1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/IR/ValueHandle.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <utility> 65 #include <vector> 66 67 using namespace llvm; 68 69 #define DEBUG_TYPE "loop-accesses" 70 71 static cl::opt<unsigned, true> 72 VectorizationFactor("force-vector-width", cl::Hidden, 73 cl::desc("Sets the SIMD width. Zero is autoselect."), 74 cl::location(VectorizerParams::VectorizationFactor)); 75 unsigned VectorizerParams::VectorizationFactor; 76 77 static cl::opt<unsigned, true> 78 VectorizationInterleave("force-vector-interleave", cl::Hidden, 79 cl::desc("Sets the vectorization interleave count. " 80 "Zero is autoselect."), 81 cl::location( 82 VectorizerParams::VectorizationInterleave)); 83 unsigned VectorizerParams::VectorizationInterleave; 84 85 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 86 "runtime-memory-check-threshold", cl::Hidden, 87 cl::desc("When performing memory disambiguation checks at runtime do not " 88 "generate more than this number of comparisons (default = 8)."), 89 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 90 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 91 92 /// The maximum iterations used to merge memory checks 93 static cl::opt<unsigned> MemoryCheckMergeThreshold( 94 "memory-check-merge-threshold", cl::Hidden, 95 cl::desc("Maximum number of comparisons done when trying to merge " 96 "runtime memory checks. (default = 100)"), 97 cl::init(100)); 98 99 /// Maximum SIMD width. 100 const unsigned VectorizerParams::MaxVectorWidth = 64; 101 102 /// We collect dependences up to this threshold. 103 static cl::opt<unsigned> 104 MaxDependences("max-dependences", cl::Hidden, 105 cl::desc("Maximum number of dependences collected by " 106 "loop-access analysis (default = 100)"), 107 cl::init(100)); 108 109 /// This enables versioning on the strides of symbolically striding memory 110 /// accesses in code like the following. 111 /// for (i = 0; i < N; ++i) 112 /// A[i * Stride1] += B[i * Stride2] ... 113 /// 114 /// Will be roughly translated to 115 /// if (Stride1 == 1 && Stride2 == 1) { 116 /// for (i = 0; i < N; i+=4) 117 /// A[i:i+3] += ... 118 /// } else 119 /// ... 120 static cl::opt<bool> EnableMemAccessVersioning( 121 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 122 cl::desc("Enable symbolic stride memory access versioning")); 123 124 /// Enable store-to-load forwarding conflict detection. This option can 125 /// be disabled for correctness testing. 126 static cl::opt<bool> EnableForwardingConflictDetection( 127 "store-to-load-forwarding-conflict-detection", cl::Hidden, 128 cl::desc("Enable conflict detection in loop-access analysis"), 129 cl::init(true)); 130 131 bool VectorizerParams::isInterleaveForced() { 132 return ::VectorizationInterleave.getNumOccurrences() > 0; 133 } 134 135 Value *llvm::stripIntegerCast(Value *V) { 136 if (auto *CI = dyn_cast<CastInst>(V)) 137 if (CI->getOperand(0)->getType()->isIntegerTy()) 138 return CI->getOperand(0); 139 return V; 140 } 141 142 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 143 const ValueToValueMap &PtrToStride, 144 Value *Ptr) { 145 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 146 147 // If there is an entry in the map return the SCEV of the pointer with the 148 // symbolic stride replaced by one. 149 ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr); 150 if (SI == PtrToStride.end()) 151 // For a non-symbolic stride, just return the original expression. 152 return OrigSCEV; 153 154 Value *StrideVal = stripIntegerCast(SI->second); 155 156 ScalarEvolution *SE = PSE.getSE(); 157 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 158 const auto *CT = 159 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 160 161 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 162 auto *Expr = PSE.getSCEV(Ptr); 163 164 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 165 << " by: " << *Expr << "\n"); 166 return Expr; 167 } 168 169 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 170 unsigned Index, RuntimePointerChecking &RtCheck) 171 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 172 AddressSpace(RtCheck.Pointers[Index] 173 .PointerValue->getType() 174 ->getPointerAddressSpace()) { 175 Members.push_back(Index); 176 } 177 178 /// Calculate Start and End points of memory access. 179 /// Let's assume A is the first access and B is a memory access on N-th loop 180 /// iteration. Then B is calculated as: 181 /// B = A + Step*N . 182 /// Step value may be positive or negative. 183 /// N is a calculated back-edge taken count: 184 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 185 /// Start and End points are calculated in the following way: 186 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 187 /// where SizeOfElt is the size of single memory access in bytes. 188 /// 189 /// There is no conflict when the intervals are disjoint: 190 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 191 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, Type *AccessTy, 192 bool WritePtr, unsigned DepSetId, 193 unsigned ASId, 194 const ValueToValueMap &Strides, 195 PredicatedScalarEvolution &PSE) { 196 // Get the stride replaced scev. 197 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 198 ScalarEvolution *SE = PSE.getSE(); 199 200 const SCEV *ScStart; 201 const SCEV *ScEnd; 202 203 if (SE->isLoopInvariant(Sc, Lp)) { 204 ScStart = ScEnd = Sc; 205 } else { 206 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 207 assert(AR && "Invalid addrec expression"); 208 const SCEV *Ex = PSE.getBackedgeTakenCount(); 209 210 ScStart = AR->getStart(); 211 ScEnd = AR->evaluateAtIteration(Ex, *SE); 212 const SCEV *Step = AR->getStepRecurrence(*SE); 213 214 // For expressions with negative step, the upper bound is ScStart and the 215 // lower bound is ScEnd. 216 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 217 if (CStep->getValue()->isNegative()) 218 std::swap(ScStart, ScEnd); 219 } else { 220 // Fallback case: the step is not constant, but we can still 221 // get the upper and lower bounds of the interval by using min/max 222 // expressions. 223 ScStart = SE->getUMinExpr(ScStart, ScEnd); 224 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 225 } 226 } 227 // Add the size of the pointed element to ScEnd. 228 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 229 Type *IdxTy = DL.getIndexType(Ptr->getType()); 230 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy); 231 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 232 233 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 234 } 235 236 void RuntimePointerChecking::tryToCreateDiffCheck( 237 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) { 238 if (!CanUseDiffCheck) 239 return; 240 241 // If either group contains multiple different pointers, bail out. 242 // TODO: Support multiple pointers by using the minimum or maximum pointer, 243 // depending on src & sink. 244 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) { 245 CanUseDiffCheck = false; 246 return; 247 } 248 249 PointerInfo *Src = &Pointers[CGI.Members[0]]; 250 PointerInfo *Sink = &Pointers[CGJ.Members[0]]; 251 252 // If either pointer is read and written, multiple checks may be needed. Bail 253 // out. 254 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() || 255 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) { 256 CanUseDiffCheck = false; 257 return; 258 } 259 260 ArrayRef<unsigned> AccSrc = 261 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr); 262 ArrayRef<unsigned> AccSink = 263 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr); 264 // If either pointer is accessed multiple times, there may not be a clear 265 // src/sink relation. Bail out for now. 266 if (AccSrc.size() != 1 || AccSink.size() != 1) { 267 CanUseDiffCheck = false; 268 return; 269 } 270 // If the sink is accessed before src, swap src/sink. 271 if (AccSink[0] < AccSrc[0]) 272 std::swap(Src, Sink); 273 274 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr); 275 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr); 276 if (!SrcAR || !SinkAR) { 277 CanUseDiffCheck = false; 278 return; 279 } 280 281 const DataLayout &DL = 282 SinkAR->getLoop()->getHeader()->getModule()->getDataLayout(); 283 SmallVector<Instruction *, 4> SrcInsts = 284 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr); 285 SmallVector<Instruction *, 4> SinkInsts = 286 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr); 287 Type *SrcTy = getLoadStoreType(SrcInsts[0]); 288 Type *DstTy = getLoadStoreType(SinkInsts[0]); 289 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) 290 return; 291 unsigned AllocSize = 292 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy)); 293 IntegerType *IntTy = 294 IntegerType::get(Src->PointerValue->getContext(), 295 DL.getPointerSizeInBits(CGI.AddressSpace)); 296 297 // Only matching constant steps matching the AllocSize are supported at the 298 // moment. This simplifies the difference computation. Can be extended in the 299 // future. 300 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE)); 301 if (!Step || Step != SrcAR->getStepRecurrence(*SE) || 302 Step->getAPInt().abs() != AllocSize) { 303 CanUseDiffCheck = false; 304 return; 305 } 306 307 // When counting down, the dependence distance needs to be swapped. 308 if (Step->getValue()->isNegative()) 309 std::swap(SinkAR, SrcAR); 310 311 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy); 312 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy); 313 if (isa<SCEVCouldNotCompute>(SinkStartInt) || 314 isa<SCEVCouldNotCompute>(SrcStartInt)) { 315 CanUseDiffCheck = false; 316 return; 317 } 318 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize); 319 } 320 321 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() { 322 SmallVector<RuntimePointerCheck, 4> Checks; 323 324 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 325 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 326 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 327 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 328 329 if (needsChecking(CGI, CGJ)) { 330 tryToCreateDiffCheck(CGI, CGJ); 331 Checks.push_back(std::make_pair(&CGI, &CGJ)); 332 } 333 } 334 } 335 return Checks; 336 } 337 338 void RuntimePointerChecking::generateChecks( 339 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 340 assert(Checks.empty() && "Checks is not empty"); 341 groupChecks(DepCands, UseDependencies); 342 Checks = generateChecks(); 343 } 344 345 bool RuntimePointerChecking::needsChecking( 346 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 347 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 348 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 349 if (needsChecking(M.Members[I], N.Members[J])) 350 return true; 351 return false; 352 } 353 354 /// Compare \p I and \p J and return the minimum. 355 /// Return nullptr in case we couldn't find an answer. 356 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 357 ScalarEvolution *SE) { 358 const SCEV *Diff = SE->getMinusSCEV(J, I); 359 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 360 361 if (!C) 362 return nullptr; 363 if (C->getValue()->isNegative()) 364 return J; 365 return I; 366 } 367 368 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, 369 RuntimePointerChecking &RtCheck) { 370 return addPointer( 371 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 372 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 373 *RtCheck.SE); 374 } 375 376 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 377 const SCEV *End, unsigned AS, 378 ScalarEvolution &SE) { 379 assert(AddressSpace == AS && 380 "all pointers in a checking group must be in the same address space"); 381 382 // Compare the starts and ends with the known minimum and maximum 383 // of this set. We need to know how we compare against the min/max 384 // of the set in order to be able to emit memchecks. 385 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 386 if (!Min0) 387 return false; 388 389 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 390 if (!Min1) 391 return false; 392 393 // Update the low bound expression if we've found a new min value. 394 if (Min0 == Start) 395 Low = Start; 396 397 // Update the high bound expression if we've found a new max value. 398 if (Min1 != End) 399 High = End; 400 401 Members.push_back(Index); 402 return true; 403 } 404 405 void RuntimePointerChecking::groupChecks( 406 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 407 // We build the groups from dependency candidates equivalence classes 408 // because: 409 // - We know that pointers in the same equivalence class share 410 // the same underlying object and therefore there is a chance 411 // that we can compare pointers 412 // - We wouldn't be able to merge two pointers for which we need 413 // to emit a memcheck. The classes in DepCands are already 414 // conveniently built such that no two pointers in the same 415 // class need checking against each other. 416 417 // We use the following (greedy) algorithm to construct the groups 418 // For every pointer in the equivalence class: 419 // For each existing group: 420 // - if the difference between this pointer and the min/max bounds 421 // of the group is a constant, then make the pointer part of the 422 // group and update the min/max bounds of that group as required. 423 424 CheckingGroups.clear(); 425 426 // If we need to check two pointers to the same underlying object 427 // with a non-constant difference, we shouldn't perform any pointer 428 // grouping with those pointers. This is because we can easily get 429 // into cases where the resulting check would return false, even when 430 // the accesses are safe. 431 // 432 // The following example shows this: 433 // for (i = 0; i < 1000; ++i) 434 // a[5000 + i * m] = a[i] + a[i + 9000] 435 // 436 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 437 // (0, 10000) which is always false. However, if m is 1, there is no 438 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 439 // us to perform an accurate check in this case. 440 // 441 // The above case requires that we have an UnknownDependence between 442 // accesses to the same underlying object. This cannot happen unless 443 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 444 // is also false. In this case we will use the fallback path and create 445 // separate checking groups for all pointers. 446 447 // If we don't have the dependency partitions, construct a new 448 // checking pointer group for each pointer. This is also required 449 // for correctness, because in this case we can have checking between 450 // pointers to the same underlying object. 451 if (!UseDependencies) { 452 for (unsigned I = 0; I < Pointers.size(); ++I) 453 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 454 return; 455 } 456 457 unsigned TotalComparisons = 0; 458 459 DenseMap<Value *, unsigned> PositionMap; 460 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 461 PositionMap[Pointers[Index].PointerValue] = Index; 462 463 // We need to keep track of what pointers we've already seen so we 464 // don't process them twice. 465 SmallSet<unsigned, 2> Seen; 466 467 // Go through all equivalence classes, get the "pointer check groups" 468 // and add them to the overall solution. We use the order in which accesses 469 // appear in 'Pointers' to enforce determinism. 470 for (unsigned I = 0; I < Pointers.size(); ++I) { 471 // We've seen this pointer before, and therefore already processed 472 // its equivalence class. 473 if (Seen.count(I)) 474 continue; 475 476 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 477 Pointers[I].IsWritePtr); 478 479 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 480 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 481 482 // Because DepCands is constructed by visiting accesses in the order in 483 // which they appear in alias sets (which is deterministic) and the 484 // iteration order within an equivalence class member is only dependent on 485 // the order in which unions and insertions are performed on the 486 // equivalence class, the iteration order is deterministic. 487 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 488 MI != ME; ++MI) { 489 auto PointerI = PositionMap.find(MI->getPointer()); 490 assert(PointerI != PositionMap.end() && 491 "pointer in equivalence class not found in PositionMap"); 492 unsigned Pointer = PointerI->second; 493 bool Merged = false; 494 // Mark this pointer as seen. 495 Seen.insert(Pointer); 496 497 // Go through all the existing sets and see if we can find one 498 // which can include this pointer. 499 for (RuntimeCheckingPtrGroup &Group : Groups) { 500 // Don't perform more than a certain amount of comparisons. 501 // This should limit the cost of grouping the pointers to something 502 // reasonable. If we do end up hitting this threshold, the algorithm 503 // will create separate groups for all remaining pointers. 504 if (TotalComparisons > MemoryCheckMergeThreshold) 505 break; 506 507 TotalComparisons++; 508 509 if (Group.addPointer(Pointer, *this)) { 510 Merged = true; 511 break; 512 } 513 } 514 515 if (!Merged) 516 // We couldn't add this pointer to any existing set or the threshold 517 // for the number of comparisons has been reached. Create a new group 518 // to hold the current pointer. 519 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 520 } 521 522 // We've computed the grouped checks for this partition. 523 // Save the results and continue with the next one. 524 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 525 } 526 } 527 528 bool RuntimePointerChecking::arePointersInSamePartition( 529 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 530 unsigned PtrIdx2) { 531 return (PtrToPartition[PtrIdx1] != -1 && 532 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 533 } 534 535 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 536 const PointerInfo &PointerI = Pointers[I]; 537 const PointerInfo &PointerJ = Pointers[J]; 538 539 // No need to check if two readonly pointers intersect. 540 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 541 return false; 542 543 // Only need to check pointers between two different dependency sets. 544 if (PointerI.DependencySetId == PointerJ.DependencySetId) 545 return false; 546 547 // Only need to check pointers in the same alias set. 548 if (PointerI.AliasSetId != PointerJ.AliasSetId) 549 return false; 550 551 return true; 552 } 553 554 void RuntimePointerChecking::printChecks( 555 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 556 unsigned Depth) const { 557 unsigned N = 0; 558 for (const auto &Check : Checks) { 559 const auto &First = Check.first->Members, &Second = Check.second->Members; 560 561 OS.indent(Depth) << "Check " << N++ << ":\n"; 562 563 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 564 for (unsigned K = 0; K < First.size(); ++K) 565 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 566 567 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 568 for (unsigned K = 0; K < Second.size(); ++K) 569 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 570 } 571 } 572 573 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 574 575 OS.indent(Depth) << "Run-time memory checks:\n"; 576 printChecks(OS, Checks, Depth); 577 578 OS.indent(Depth) << "Grouped accesses:\n"; 579 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 580 const auto &CG = CheckingGroups[I]; 581 582 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 583 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 584 << ")\n"; 585 for (unsigned J = 0; J < CG.Members.size(); ++J) { 586 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 587 << "\n"; 588 } 589 } 590 } 591 592 namespace { 593 594 /// Analyses memory accesses in a loop. 595 /// 596 /// Checks whether run time pointer checks are needed and builds sets for data 597 /// dependence checking. 598 class AccessAnalysis { 599 public: 600 /// Read or write access location. 601 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 602 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 603 604 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 605 MemoryDepChecker::DepCandidates &DA, 606 PredicatedScalarEvolution &PSE) 607 : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), PSE(PSE) {} 608 609 /// Register a load and whether it is only read from. 610 void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) { 611 Value *Ptr = const_cast<Value*>(Loc.Ptr); 612 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 613 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy); 614 if (IsReadOnly) 615 ReadOnlyPtr.insert(Ptr); 616 } 617 618 /// Register a store. 619 void addStore(MemoryLocation &Loc, Type *AccessTy) { 620 Value *Ptr = const_cast<Value*>(Loc.Ptr); 621 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 622 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy); 623 } 624 625 /// Check if we can emit a run-time no-alias check for \p Access. 626 /// 627 /// Returns true if we can emit a run-time no alias check for \p Access. 628 /// If we can check this access, this also adds it to a dependence set and 629 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 630 /// we will attempt to use additional run-time checks in order to get 631 /// the bounds of the pointer. 632 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 633 MemAccessInfo Access, Type *AccessTy, 634 const ValueToValueMap &Strides, 635 DenseMap<Value *, unsigned> &DepSetId, 636 Loop *TheLoop, unsigned &RunningDepId, 637 unsigned ASId, bool ShouldCheckStride, bool Assume); 638 639 /// Check whether we can check the pointers at runtime for 640 /// non-intersection. 641 /// 642 /// Returns true if we need no check or if we do and we can generate them 643 /// (i.e. the pointers have computable bounds). 644 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 645 Loop *TheLoop, const ValueToValueMap &Strides, 646 Value *&UncomputablePtr, bool ShouldCheckWrap = false); 647 648 /// Goes over all memory accesses, checks whether a RT check is needed 649 /// and builds sets of dependent accesses. 650 void buildDependenceSets() { 651 processMemAccesses(); 652 } 653 654 /// Initial processing of memory accesses determined that we need to 655 /// perform dependency checking. 656 /// 657 /// Note that this can later be cleared if we retry memcheck analysis without 658 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 659 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 660 661 /// We decided that no dependence analysis would be used. Reset the state. 662 void resetDepChecks(MemoryDepChecker &DepChecker) { 663 CheckDeps.clear(); 664 DepChecker.clearDependences(); 665 } 666 667 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 668 669 private: 670 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap; 671 672 /// Go over all memory access and check whether runtime pointer checks 673 /// are needed and build sets of dependency check candidates. 674 void processMemAccesses(); 675 676 /// Map of all accesses. Values are the types used to access memory pointed to 677 /// by the pointer. 678 PtrAccessMap Accesses; 679 680 /// The loop being checked. 681 const Loop *TheLoop; 682 683 /// List of accesses that need a further dependence check. 684 MemAccessInfoList CheckDeps; 685 686 /// Set of pointers that are read only. 687 SmallPtrSet<Value*, 16> ReadOnlyPtr; 688 689 /// An alias set tracker to partition the access set by underlying object and 690 //intrinsic property (such as TBAA metadata). 691 AliasSetTracker AST; 692 693 LoopInfo *LI; 694 695 /// Sets of potentially dependent accesses - members of one set share an 696 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 697 /// dependence check. 698 MemoryDepChecker::DepCandidates &DepCands; 699 700 /// Initial processing of memory accesses determined that we may need 701 /// to add memchecks. Perform the analysis to determine the necessary checks. 702 /// 703 /// Note that, this is different from isDependencyCheckNeeded. When we retry 704 /// memcheck analysis without dependency checking 705 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 706 /// cleared while this remains set if we have potentially dependent accesses. 707 bool IsRTCheckAnalysisNeeded = false; 708 709 /// The SCEV predicate containing all the SCEV-related assumptions. 710 PredicatedScalarEvolution &PSE; 711 }; 712 713 } // end anonymous namespace 714 715 /// Check whether a pointer can participate in a runtime bounds check. 716 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 717 /// by adding run-time checks (overflow checks) if necessary. 718 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 719 const ValueToValueMap &Strides, Value *Ptr, 720 Loop *L, bool Assume) { 721 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 722 723 // The bounds for loop-invariant pointer is trivial. 724 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 725 return true; 726 727 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 728 729 if (!AR && Assume) 730 AR = PSE.getAsAddRec(Ptr); 731 732 if (!AR) 733 return false; 734 735 return AR->isAffine(); 736 } 737 738 /// Check whether a pointer address cannot wrap. 739 static bool isNoWrap(PredicatedScalarEvolution &PSE, 740 const ValueToValueMap &Strides, Value *Ptr, Type *AccessTy, 741 Loop *L) { 742 const SCEV *PtrScev = PSE.getSCEV(Ptr); 743 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 744 return true; 745 746 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides); 747 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 748 return true; 749 750 return false; 751 } 752 753 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, 754 function_ref<void(Value *)> AddPointer) { 755 SmallPtrSet<Value *, 8> Visited; 756 SmallVector<Value *> WorkList; 757 WorkList.push_back(StartPtr); 758 759 while (!WorkList.empty()) { 760 Value *Ptr = WorkList.pop_back_val(); 761 if (!Visited.insert(Ptr).second) 762 continue; 763 auto *PN = dyn_cast<PHINode>(Ptr); 764 // SCEV does not look through non-header PHIs inside the loop. Such phis 765 // can be analyzed by adding separate accesses for each incoming pointer 766 // value. 767 if (PN && InnermostLoop.contains(PN->getParent()) && 768 PN->getParent() != InnermostLoop.getHeader()) { 769 for (const Use &Inc : PN->incoming_values()) 770 WorkList.push_back(Inc); 771 } else 772 AddPointer(Ptr); 773 } 774 } 775 776 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 777 MemAccessInfo Access, Type *AccessTy, 778 const ValueToValueMap &StridesMap, 779 DenseMap<Value *, unsigned> &DepSetId, 780 Loop *TheLoop, unsigned &RunningDepId, 781 unsigned ASId, bool ShouldCheckWrap, 782 bool Assume) { 783 Value *Ptr = Access.getPointer(); 784 785 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 786 return false; 787 788 // When we run after a failing dependency check we have to make sure 789 // we don't have wrapping pointers. 790 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) { 791 auto *Expr = PSE.getSCEV(Ptr); 792 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 793 return false; 794 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 795 } 796 797 // The id of the dependence set. 798 unsigned DepId; 799 800 if (isDependencyCheckNeeded()) { 801 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 802 unsigned &LeaderId = DepSetId[Leader]; 803 if (!LeaderId) 804 LeaderId = RunningDepId++; 805 DepId = LeaderId; 806 } else 807 // Each access has its own dependence set. 808 DepId = RunningDepId++; 809 810 bool IsWrite = Access.getInt(); 811 RtCheck.insert(TheLoop, Ptr, AccessTy, IsWrite, DepId, ASId, StridesMap, PSE); 812 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 813 814 return true; 815 } 816 817 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 818 ScalarEvolution *SE, Loop *TheLoop, 819 const ValueToValueMap &StridesMap, 820 Value *&UncomputablePtr, bool ShouldCheckWrap) { 821 // Find pointers with computable bounds. We are going to use this information 822 // to place a runtime bound check. 823 bool CanDoRT = true; 824 825 bool MayNeedRTCheck = false; 826 if (!IsRTCheckAnalysisNeeded) return true; 827 828 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 829 830 // We assign a consecutive id to access from different alias sets. 831 // Accesses between different groups doesn't need to be checked. 832 unsigned ASId = 0; 833 for (auto &AS : AST) { 834 int NumReadPtrChecks = 0; 835 int NumWritePtrChecks = 0; 836 bool CanDoAliasSetRT = true; 837 ++ASId; 838 839 // We assign consecutive id to access from different dependence sets. 840 // Accesses within the same set don't need a runtime check. 841 unsigned RunningDepId = 1; 842 DenseMap<Value *, unsigned> DepSetId; 843 844 SmallVector<MemAccessInfo, 4> Retries; 845 846 // First, count how many write and read accesses are in the alias set. Also 847 // collect MemAccessInfos for later. 848 SmallVector<MemAccessInfo, 4> AccessInfos; 849 for (const auto &A : AS) { 850 Value *Ptr = A.getValue(); 851 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 852 853 if (IsWrite) 854 ++NumWritePtrChecks; 855 else 856 ++NumReadPtrChecks; 857 AccessInfos.emplace_back(Ptr, IsWrite); 858 } 859 860 // We do not need runtime checks for this alias set, if there are no writes 861 // or a single write and no reads. 862 if (NumWritePtrChecks == 0 || 863 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 864 assert((AS.size() <= 1 || 865 all_of(AS, 866 [this](auto AC) { 867 MemAccessInfo AccessWrite(AC.getValue(), true); 868 return DepCands.findValue(AccessWrite) == DepCands.end(); 869 })) && 870 "Can only skip updating CanDoRT below, if all entries in AS " 871 "are reads or there is at most 1 entry"); 872 continue; 873 } 874 875 for (auto &Access : AccessInfos) { 876 for (auto &AccessTy : Accesses[Access]) { 877 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 878 DepSetId, TheLoop, RunningDepId, ASId, 879 ShouldCheckWrap, false)) { 880 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 881 << *Access.getPointer() << '\n'); 882 Retries.push_back(Access); 883 CanDoAliasSetRT = false; 884 } 885 } 886 } 887 888 // Note that this function computes CanDoRT and MayNeedRTCheck 889 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 890 // we have a pointer for which we couldn't find the bounds but we don't 891 // actually need to emit any checks so it does not matter. 892 // 893 // We need runtime checks for this alias set, if there are at least 2 894 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 895 // any bound checks (because in that case the number of dependence sets is 896 // incomplete). 897 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 898 899 // We need to perform run-time alias checks, but some pointers had bounds 900 // that couldn't be checked. 901 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 902 // Reset the CanDoSetRt flag and retry all accesses that have failed. 903 // We know that we need these checks, so we can now be more aggressive 904 // and add further checks if required (overflow checks). 905 CanDoAliasSetRT = true; 906 for (auto Access : Retries) { 907 for (auto &AccessTy : Accesses[Access]) { 908 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 909 DepSetId, TheLoop, RunningDepId, ASId, 910 ShouldCheckWrap, /*Assume=*/true)) { 911 CanDoAliasSetRT = false; 912 UncomputablePtr = Access.getPointer(); 913 break; 914 } 915 } 916 } 917 } 918 919 CanDoRT &= CanDoAliasSetRT; 920 MayNeedRTCheck |= NeedsAliasSetRTCheck; 921 ++ASId; 922 } 923 924 // If the pointers that we would use for the bounds comparison have different 925 // address spaces, assume the values aren't directly comparable, so we can't 926 // use them for the runtime check. We also have to assume they could 927 // overlap. In the future there should be metadata for whether address spaces 928 // are disjoint. 929 unsigned NumPointers = RtCheck.Pointers.size(); 930 for (unsigned i = 0; i < NumPointers; ++i) { 931 for (unsigned j = i + 1; j < NumPointers; ++j) { 932 // Only need to check pointers between two different dependency sets. 933 if (RtCheck.Pointers[i].DependencySetId == 934 RtCheck.Pointers[j].DependencySetId) 935 continue; 936 // Only need to check pointers in the same alias set. 937 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 938 continue; 939 940 Value *PtrI = RtCheck.Pointers[i].PointerValue; 941 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 942 943 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 944 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 945 if (ASi != ASj) { 946 LLVM_DEBUG( 947 dbgs() << "LAA: Runtime check would require comparison between" 948 " different address spaces\n"); 949 return false; 950 } 951 } 952 } 953 954 if (MayNeedRTCheck && CanDoRT) 955 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 956 957 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 958 << " pointer comparisons.\n"); 959 960 // If we can do run-time checks, but there are no checks, no runtime checks 961 // are needed. This can happen when all pointers point to the same underlying 962 // object for example. 963 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 964 965 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 966 if (!CanDoRTIfNeeded) 967 RtCheck.reset(); 968 return CanDoRTIfNeeded; 969 } 970 971 void AccessAnalysis::processMemAccesses() { 972 // We process the set twice: first we process read-write pointers, last we 973 // process read-only pointers. This allows us to skip dependence tests for 974 // read-only pointers. 975 976 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 977 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 978 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 979 LLVM_DEBUG({ 980 for (auto A : Accesses) 981 dbgs() << "\t" << *A.first.getPointer() << " (" 982 << (A.first.getInt() 983 ? "write" 984 : (ReadOnlyPtr.count(A.first.getPointer()) ? "read-only" 985 : "read")) 986 << ")\n"; 987 }); 988 989 // The AliasSetTracker has nicely partitioned our pointers by metadata 990 // compatibility and potential for underlying-object overlap. As a result, we 991 // only need to check for potential pointer dependencies within each alias 992 // set. 993 for (const auto &AS : AST) { 994 // Note that both the alias-set tracker and the alias sets themselves used 995 // linked lists internally and so the iteration order here is deterministic 996 // (matching the original instruction order within each set). 997 998 bool SetHasWrite = false; 999 1000 // Map of pointers to last access encountered. 1001 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 1002 UnderlyingObjToAccessMap ObjToLastAccess; 1003 1004 // Set of access to check after all writes have been processed. 1005 PtrAccessMap DeferredAccesses; 1006 1007 // Iterate over each alias set twice, once to process read/write pointers, 1008 // and then to process read-only pointers. 1009 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 1010 bool UseDeferred = SetIteration > 0; 1011 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses; 1012 1013 for (const auto &AV : AS) { 1014 Value *Ptr = AV.getValue(); 1015 1016 // For a single memory access in AliasSetTracker, Accesses may contain 1017 // both read and write, and they both need to be handled for CheckDeps. 1018 for (const auto &AC : S) { 1019 if (AC.first.getPointer() != Ptr) 1020 continue; 1021 1022 bool IsWrite = AC.first.getInt(); 1023 1024 // If we're using the deferred access set, then it contains only 1025 // reads. 1026 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 1027 if (UseDeferred && !IsReadOnlyPtr) 1028 continue; 1029 // Otherwise, the pointer must be in the PtrAccessSet, either as a 1030 // read or a write. 1031 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 1032 S.count(MemAccessInfo(Ptr, false))) && 1033 "Alias-set pointer not in the access set?"); 1034 1035 MemAccessInfo Access(Ptr, IsWrite); 1036 DepCands.insert(Access); 1037 1038 // Memorize read-only pointers for later processing and skip them in 1039 // the first round (they need to be checked after we have seen all 1040 // write pointers). Note: we also mark pointer that are not 1041 // consecutive as "read-only" pointers (so that we check 1042 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 1043 if (!UseDeferred && IsReadOnlyPtr) { 1044 // We only use the pointer keys, the types vector values don't 1045 // matter. 1046 DeferredAccesses.insert({Access, {}}); 1047 continue; 1048 } 1049 1050 // If this is a write - check other reads and writes for conflicts. If 1051 // this is a read only check other writes for conflicts (but only if 1052 // there is no other write to the ptr - this is an optimization to 1053 // catch "a[i] = a[i] + " without having to do a dependence check). 1054 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 1055 CheckDeps.push_back(Access); 1056 IsRTCheckAnalysisNeeded = true; 1057 } 1058 1059 if (IsWrite) 1060 SetHasWrite = true; 1061 1062 // Create sets of pointers connected by a shared alias set and 1063 // underlying object. 1064 typedef SmallVector<const Value *, 16> ValueVector; 1065 ValueVector TempObjects; 1066 1067 getUnderlyingObjects(Ptr, TempObjects, LI); 1068 LLVM_DEBUG(dbgs() 1069 << "Underlying objects for pointer " << *Ptr << "\n"); 1070 for (const Value *UnderlyingObj : TempObjects) { 1071 // nullptr never alias, don't join sets for pointer that have "null" 1072 // in their UnderlyingObjects list. 1073 if (isa<ConstantPointerNull>(UnderlyingObj) && 1074 !NullPointerIsDefined( 1075 TheLoop->getHeader()->getParent(), 1076 UnderlyingObj->getType()->getPointerAddressSpace())) 1077 continue; 1078 1079 UnderlyingObjToAccessMap::iterator Prev = 1080 ObjToLastAccess.find(UnderlyingObj); 1081 if (Prev != ObjToLastAccess.end()) 1082 DepCands.unionSets(Access, Prev->second); 1083 1084 ObjToLastAccess[UnderlyingObj] = Access; 1085 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 1086 } 1087 } 1088 } 1089 } 1090 } 1091 } 1092 1093 static bool isInBoundsGep(Value *Ptr) { 1094 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 1095 return GEP->isInBounds(); 1096 return false; 1097 } 1098 1099 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 1100 /// i.e. monotonically increasing/decreasing. 1101 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 1102 PredicatedScalarEvolution &PSE, const Loop *L) { 1103 // FIXME: This should probably only return true for NUW. 1104 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 1105 return true; 1106 1107 // Scalar evolution does not propagate the non-wrapping flags to values that 1108 // are derived from a non-wrapping induction variable because non-wrapping 1109 // could be flow-sensitive. 1110 // 1111 // Look through the potentially overflowing instruction to try to prove 1112 // non-wrapping for the *specific* value of Ptr. 1113 1114 // The arithmetic implied by an inbounds GEP can't overflow. 1115 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1116 if (!GEP || !GEP->isInBounds()) 1117 return false; 1118 1119 // Make sure there is only one non-const index and analyze that. 1120 Value *NonConstIndex = nullptr; 1121 for (Value *Index : GEP->indices()) 1122 if (!isa<ConstantInt>(Index)) { 1123 if (NonConstIndex) 1124 return false; 1125 NonConstIndex = Index; 1126 } 1127 if (!NonConstIndex) 1128 // The recurrence is on the pointer, ignore for now. 1129 return false; 1130 1131 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1132 // AddRec using a NSW operation. 1133 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1134 if (OBO->hasNoSignedWrap() && 1135 // Assume constant for other the operand so that the AddRec can be 1136 // easily found. 1137 isa<ConstantInt>(OBO->getOperand(1))) { 1138 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1139 1140 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1141 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1142 } 1143 1144 return false; 1145 } 1146 1147 /// Check whether the access through \p Ptr has a constant stride. 1148 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, 1149 Value *Ptr, const Loop *Lp, 1150 const ValueToValueMap &StridesMap, bool Assume, 1151 bool ShouldCheckWrap) { 1152 Type *Ty = Ptr->getType(); 1153 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1154 1155 if (isa<ScalableVectorType>(AccessTy)) { 1156 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy 1157 << "\n"); 1158 return 0; 1159 } 1160 1161 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1162 1163 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1164 if (Assume && !AR) 1165 AR = PSE.getAsAddRec(Ptr); 1166 1167 if (!AR) { 1168 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1169 << " SCEV: " << *PtrScev << "\n"); 1170 return 0; 1171 } 1172 1173 // The access function must stride over the innermost loop. 1174 if (Lp != AR->getLoop()) { 1175 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1176 << *Ptr << " SCEV: " << *AR << "\n"); 1177 return 0; 1178 } 1179 1180 // The address calculation must not wrap. Otherwise, a dependence could be 1181 // inverted. 1182 // An inbounds getelementptr that is a AddRec with a unit stride 1183 // cannot wrap per definition. The unit stride requirement is checked later. 1184 // An getelementptr without an inbounds attribute and unit stride would have 1185 // to access the pointer value "0" which is undefined behavior in address 1186 // space 0, therefore we can also vectorize this case. 1187 unsigned AddrSpace = Ty->getPointerAddressSpace(); 1188 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1189 bool IsNoWrapAddRec = !ShouldCheckWrap || 1190 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1191 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1192 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1193 NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace)) { 1194 if (Assume) { 1195 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1196 IsNoWrapAddRec = true; 1197 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1198 << "LAA: Pointer: " << *Ptr << "\n" 1199 << "LAA: SCEV: " << *AR << "\n" 1200 << "LAA: Added an overflow assumption\n"); 1201 } else { 1202 LLVM_DEBUG( 1203 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1204 << *Ptr << " SCEV: " << *AR << "\n"); 1205 return 0; 1206 } 1207 } 1208 1209 // Check the step is constant. 1210 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1211 1212 // Calculate the pointer stride and check if it is constant. 1213 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1214 if (!C) { 1215 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1216 << " SCEV: " << *AR << "\n"); 1217 return 0; 1218 } 1219 1220 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1221 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy); 1222 int64_t Size = AllocSize.getFixedSize(); 1223 const APInt &APStepVal = C->getAPInt(); 1224 1225 // Huge step value - give up. 1226 if (APStepVal.getBitWidth() > 64) 1227 return 0; 1228 1229 int64_t StepVal = APStepVal.getSExtValue(); 1230 1231 // Strided access. 1232 int64_t Stride = StepVal / Size; 1233 int64_t Rem = StepVal % Size; 1234 if (Rem) 1235 return 0; 1236 1237 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1238 // know we can't "wrap around the address space". In case of address space 1239 // zero we know that this won't happen without triggering undefined behavior. 1240 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1241 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1242 AddrSpace))) { 1243 if (Assume) { 1244 // We can avoid this case by adding a run-time check. 1245 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1246 << "inbounds or in address space 0 may wrap:\n" 1247 << "LAA: Pointer: " << *Ptr << "\n" 1248 << "LAA: SCEV: " << *AR << "\n" 1249 << "LAA: Added an overflow assumption\n"); 1250 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1251 } else 1252 return 0; 1253 } 1254 1255 return Stride; 1256 } 1257 1258 Optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, 1259 Value *PtrB, const DataLayout &DL, 1260 ScalarEvolution &SE, bool StrictCheck, 1261 bool CheckType) { 1262 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1263 assert(cast<PointerType>(PtrA->getType()) 1264 ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type"); 1265 assert(cast<PointerType>(PtrB->getType()) 1266 ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type"); 1267 1268 // Make sure that A and B are different pointers. 1269 if (PtrA == PtrB) 1270 return 0; 1271 1272 // Make sure that the element types are the same if required. 1273 if (CheckType && ElemTyA != ElemTyB) 1274 return None; 1275 1276 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1277 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1278 1279 // Check that the address spaces match. 1280 if (ASA != ASB) 1281 return None; 1282 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1283 1284 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1285 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1286 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1287 1288 int Val; 1289 if (PtrA1 == PtrB1) { 1290 // Retrieve the address space again as pointer stripping now tracks through 1291 // `addrspacecast`. 1292 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1293 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1294 // Check that the address spaces match and that the pointers are valid. 1295 if (ASA != ASB) 1296 return None; 1297 1298 IdxWidth = DL.getIndexSizeInBits(ASA); 1299 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1300 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1301 1302 OffsetB -= OffsetA; 1303 Val = OffsetB.getSExtValue(); 1304 } else { 1305 // Otherwise compute the distance with SCEV between the base pointers. 1306 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1307 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1308 const auto *Diff = 1309 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA)); 1310 if (!Diff) 1311 return None; 1312 Val = Diff->getAPInt().getSExtValue(); 1313 } 1314 int Size = DL.getTypeStoreSize(ElemTyA); 1315 int Dist = Val / Size; 1316 1317 // Ensure that the calculated distance matches the type-based one after all 1318 // the bitcasts removal in the provided pointers. 1319 if (!StrictCheck || Dist * Size == Val) 1320 return Dist; 1321 return None; 1322 } 1323 1324 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1325 const DataLayout &DL, ScalarEvolution &SE, 1326 SmallVectorImpl<unsigned> &SortedIndices) { 1327 assert(llvm::all_of( 1328 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1329 "Expected list of pointer operands."); 1330 // Walk over the pointers, and map each of them to an offset relative to 1331 // first pointer in the array. 1332 Value *Ptr0 = VL[0]; 1333 1334 using DistOrdPair = std::pair<int64_t, int>; 1335 auto Compare = [](const DistOrdPair &L, const DistOrdPair &R) { 1336 return L.first < R.first; 1337 }; 1338 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1339 Offsets.emplace(0, 0); 1340 int Cnt = 1; 1341 bool IsConsecutive = true; 1342 for (auto *Ptr : VL.drop_front()) { 1343 Optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1344 /*StrictCheck=*/true); 1345 if (!Diff) 1346 return false; 1347 1348 // Check if the pointer with the same offset is found. 1349 int64_t Offset = *Diff; 1350 auto Res = Offsets.emplace(Offset, Cnt); 1351 if (!Res.second) 1352 return false; 1353 // Consecutive order if the inserted element is the last one. 1354 IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end(); 1355 ++Cnt; 1356 } 1357 SortedIndices.clear(); 1358 if (!IsConsecutive) { 1359 // Fill SortedIndices array only if it is non-consecutive. 1360 SortedIndices.resize(VL.size()); 1361 Cnt = 0; 1362 for (const std::pair<int64_t, int> &Pair : Offsets) { 1363 SortedIndices[Cnt] = Pair.second; 1364 ++Cnt; 1365 } 1366 } 1367 return true; 1368 } 1369 1370 /// Returns true if the memory operations \p A and \p B are consecutive. 1371 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1372 ScalarEvolution &SE, bool CheckType) { 1373 Value *PtrA = getLoadStorePointerOperand(A); 1374 Value *PtrB = getLoadStorePointerOperand(B); 1375 if (!PtrA || !PtrB) 1376 return false; 1377 Type *ElemTyA = getLoadStoreType(A); 1378 Type *ElemTyB = getLoadStoreType(B); 1379 Optional<int> Diff = getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1380 /*StrictCheck=*/true, CheckType); 1381 return Diff && *Diff == 1; 1382 } 1383 1384 void MemoryDepChecker::addAccess(StoreInst *SI) { 1385 visitPointers(SI->getPointerOperand(), *InnermostLoop, 1386 [this, SI](Value *Ptr) { 1387 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 1388 InstMap.push_back(SI); 1389 ++AccessIdx; 1390 }); 1391 } 1392 1393 void MemoryDepChecker::addAccess(LoadInst *LI) { 1394 visitPointers(LI->getPointerOperand(), *InnermostLoop, 1395 [this, LI](Value *Ptr) { 1396 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 1397 InstMap.push_back(LI); 1398 ++AccessIdx; 1399 }); 1400 } 1401 1402 MemoryDepChecker::VectorizationSafetyStatus 1403 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1404 switch (Type) { 1405 case NoDep: 1406 case Forward: 1407 case BackwardVectorizable: 1408 return VectorizationSafetyStatus::Safe; 1409 1410 case Unknown: 1411 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1412 case ForwardButPreventsForwarding: 1413 case Backward: 1414 case BackwardVectorizableButPreventsForwarding: 1415 return VectorizationSafetyStatus::Unsafe; 1416 } 1417 llvm_unreachable("unexpected DepType!"); 1418 } 1419 1420 bool MemoryDepChecker::Dependence::isBackward() const { 1421 switch (Type) { 1422 case NoDep: 1423 case Forward: 1424 case ForwardButPreventsForwarding: 1425 case Unknown: 1426 return false; 1427 1428 case BackwardVectorizable: 1429 case Backward: 1430 case BackwardVectorizableButPreventsForwarding: 1431 return true; 1432 } 1433 llvm_unreachable("unexpected DepType!"); 1434 } 1435 1436 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1437 return isBackward() || Type == Unknown; 1438 } 1439 1440 bool MemoryDepChecker::Dependence::isForward() const { 1441 switch (Type) { 1442 case Forward: 1443 case ForwardButPreventsForwarding: 1444 return true; 1445 1446 case NoDep: 1447 case Unknown: 1448 case BackwardVectorizable: 1449 case Backward: 1450 case BackwardVectorizableButPreventsForwarding: 1451 return false; 1452 } 1453 llvm_unreachable("unexpected DepType!"); 1454 } 1455 1456 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1457 uint64_t TypeByteSize) { 1458 // If loads occur at a distance that is not a multiple of a feasible vector 1459 // factor store-load forwarding does not take place. 1460 // Positive dependences might cause troubles because vectorizing them might 1461 // prevent store-load forwarding making vectorized code run a lot slower. 1462 // a[i] = a[i-3] ^ a[i-8]; 1463 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1464 // hence on your typical architecture store-load forwarding does not take 1465 // place. Vectorizing in such cases does not make sense. 1466 // Store-load forwarding distance. 1467 1468 // After this many iterations store-to-load forwarding conflicts should not 1469 // cause any slowdowns. 1470 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1471 // Maximum vector factor. 1472 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1473 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1474 1475 // Compute the smallest VF at which the store and load would be misaligned. 1476 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1477 VF *= 2) { 1478 // If the number of vector iteration between the store and the load are 1479 // small we could incur conflicts. 1480 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1481 MaxVFWithoutSLForwardIssues = (VF >> 1); 1482 break; 1483 } 1484 } 1485 1486 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1487 LLVM_DEBUG( 1488 dbgs() << "LAA: Distance " << Distance 1489 << " that could cause a store-load forwarding conflict\n"); 1490 return true; 1491 } 1492 1493 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1494 MaxVFWithoutSLForwardIssues != 1495 VectorizerParams::MaxVectorWidth * TypeByteSize) 1496 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1497 return false; 1498 } 1499 1500 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1501 if (Status < S) 1502 Status = S; 1503 } 1504 1505 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1506 /// memory accesses, that have the same stride whose absolute value is given 1507 /// in \p Stride, and that have the same type size \p TypeByteSize, 1508 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1509 /// possible to prove statically that the dependence distance is larger 1510 /// than the range that the accesses will travel through the execution of 1511 /// the loop. If so, return true; false otherwise. This is useful for 1512 /// example in loops such as the following (PR31098): 1513 /// for (i = 0; i < D; ++i) { 1514 /// = out[i]; 1515 /// out[i+D] = 1516 /// } 1517 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1518 const SCEV &BackedgeTakenCount, 1519 const SCEV &Dist, uint64_t Stride, 1520 uint64_t TypeByteSize) { 1521 1522 // If we can prove that 1523 // (**) |Dist| > BackedgeTakenCount * Step 1524 // where Step is the absolute stride of the memory accesses in bytes, 1525 // then there is no dependence. 1526 // 1527 // Rationale: 1528 // We basically want to check if the absolute distance (|Dist/Step|) 1529 // is >= the loop iteration count (or > BackedgeTakenCount). 1530 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1531 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1532 // that the dependence distance is >= VF; This is checked elsewhere. 1533 // But in some cases we can prune unknown dependence distances early, and 1534 // even before selecting the VF, and without a runtime test, by comparing 1535 // the distance against the loop iteration count. Since the vectorized code 1536 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1537 // also guarantees that distance >= VF. 1538 // 1539 const uint64_t ByteStride = Stride * TypeByteSize; 1540 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1541 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1542 1543 const SCEV *CastedDist = &Dist; 1544 const SCEV *CastedProduct = Product; 1545 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType()); 1546 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType()); 1547 1548 // The dependence distance can be positive/negative, so we sign extend Dist; 1549 // The multiplication of the absolute stride in bytes and the 1550 // backedgeTakenCount is non-negative, so we zero extend Product. 1551 if (DistTypeSizeBits > ProductTypeSizeBits) 1552 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1553 else 1554 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1555 1556 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1557 // (If so, then we have proven (**) because |Dist| >= Dist) 1558 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1559 if (SE.isKnownPositive(Minus)) 1560 return true; 1561 1562 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1563 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1564 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1565 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1566 if (SE.isKnownPositive(Minus)) 1567 return true; 1568 1569 return false; 1570 } 1571 1572 /// Check the dependence for two accesses with the same stride \p Stride. 1573 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1574 /// bytes. 1575 /// 1576 /// \returns true if they are independent. 1577 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1578 uint64_t TypeByteSize) { 1579 assert(Stride > 1 && "The stride must be greater than 1"); 1580 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1581 assert(Distance > 0 && "The distance must be non-zero"); 1582 1583 // Skip if the distance is not multiple of type byte size. 1584 if (Distance % TypeByteSize) 1585 return false; 1586 1587 uint64_t ScaledDist = Distance / TypeByteSize; 1588 1589 // No dependence if the scaled distance is not multiple of the stride. 1590 // E.g. 1591 // for (i = 0; i < 1024 ; i += 4) 1592 // A[i+2] = A[i] + 1; 1593 // 1594 // Two accesses in memory (scaled distance is 2, stride is 4): 1595 // | A[0] | | | | A[4] | | | | 1596 // | | | A[2] | | | | A[6] | | 1597 // 1598 // E.g. 1599 // for (i = 0; i < 1024 ; i += 3) 1600 // A[i+4] = A[i] + 1; 1601 // 1602 // Two accesses in memory (scaled distance is 4, stride is 3): 1603 // | A[0] | | | A[3] | | | A[6] | | | 1604 // | | | | | A[4] | | | A[7] | | 1605 return ScaledDist % Stride; 1606 } 1607 1608 MemoryDepChecker::Dependence::DepType 1609 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1610 const MemAccessInfo &B, unsigned BIdx, 1611 const ValueToValueMap &Strides) { 1612 assert (AIdx < BIdx && "Must pass arguments in program order"); 1613 1614 Value *APtr = A.getPointer(); 1615 Value *BPtr = B.getPointer(); 1616 bool AIsWrite = A.getInt(); 1617 bool BIsWrite = B.getInt(); 1618 Type *ATy = getLoadStoreType(InstMap[AIdx]); 1619 Type *BTy = getLoadStoreType(InstMap[BIdx]); 1620 1621 // Two reads are independent. 1622 if (!AIsWrite && !BIsWrite) 1623 return Dependence::NoDep; 1624 1625 // We cannot check pointers in different address spaces. 1626 if (APtr->getType()->getPointerAddressSpace() != 1627 BPtr->getType()->getPointerAddressSpace()) 1628 return Dependence::Unknown; 1629 1630 int64_t StrideAPtr = 1631 getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true); 1632 int64_t StrideBPtr = 1633 getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true); 1634 1635 const SCEV *Src = PSE.getSCEV(APtr); 1636 const SCEV *Sink = PSE.getSCEV(BPtr); 1637 1638 // If the induction step is negative we have to invert source and sink of the 1639 // dependence. 1640 if (StrideAPtr < 0) { 1641 std::swap(APtr, BPtr); 1642 std::swap(ATy, BTy); 1643 std::swap(Src, Sink); 1644 std::swap(AIsWrite, BIsWrite); 1645 std::swap(AIdx, BIdx); 1646 std::swap(StrideAPtr, StrideBPtr); 1647 } 1648 1649 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1650 1651 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1652 << "(Induction step: " << StrideAPtr << ")\n"); 1653 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1654 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1655 1656 // Need accesses with constant stride. We don't want to vectorize 1657 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1658 // the address space. 1659 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1660 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1661 return Dependence::Unknown; 1662 } 1663 1664 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1665 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1666 bool HasSameSize = 1667 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy); 1668 uint64_t Stride = std::abs(StrideAPtr); 1669 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1670 if (!C) { 1671 if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize && 1672 isSafeDependenceDistance(DL, *(PSE.getSE()), 1673 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1674 TypeByteSize)) 1675 return Dependence::NoDep; 1676 1677 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1678 FoundNonConstantDistanceDependence = true; 1679 return Dependence::Unknown; 1680 } 1681 1682 const APInt &Val = C->getAPInt(); 1683 int64_t Distance = Val.getSExtValue(); 1684 1685 // Attempt to prove strided accesses independent. 1686 if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize && 1687 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1688 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1689 return Dependence::NoDep; 1690 } 1691 1692 // Negative distances are not plausible dependencies. 1693 if (Val.isNegative()) { 1694 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1695 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1696 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1697 !HasSameSize)) { 1698 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1699 return Dependence::ForwardButPreventsForwarding; 1700 } 1701 1702 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1703 return Dependence::Forward; 1704 } 1705 1706 // Write to the same location with the same size. 1707 if (Val == 0) { 1708 if (HasSameSize) 1709 return Dependence::Forward; 1710 LLVM_DEBUG( 1711 dbgs() << "LAA: Zero dependence difference but different type sizes\n"); 1712 return Dependence::Unknown; 1713 } 1714 1715 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1716 1717 if (!HasSameSize) { 1718 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with " 1719 "different type sizes\n"); 1720 return Dependence::Unknown; 1721 } 1722 1723 // Bail out early if passed-in parameters make vectorization not feasible. 1724 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1725 VectorizerParams::VectorizationFactor : 1); 1726 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1727 VectorizerParams::VectorizationInterleave : 1); 1728 // The minimum number of iterations for a vectorized/unrolled version. 1729 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1730 1731 // It's not vectorizable if the distance is smaller than the minimum distance 1732 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1733 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1734 // TypeByteSize (No need to plus the last gap distance). 1735 // 1736 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1737 // foo(int *A) { 1738 // int *B = (int *)((char *)A + 14); 1739 // for (i = 0 ; i < 1024 ; i += 2) 1740 // B[i] = A[i] + 1; 1741 // } 1742 // 1743 // Two accesses in memory (stride is 2): 1744 // | A[0] | | A[2] | | A[4] | | A[6] | | 1745 // | B[0] | | B[2] | | B[4] | 1746 // 1747 // Distance needs for vectorizing iterations except the last iteration: 1748 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1749 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1750 // 1751 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1752 // 12, which is less than distance. 1753 // 1754 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1755 // the minimum distance needed is 28, which is greater than distance. It is 1756 // not safe to do vectorization. 1757 uint64_t MinDistanceNeeded = 1758 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1759 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1760 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1761 << Distance << '\n'); 1762 return Dependence::Backward; 1763 } 1764 1765 // Unsafe if the minimum distance needed is greater than max safe distance. 1766 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1767 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1768 << MinDistanceNeeded << " size in bytes"); 1769 return Dependence::Backward; 1770 } 1771 1772 // Positive distance bigger than max vectorization factor. 1773 // FIXME: Should use max factor instead of max distance in bytes, which could 1774 // not handle different types. 1775 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1776 // void foo (int *A, char *B) { 1777 // for (unsigned i = 0; i < 1024; i++) { 1778 // A[i+2] = A[i] + 1; 1779 // B[i+2] = B[i] + 1; 1780 // } 1781 // } 1782 // 1783 // This case is currently unsafe according to the max safe distance. If we 1784 // analyze the two accesses on array B, the max safe dependence distance 1785 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1786 // is 8, which is less than 2 and forbidden vectorization, But actually 1787 // both A and B could be vectorized by 2 iterations. 1788 MaxSafeDepDistBytes = 1789 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1790 1791 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1792 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1793 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1794 return Dependence::BackwardVectorizableButPreventsForwarding; 1795 1796 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1797 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1798 << " with max VF = " << MaxVF << '\n'); 1799 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1800 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 1801 return Dependence::BackwardVectorizable; 1802 } 1803 1804 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1805 MemAccessInfoList &CheckDeps, 1806 const ValueToValueMap &Strides) { 1807 1808 MaxSafeDepDistBytes = -1; 1809 SmallPtrSet<MemAccessInfo, 8> Visited; 1810 for (MemAccessInfo CurAccess : CheckDeps) { 1811 if (Visited.count(CurAccess)) 1812 continue; 1813 1814 // Get the relevant memory access set. 1815 EquivalenceClasses<MemAccessInfo>::iterator I = 1816 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1817 1818 // Check accesses within this set. 1819 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1820 AccessSets.member_begin(I); 1821 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1822 AccessSets.member_end(); 1823 1824 // Check every access pair. 1825 while (AI != AE) { 1826 Visited.insert(*AI); 1827 bool AIIsWrite = AI->getInt(); 1828 // Check loads only against next equivalent class, but stores also against 1829 // other stores in the same equivalence class - to the same address. 1830 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1831 (AIIsWrite ? AI : std::next(AI)); 1832 while (OI != AE) { 1833 // Check every accessing instruction pair in program order. 1834 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1835 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1836 // Scan all accesses of another equivalence class, but only the next 1837 // accesses of the same equivalent class. 1838 for (std::vector<unsigned>::iterator 1839 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 1840 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 1841 I2 != I2E; ++I2) { 1842 auto A = std::make_pair(&*AI, *I1); 1843 auto B = std::make_pair(&*OI, *I2); 1844 1845 assert(*I1 != *I2); 1846 if (*I1 > *I2) 1847 std::swap(A, B); 1848 1849 Dependence::DepType Type = 1850 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1851 mergeInStatus(Dependence::isSafeForVectorization(Type)); 1852 1853 // Gather dependences unless we accumulated MaxDependences 1854 // dependences. In that case return as soon as we find the first 1855 // unsafe dependence. This puts a limit on this quadratic 1856 // algorithm. 1857 if (RecordDependences) { 1858 if (Type != Dependence::NoDep) 1859 Dependences.push_back(Dependence(A.second, B.second, Type)); 1860 1861 if (Dependences.size() >= MaxDependences) { 1862 RecordDependences = false; 1863 Dependences.clear(); 1864 LLVM_DEBUG(dbgs() 1865 << "Too many dependences, stopped recording\n"); 1866 } 1867 } 1868 if (!RecordDependences && !isSafeForVectorization()) 1869 return false; 1870 } 1871 ++OI; 1872 } 1873 AI++; 1874 } 1875 } 1876 1877 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1878 return isSafeForVectorization(); 1879 } 1880 1881 SmallVector<Instruction *, 4> 1882 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1883 MemAccessInfo Access(Ptr, isWrite); 1884 auto &IndexVector = Accesses.find(Access)->second; 1885 1886 SmallVector<Instruction *, 4> Insts; 1887 transform(IndexVector, 1888 std::back_inserter(Insts), 1889 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1890 return Insts; 1891 } 1892 1893 const char *MemoryDepChecker::Dependence::DepName[] = { 1894 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1895 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1896 1897 void MemoryDepChecker::Dependence::print( 1898 raw_ostream &OS, unsigned Depth, 1899 const SmallVectorImpl<Instruction *> &Instrs) const { 1900 OS.indent(Depth) << DepName[Type] << ":\n"; 1901 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1902 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1903 } 1904 1905 bool LoopAccessInfo::canAnalyzeLoop() { 1906 // We need to have a loop header. 1907 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1908 << TheLoop->getHeader()->getParent()->getName() << ": " 1909 << TheLoop->getHeader()->getName() << '\n'); 1910 1911 // We can only analyze innermost loops. 1912 if (!TheLoop->isInnermost()) { 1913 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1914 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1915 return false; 1916 } 1917 1918 // We must have a single backedge. 1919 if (TheLoop->getNumBackEdges() != 1) { 1920 LLVM_DEBUG( 1921 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1922 recordAnalysis("CFGNotUnderstood") 1923 << "loop control flow is not understood by analyzer"; 1924 return false; 1925 } 1926 1927 // ScalarEvolution needs to be able to find the exit count. 1928 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1929 if (isa<SCEVCouldNotCompute>(ExitCount)) { 1930 recordAnalysis("CantComputeNumberOfIterations") 1931 << "could not determine number of loop iterations"; 1932 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1933 return false; 1934 } 1935 1936 return true; 1937 } 1938 1939 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 1940 const TargetLibraryInfo *TLI, 1941 DominatorTree *DT) { 1942 // Holds the Load and Store instructions. 1943 SmallVector<LoadInst *, 16> Loads; 1944 SmallVector<StoreInst *, 16> Stores; 1945 1946 // Holds all the different accesses in the loop. 1947 unsigned NumReads = 0; 1948 unsigned NumReadWrites = 0; 1949 1950 bool HasComplexMemInst = false; 1951 1952 // A runtime check is only legal to insert if there are no convergent calls. 1953 HasConvergentOp = false; 1954 1955 PtrRtChecking->Pointers.clear(); 1956 PtrRtChecking->Need = false; 1957 1958 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1959 1960 const bool EnableMemAccessVersioningOfLoop = 1961 EnableMemAccessVersioning && 1962 !TheLoop->getHeader()->getParent()->hasOptSize(); 1963 1964 // For each block. 1965 for (BasicBlock *BB : TheLoop->blocks()) { 1966 // Scan the BB and collect legal loads and stores. Also detect any 1967 // convergent instructions. 1968 for (Instruction &I : *BB) { 1969 if (auto *Call = dyn_cast<CallBase>(&I)) { 1970 if (Call->isConvergent()) 1971 HasConvergentOp = true; 1972 } 1973 1974 // With both a non-vectorizable memory instruction and a convergent 1975 // operation, found in this loop, no reason to continue the search. 1976 if (HasComplexMemInst && HasConvergentOp) { 1977 CanVecMem = false; 1978 return; 1979 } 1980 1981 // Avoid hitting recordAnalysis multiple times. 1982 if (HasComplexMemInst) 1983 continue; 1984 1985 // If this is a load, save it. If this instruction can read from memory 1986 // but is not a load, then we quit. Notice that we don't handle function 1987 // calls that read or write. 1988 if (I.mayReadFromMemory()) { 1989 // Many math library functions read the rounding mode. We will only 1990 // vectorize a loop if it contains known function calls that don't set 1991 // the flag. Therefore, it is safe to ignore this read from memory. 1992 auto *Call = dyn_cast<CallInst>(&I); 1993 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1994 continue; 1995 1996 // If the function has an explicit vectorized counterpart, we can safely 1997 // assume that it can be vectorized. 1998 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1999 !VFDatabase::getMappings(*Call).empty()) 2000 continue; 2001 2002 auto *Ld = dyn_cast<LoadInst>(&I); 2003 if (!Ld) { 2004 recordAnalysis("CantVectorizeInstruction", Ld) 2005 << "instruction cannot be vectorized"; 2006 HasComplexMemInst = true; 2007 continue; 2008 } 2009 if (!Ld->isSimple() && !IsAnnotatedParallel) { 2010 recordAnalysis("NonSimpleLoad", Ld) 2011 << "read with atomic ordering or volatile read"; 2012 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 2013 HasComplexMemInst = true; 2014 continue; 2015 } 2016 NumLoads++; 2017 Loads.push_back(Ld); 2018 DepChecker->addAccess(Ld); 2019 if (EnableMemAccessVersioningOfLoop) 2020 collectStridedAccess(Ld); 2021 continue; 2022 } 2023 2024 // Save 'store' instructions. Abort if other instructions write to memory. 2025 if (I.mayWriteToMemory()) { 2026 auto *St = dyn_cast<StoreInst>(&I); 2027 if (!St) { 2028 recordAnalysis("CantVectorizeInstruction", St) 2029 << "instruction cannot be vectorized"; 2030 HasComplexMemInst = true; 2031 continue; 2032 } 2033 if (!St->isSimple() && !IsAnnotatedParallel) { 2034 recordAnalysis("NonSimpleStore", St) 2035 << "write with atomic ordering or volatile write"; 2036 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 2037 HasComplexMemInst = true; 2038 continue; 2039 } 2040 NumStores++; 2041 Stores.push_back(St); 2042 DepChecker->addAccess(St); 2043 if (EnableMemAccessVersioningOfLoop) 2044 collectStridedAccess(St); 2045 } 2046 } // Next instr. 2047 } // Next block. 2048 2049 if (HasComplexMemInst) { 2050 CanVecMem = false; 2051 return; 2052 } 2053 2054 // Now we have two lists that hold the loads and the stores. 2055 // Next, we find the pointers that they use. 2056 2057 // Check if we see any stores. If there are no stores, then we don't 2058 // care if the pointers are *restrict*. 2059 if (!Stores.size()) { 2060 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 2061 CanVecMem = true; 2062 return; 2063 } 2064 2065 MemoryDepChecker::DepCandidates DependentAccesses; 2066 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE); 2067 2068 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 2069 // multiple times on the same object. If the ptr is accessed twice, once 2070 // for read and once for write, it will only appear once (on the write 2071 // list). This is okay, since we are going to check for conflicts between 2072 // writes and between reads and writes, but not between reads and reads. 2073 SmallSet<std::pair<Value *, Type *>, 16> Seen; 2074 2075 // Record uniform store addresses to identify if we have multiple stores 2076 // to the same address. 2077 SmallPtrSet<Value *, 16> UniformStores; 2078 2079 for (StoreInst *ST : Stores) { 2080 Value *Ptr = ST->getPointerOperand(); 2081 2082 if (isUniform(Ptr)) { 2083 // Record store instructions to loop invariant addresses 2084 StoresToInvariantAddresses.push_back(ST); 2085 HasDependenceInvolvingLoopInvariantAddress |= 2086 !UniformStores.insert(Ptr).second; 2087 } 2088 2089 // If we did *not* see this pointer before, insert it to the read-write 2090 // list. At this phase it is only a 'write' list. 2091 Type *AccessTy = getLoadStoreType(ST); 2092 if (Seen.insert({Ptr, AccessTy}).second) { 2093 ++NumReadWrites; 2094 2095 MemoryLocation Loc = MemoryLocation::get(ST); 2096 // The TBAA metadata could have a control dependency on the predication 2097 // condition, so we cannot rely on it when determining whether or not we 2098 // need runtime pointer checks. 2099 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 2100 Loc.AATags.TBAA = nullptr; 2101 2102 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2103 [&Accesses, AccessTy, Loc](Value *Ptr) { 2104 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2105 Accesses.addStore(NewLoc, AccessTy); 2106 }); 2107 } 2108 } 2109 2110 if (IsAnnotatedParallel) { 2111 LLVM_DEBUG( 2112 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 2113 << "checks.\n"); 2114 CanVecMem = true; 2115 return; 2116 } 2117 2118 for (LoadInst *LD : Loads) { 2119 Value *Ptr = LD->getPointerOperand(); 2120 // If we did *not* see this pointer before, insert it to the 2121 // read list. If we *did* see it before, then it is already in 2122 // the read-write list. This allows us to vectorize expressions 2123 // such as A[i] += x; Because the address of A[i] is a read-write 2124 // pointer. This only works if the index of A[i] is consecutive. 2125 // If the address of i is unknown (for example A[B[i]]) then we may 2126 // read a few words, modify, and write a few words, and some of the 2127 // words may be written to the same address. 2128 bool IsReadOnlyPtr = false; 2129 Type *AccessTy = getLoadStoreType(LD); 2130 if (Seen.insert({Ptr, AccessTy}).second || 2131 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides)) { 2132 ++NumReads; 2133 IsReadOnlyPtr = true; 2134 } 2135 2136 // See if there is an unsafe dependency between a load to a uniform address and 2137 // store to the same uniform address. 2138 if (UniformStores.count(Ptr)) { 2139 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2140 "load and uniform store to the same address!\n"); 2141 HasDependenceInvolvingLoopInvariantAddress = true; 2142 } 2143 2144 MemoryLocation Loc = MemoryLocation::get(LD); 2145 // The TBAA metadata could have a control dependency on the predication 2146 // condition, so we cannot rely on it when determining whether or not we 2147 // need runtime pointer checks. 2148 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2149 Loc.AATags.TBAA = nullptr; 2150 2151 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2152 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) { 2153 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2154 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr); 2155 }); 2156 } 2157 2158 // If we write (or read-write) to a single destination and there are no 2159 // other reads in this loop then is it safe to vectorize. 2160 if (NumReadWrites == 1 && NumReads == 0) { 2161 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2162 CanVecMem = true; 2163 return; 2164 } 2165 2166 // Build dependence sets and check whether we need a runtime pointer bounds 2167 // check. 2168 Accesses.buildDependenceSets(); 2169 2170 // Find pointers with computable bounds. We are going to use this information 2171 // to place a runtime bound check. 2172 Value *UncomputablePtr = nullptr; 2173 bool CanDoRTIfNeeded = 2174 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop, 2175 SymbolicStrides, UncomputablePtr, false); 2176 if (!CanDoRTIfNeeded) { 2177 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2178 recordAnalysis("CantIdentifyArrayBounds", I) 2179 << "cannot identify array bounds"; 2180 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2181 << "the array bounds.\n"); 2182 CanVecMem = false; 2183 return; 2184 } 2185 2186 LLVM_DEBUG( 2187 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2188 2189 CanVecMem = true; 2190 if (Accesses.isDependencyCheckNeeded()) { 2191 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2192 CanVecMem = DepChecker->areDepsSafe( 2193 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2194 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2195 2196 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2197 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2198 2199 // Clear the dependency checks. We assume they are not needed. 2200 Accesses.resetDepChecks(*DepChecker); 2201 2202 PtrRtChecking->reset(); 2203 PtrRtChecking->Need = true; 2204 2205 auto *SE = PSE->getSE(); 2206 UncomputablePtr = nullptr; 2207 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT( 2208 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true); 2209 2210 // Check that we found the bounds for the pointer. 2211 if (!CanDoRTIfNeeded) { 2212 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2213 recordAnalysis("CantCheckMemDepsAtRunTime", I) 2214 << "cannot check memory dependencies at runtime"; 2215 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2216 CanVecMem = false; 2217 return; 2218 } 2219 2220 CanVecMem = true; 2221 } 2222 } 2223 2224 if (HasConvergentOp) { 2225 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2226 << "cannot add control dependency to convergent operation"; 2227 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2228 "would be needed with a convergent operation\n"); 2229 CanVecMem = false; 2230 return; 2231 } 2232 2233 if (CanVecMem) 2234 LLVM_DEBUG( 2235 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2236 << (PtrRtChecking->Need ? "" : " don't") 2237 << " need runtime memory checks.\n"); 2238 else 2239 emitUnsafeDependenceRemark(); 2240 } 2241 2242 void LoopAccessInfo::emitUnsafeDependenceRemark() { 2243 auto Deps = getDepChecker().getDependences(); 2244 if (!Deps) 2245 return; 2246 auto Found = std::find_if( 2247 Deps->begin(), Deps->end(), [](const MemoryDepChecker::Dependence &D) { 2248 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) != 2249 MemoryDepChecker::VectorizationSafetyStatus::Safe; 2250 }); 2251 if (Found == Deps->end()) 2252 return; 2253 MemoryDepChecker::Dependence Dep = *Found; 2254 2255 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2256 2257 // Emit remark for first unsafe dependence 2258 OptimizationRemarkAnalysis &R = 2259 recordAnalysis("UnsafeDep", Dep.getDestination(*this)) 2260 << "unsafe dependent memory operations in loop. Use " 2261 "#pragma loop distribute(enable) to allow loop distribution " 2262 "to attempt to isolate the offending operations into a separate " 2263 "loop"; 2264 2265 switch (Dep.Type) { 2266 case MemoryDepChecker::Dependence::NoDep: 2267 case MemoryDepChecker::Dependence::Forward: 2268 case MemoryDepChecker::Dependence::BackwardVectorizable: 2269 llvm_unreachable("Unexpected dependence"); 2270 case MemoryDepChecker::Dependence::Backward: 2271 R << "\nBackward loop carried data dependence."; 2272 break; 2273 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding: 2274 R << "\nForward loop carried data dependence that prevents " 2275 "store-to-load forwarding."; 2276 break; 2277 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding: 2278 R << "\nBackward loop carried data dependence that prevents " 2279 "store-to-load forwarding."; 2280 break; 2281 case MemoryDepChecker::Dependence::Unknown: 2282 R << "\nUnknown data dependence."; 2283 break; 2284 } 2285 2286 if (Instruction *I = Dep.getSource(*this)) { 2287 DebugLoc SourceLoc = I->getDebugLoc(); 2288 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I))) 2289 SourceLoc = DD->getDebugLoc(); 2290 if (SourceLoc) 2291 R << " Memory location is the same as accessed at " 2292 << ore::NV("Location", SourceLoc); 2293 } 2294 } 2295 2296 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2297 DominatorTree *DT) { 2298 assert(TheLoop->contains(BB) && "Unknown block used"); 2299 2300 // Blocks that do not dominate the latch need predication. 2301 BasicBlock* Latch = TheLoop->getLoopLatch(); 2302 return !DT->dominates(BB, Latch); 2303 } 2304 2305 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2306 Instruction *I) { 2307 assert(!Report && "Multiple reports generated"); 2308 2309 Value *CodeRegion = TheLoop->getHeader(); 2310 DebugLoc DL = TheLoop->getStartLoc(); 2311 2312 if (I) { 2313 CodeRegion = I->getParent(); 2314 // If there is no debug location attached to the instruction, revert back to 2315 // using the loop's. 2316 if (I->getDebugLoc()) 2317 DL = I->getDebugLoc(); 2318 } 2319 2320 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2321 CodeRegion); 2322 return *Report; 2323 } 2324 2325 bool LoopAccessInfo::isUniform(Value *V) const { 2326 auto *SE = PSE->getSE(); 2327 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2328 // never considered uniform. 2329 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2330 // trivially loop-invariant FP values to be considered uniform. 2331 if (!SE->isSCEVable(V->getType())) 2332 return false; 2333 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2334 } 2335 2336 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2337 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2338 if (!Ptr) 2339 return; 2340 2341 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2342 if (!Stride) 2343 return; 2344 2345 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2346 "versioning:"); 2347 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2348 2349 // Avoid adding the "Stride == 1" predicate when we know that 2350 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2351 // or zero iteration loop, as Trip-Count <= Stride == 1. 2352 // 2353 // TODO: We are currently not making a very informed decision on when it is 2354 // beneficial to apply stride versioning. It might make more sense that the 2355 // users of this analysis (such as the vectorizer) will trigger it, based on 2356 // their specific cost considerations; For example, in cases where stride 2357 // versioning does not help resolving memory accesses/dependences, the 2358 // vectorizer should evaluate the cost of the runtime test, and the benefit 2359 // of various possible stride specializations, considering the alternatives 2360 // of using gather/scatters (if available). 2361 2362 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2363 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2364 2365 // Match the types so we can compare the stride and the BETakenCount. 2366 // The Stride can be positive/negative, so we sign extend Stride; 2367 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2368 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2369 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType()); 2370 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(BETakenCount->getType()); 2371 const SCEV *CastedStride = StrideExpr; 2372 const SCEV *CastedBECount = BETakenCount; 2373 ScalarEvolution *SE = PSE->getSE(); 2374 if (BETypeSizeBits >= StrideTypeSizeBits) 2375 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2376 else 2377 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2378 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2379 // Since TripCount == BackEdgeTakenCount + 1, checking: 2380 // "Stride >= TripCount" is equivalent to checking: 2381 // Stride - BETakenCount > 0 2382 if (SE->isKnownPositive(StrideMinusBETaken)) { 2383 LLVM_DEBUG( 2384 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2385 "Stride==1 predicate will imply that the loop executes " 2386 "at most once.\n"); 2387 return; 2388 } 2389 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n"); 2390 2391 SymbolicStrides[Ptr] = Stride; 2392 StrideSet.insert(Stride); 2393 } 2394 2395 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2396 const TargetLibraryInfo *TLI, AAResults *AA, 2397 DominatorTree *DT, LoopInfo *LI) 2398 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2399 PtrRtChecking(nullptr), 2400 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) { 2401 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE); 2402 if (canAnalyzeLoop()) { 2403 analyzeLoop(AA, LI, TLI, DT); 2404 } 2405 } 2406 2407 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2408 if (CanVecMem) { 2409 OS.indent(Depth) << "Memory dependences are safe"; 2410 if (MaxSafeDepDistBytes != -1ULL) 2411 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2412 << " bytes"; 2413 if (PtrRtChecking->Need) 2414 OS << " with run-time checks"; 2415 OS << "\n"; 2416 } 2417 2418 if (HasConvergentOp) 2419 OS.indent(Depth) << "Has convergent operation in loop\n"; 2420 2421 if (Report) 2422 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2423 2424 if (auto *Dependences = DepChecker->getDependences()) { 2425 OS.indent(Depth) << "Dependences:\n"; 2426 for (auto &Dep : *Dependences) { 2427 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2428 OS << "\n"; 2429 } 2430 } else 2431 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2432 2433 // List the pair of accesses need run-time checks to prove independence. 2434 PtrRtChecking->print(OS, Depth); 2435 OS << "\n"; 2436 2437 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2438 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2439 << "found in loop.\n"; 2440 2441 OS.indent(Depth) << "SCEV assumptions:\n"; 2442 PSE->getPredicate().print(OS, Depth); 2443 2444 OS << "\n"; 2445 2446 OS.indent(Depth) << "Expressions re-written:\n"; 2447 PSE->print(OS, Depth); 2448 } 2449 2450 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2451 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2452 } 2453 2454 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2455 auto &LAI = LoopAccessInfoMap[L]; 2456 2457 if (!LAI) 2458 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2459 2460 return *LAI; 2461 } 2462 2463 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2464 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2465 2466 for (Loop *TopLevelLoop : *LI) 2467 for (Loop *L : depth_first(TopLevelLoop)) { 2468 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2469 auto &LAI = LAA.getInfo(L); 2470 LAI.print(OS, 4); 2471 } 2472 } 2473 2474 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2475 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2476 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2477 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2478 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2479 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2480 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2481 2482 return false; 2483 } 2484 2485 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2486 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); 2487 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2488 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2489 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 2490 2491 AU.setPreservesAll(); 2492 } 2493 2494 char LoopAccessLegacyAnalysis::ID = 0; 2495 static const char laa_name[] = "Loop Access Analysis"; 2496 #define LAA_NAME "loop-accesses" 2497 2498 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2499 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2500 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2501 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2502 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2503 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2504 2505 AnalysisKey LoopAccessAnalysis::Key; 2506 2507 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2508 LoopStandardAnalysisResults &AR) { 2509 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2510 } 2511 2512 namespace llvm { 2513 2514 Pass *createLAAPass() { 2515 return new LoopAccessLegacyAnalysis(); 2516 } 2517 2518 } // end namespace llvm 2519