWrapFlags()); 372 const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize); 373 Subscripts.push_back(Div); 374 Sizes.push_back(ElemSize); 375 } 376 377 return all_of(Subscripts, [&](const SCEV *Subscript) { 378 return isSimpleAddRecurrence(*Subscript, *L); 379 }); 380 } 381 382 return false; 383 } 384 385 bool IndexedReference::isLoopInvariant(const Loop &L) const { 386 Value *Addr = getPointerOperand(&StoreOrLoadInst); 387 assert(Addr != nullptr && "Expecting either a load or a store instruction"); 388 assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable"); 389 390 if (SE.isLoopInvariant(SE.getSCEV(Addr), &L)) 391 return true; 392 393 // The indexed reference is loop invariant if none of the coefficients use 394 // the loop induction variable. 395 bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) { 396 return isCoeffForLoopZeroOrInvariant(*Subscript, L); 397 }); 398 399 return allCoeffForLoopAreZero; 400 } 401 402 bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const { 403 // The indexed reference is 'consecutive' if the only coefficient that uses 404 // the loop induction variable is the last one... 405 const SCEV *LastSubscript = Subscripts.back(); 406 for (const SCEV *Subscript : Subscripts) { 407 if (Subscript == LastSubscript) 408 continue; 409 if (!isCoeffForLoopZeroOrInvariant(*Subscript, L)) 410 return false; 411 } 412 413 // ...and the access stride is less than the cache line size. 414 const SCEV *Coeff = getLastCoefficient(); 415 const SCEV *ElemSize = Sizes.back(); 416 const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); 417 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); 418 419 Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride; 420 return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize); 421 } 422 423 const SCEV *IndexedReference::getLastCoefficient() const { 424 const SCEV *LastSubscript = getLastSubscript(); 425 assert(isa<SCEVAddRecExpr>(LastSubscript) && 426 "Expecting a SCEV add recurrence expression"); 427 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LastSubscript); 428 return AR->getStepRecurrence(SE); 429 } 430 431 bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript, 432 const Loop &L) const { 433 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript); 434 return (AR != nullptr) ? AR->getLoop() != &L 435 : SE.isLoopInvariant(&Subscript, &L); 436 } 437 438 bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript, 439 const Loop &L) const { 440 if (!isa<SCEVAddRecExpr>(Subscript)) 441 return false; 442 443 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript); 444 assert(AR->getLoop() && "AR should have a loop"); 445 446 if (!AR->isAffine()) 447 return false; 448 449 const SCEV *Start = AR->getStart(); 450 const SCEV *Step = AR->getStepRecurrence(SE); 451 452 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) 453 return false; 454 455 return true; 456 } 457 458 bool IndexedReference::isAliased(const IndexedReference &Other, 459 AliasAnalysis &AA) const { 460 const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst); 461 const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst); 462 return AA.isMustAlias(Loc1, Loc2); 463 } 464 465 //===----------------------------------------------------------------------===// 466 // CacheCost implementation 467 // 468 raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) { 469 for (const auto &LC : CC.LoopCosts) { 470 const Loop *L = LC.first; 471 OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n"; 472 } 473 return OS; 474 } 475 476 CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI, 477 ScalarEvolution &SE, TargetTransformInfo &TTI, 478 AliasAnalysis &AA, DependenceInfo &DI, 479 Optional<unsigned> TRT) 480 : Loops(Loops), TripCounts(), LoopCosts(), 481 TRT((TRT == None) ? Optional<unsigned>(TemporalReuseThreshold) : TRT), 482 LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) { 483 assert(!Loops.empty() && "Expecting a non-empty loop vector."); 484 485 for (const Loop *L : Loops) { 486 unsigned TripCount = SE.getSmallConstantTripCount(L); 487 TripCount = (TripCount == 0) ? DefaultTripCount : TripCount; 488 TripCounts.push_back({L, TripCount}); 489 } 490 491 calculateCacheFootprint(); 492 } 493 494 std::unique_ptr<CacheCost> 495 CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR, 496 DependenceInfo &DI, Optional<unsigned> TRT) { 497 if (Root.getParentLoop()) { 498 LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n"); 499 return nullptr; 500 } 501 502 LoopVectorTy Loops; 503 for (Loop *L : breadth_first(&Root)) 504 Loops.push_back(L); 505 506 if (!getInnerMostLoop(Loops)) { 507 LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more " 508 "than one innermost loop\n"); 509 return nullptr; 510 } 511 512 return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT); 513 } 514 515 void CacheCost::calculateCacheFootprint() { 516 LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n"); 517 ReferenceGroupsTy RefGroups; 518 if (!populateReferenceGroups(RefGroups)) 519 return; 520 521 LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n"); 522 for (const Loop *L : Loops) { 523 assert((std::find_if(LoopCosts.begin(), LoopCosts.end(), 524 [L](const LoopCacheCostTy &LCC) { 525 return LCC.first == L; 526 }) == LoopCosts.end()) && 527 "Should not add duplicate element"); 528 CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups); 529 LoopCosts.push_back(std::make_pair(L, LoopCost)); 530 } 531 532 sortLoopCosts(); 533 RefGroups.clear(); 534 } 535 536 bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const { 537 assert(RefGroups.empty() && "Reference groups should be empty"); 538 539 unsigned CLS = TTI.getCacheLineSize(); 540 Loop *InnerMostLoop = getInnerMostLoop(Loops); 541 assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop"); 542 543 for (BasicBlock *BB : InnerMostLoop->getBlocks()) { 544 for (Instruction &I : *BB) { 545 if (!isa<StoreInst>(I) && !isa<LoadInst>(I)) 546 continue; 547 548 std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE)); 549 if (!R->isValid()) 550 continue; 551 552 bool Added = false; 553 for (ReferenceGroupTy &RefGroup : RefGroups) { 554 const IndexedReference &Representative = *RefGroup.front().get(); 555 LLVM_DEBUG({ 556 dbgs() << "References:\n"; 557 dbgs().indent(2) << *R << "\n"; 558 dbgs().indent(2) << Representative << "\n"; 559 }); 560 561 562 // FIXME: Both positive and negative access functions will be placed 563 // into the same reference group, resulting in a bi-directional array 564 // access such as: 565 // for (i = N; i > 0; i--) 566 // A[i] = A[N - i]; 567 // having the same cost calculation as a single dimention access pattern 568 // for (i = 0; i < N; i++) 569 // A[i] = A[i]; 570 // when in actuality, depending on the array size, the first example 571 // should have a cost closer to 2x the second due to the two cache 572 // access per iteration from opposite ends of the array 573 Optional<bool> HasTemporalReuse = 574 R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA); 575 Optional<bool> HasSpacialReuse = 576 R->hasSpacialReuse(Representative, CLS, AA); 577 578 if ((HasTemporalReuse.hasValue() && *HasTemporalReuse) || 579 (HasSpacialReuse.hasValue() && *HasSpacialReuse)) { 580 RefGroup.push_back(std::move(R)); 581 Added = true; 582 break; 583 } 584 } 585 586 if (!Added) { 587 ReferenceGroupTy RG; 588 RG.push_back(std::move(R)); 589 RefGroups.push_back(std::move(RG)); 590 } 591 } 592 } 593 594 if (RefGroups.empty()) 595 return false; 596 597 LLVM_DEBUG({ 598 dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n"; 599 int n = 1; 600 for (const ReferenceGroupTy &RG : RefGroups) { 601 dbgs().indent(2) << "RefGroup " << n << ":\n"; 602 for (const auto &IR : RG) 603 dbgs().indent(4) << *IR << "\n"; 604 n++; 605 } 606 dbgs() << "\n"; 607 }); 608 609 return true; 610 } 611 612 CacheCostTy 613 CacheCost::computeLoopCacheCost(const Loop &L, 614 const ReferenceGroupsTy &RefGroups) const { 615 if (!L.isLoopSimplifyForm()) 616 return InvalidCost; 617 618 LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName() 619 << "' as innermost loop.\n"); 620 621 // Compute the product of the trip counts of each other loop in the nest. 622 CacheCostTy TripCountsProduct = 1; 623 for (const auto &TC : TripCounts) { 624 if (TC.first == &L) 625 continue; 626 TripCountsProduct *= TC.second; 627 } 628 629 CacheCostTy LoopCost = 0; 630 for (const ReferenceGroupTy &RG : RefGroups) { 631 CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L); 632 LoopCost += RefGroupCost * TripCountsProduct; 633 } 634 635 LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName() 636 << "' has cost=" << LoopCost << "\n"); 637 638 return LoopCost; 639 } 640 641 CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG, 642 const Loop &L) const { 643 assert(!RG.empty() && "Reference group should have at least one member."); 644 645 const IndexedReference *Representative = RG.front().get(); 646 return Representative->computeRefCost(L, TTI.getCacheLineSize()); 647 } 648 649 //===----------------------------------------------------------------------===// 650 // LoopCachePrinterPass implementation 651 // 652 PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM, 653 LoopStandardAnalysisResults &AR, 654 LPMUpdater &U) { 655 Function *F = L.getHeader()->getParent(); 656 DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI); 657 658 if (auto CC = CacheCost::getCacheCost(L, AR, DI)) 659 OS << *CC; 660 661 return PreservedAnalyses::all(); 662 } 663