1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/LoopPassManager.h" 18 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 19 #include "llvm/Analysis/ScalarEvolutionExpander.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/PassManager.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 using namespace llvm; 29 30 #define DEBUG_TYPE "loop-accesses" 31 32 static cl::opt<unsigned, true> 33 VectorizationFactor("force-vector-width", cl::Hidden, 34 cl::desc("Sets the SIMD width. Zero is autoselect."), 35 cl::location(VectorizerParams::VectorizationFactor)); 36 unsigned VectorizerParams::VectorizationFactor; 37 38 static cl::opt<unsigned, true> 39 VectorizationInterleave("force-vector-interleave", cl::Hidden, 40 cl::desc("Sets the vectorization interleave count. " 41 "Zero is autoselect."), 42 cl::location( 43 VectorizerParams::VectorizationInterleave)); 44 unsigned VectorizerParams::VectorizationInterleave; 45 46 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 47 "runtime-memory-check-threshold", cl::Hidden, 48 cl::desc("When performing memory disambiguation checks at runtime do not " 49 "generate more than this number of comparisons (default = 8)."), 50 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 51 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 52 53 /// \brief The maximum iterations used to merge memory checks 54 static cl::opt<unsigned> MemoryCheckMergeThreshold( 55 "memory-check-merge-threshold", cl::Hidden, 56 cl::desc("Maximum number of comparisons done when trying to merge " 57 "runtime memory checks. (default = 100)"), 58 cl::init(100)); 59 60 /// Maximum SIMD width. 61 const unsigned VectorizerParams::MaxVectorWidth = 64; 62 63 /// \brief We collect dependences up to this threshold. 64 static cl::opt<unsigned> 65 MaxDependences("max-dependences", cl::Hidden, 66 cl::desc("Maximum number of dependences collected by " 67 "loop-access analysis (default = 100)"), 68 cl::init(100)); 69 70 /// This enables versioning on the strides of symbolically striding memory 71 /// accesses in code like the following. 72 /// for (i = 0; i < N; ++i) 73 /// A[i * Stride1] += B[i * Stride2] ... 74 /// 75 /// Will be roughly translated to 76 /// if (Stride1 == 1 && Stride2 == 1) { 77 /// for (i = 0; i < N; i+=4) 78 /// A[i:i+3] += ... 79 /// } else 80 /// ... 81 static cl::opt<bool> EnableMemAccessVersioning( 82 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 83 cl::desc("Enable symbolic stride memory access versioning")); 84 85 /// \brief Enable store-to-load forwarding conflict detection. This option can 86 /// be disabled for correctness testing. 87 static cl::opt<bool> EnableForwardingConflictDetection( 88 "store-to-load-forwarding-conflict-detection", cl::Hidden, 89 cl::desc("Enable conflict detection in loop-access analysis"), 90 cl::init(true)); 91 92 bool VectorizerParams::isInterleaveForced() { 93 return ::VectorizationInterleave.getNumOccurrences() > 0; 94 } 95 96 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 97 const Loop *TheLoop, const char *PassName, 98 OptimizationRemarkEmitter &ORE) { 99 DebugLoc DL = TheLoop->getStartLoc(); 100 const Value *V = TheLoop->getHeader(); 101 if (const Instruction *I = Message.getInstr()) { 102 DL = I->getDebugLoc(); 103 V = I->getParent(); 104 } 105 ORE.emitOptimizationRemarkAnalysis(PassName, DL, V, Message.str()); 106 } 107 108 Value *llvm::stripIntegerCast(Value *V) { 109 if (auto *CI = dyn_cast<CastInst>(V)) 110 if (CI->getOperand(0)->getType()->isIntegerTy()) 111 return CI->getOperand(0); 112 return V; 113 } 114 115 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 116 const ValueToValueMap &PtrToStride, 117 Value *Ptr, Value *OrigPtr) { 118 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 119 120 // If there is an entry in the map return the SCEV of the pointer with the 121 // symbolic stride replaced by one. 122 ValueToValueMap::const_iterator SI = 123 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 124 if (SI != PtrToStride.end()) { 125 Value *StrideVal = SI->second; 126 127 // Strip casts. 128 StrideVal = stripIntegerCast(StrideVal); 129 130 // Replace symbolic stride by one. 131 Value *One = ConstantInt::get(StrideVal->getType(), 1); 132 ValueToValueMap RewriteMap; 133 RewriteMap[StrideVal] = One; 134 135 ScalarEvolution *SE = PSE.getSE(); 136 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 137 const auto *CT = 138 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 139 140 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 141 auto *Expr = PSE.getSCEV(Ptr); 142 143 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr 144 << "\n"); 145 return Expr; 146 } 147 148 // Otherwise, just return the SCEV of the original pointer. 149 return OrigSCEV; 150 } 151 152 /// Calculate Start and End points of memory access. 153 /// Let's assume A is the first access and B is a memory access on N-th loop 154 /// iteration. Then B is calculated as: 155 /// B = A + Step*N . 156 /// Step value may be positive or negative. 157 /// N is a calculated back-edge taken count: 158 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 159 /// Start and End points are calculated in the following way: 160 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 161 /// where SizeOfElt is the size of single memory access in bytes. 162 /// 163 /// There is no conflict when the intervals are disjoint: 164 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 165 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 166 unsigned DepSetId, unsigned ASId, 167 const ValueToValueMap &Strides, 168 PredicatedScalarEvolution &PSE) { 169 // Get the stride replaced scev. 170 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 171 ScalarEvolution *SE = PSE.getSE(); 172 173 const SCEV *ScStart; 174 const SCEV *ScEnd; 175 176 if (SE->isLoopInvariant(Sc, Lp)) 177 ScStart = ScEnd = Sc; 178 else { 179 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 180 assert(AR && "Invalid addrec expression"); 181 const SCEV *Ex = PSE.getBackedgeTakenCount(); 182 183 ScStart = AR->getStart(); 184 ScEnd = AR->evaluateAtIteration(Ex, *SE); 185 const SCEV *Step = AR->getStepRecurrence(*SE); 186 187 // For expressions with negative step, the upper bound is ScStart and the 188 // lower bound is ScEnd. 189 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 190 if (CStep->getValue()->isNegative()) 191 std::swap(ScStart, ScEnd); 192 } else { 193 // Fallback case: the step is not constant, but we can still 194 // get the upper and lower bounds of the interval by using min/max 195 // expressions. 196 ScStart = SE->getUMinExpr(ScStart, ScEnd); 197 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 198 } 199 // Add the size of the pointed element to ScEnd. 200 unsigned EltSize = 201 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; 202 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); 203 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 204 } 205 206 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 207 } 208 209 SmallVector<RuntimePointerChecking::PointerCheck, 4> 210 RuntimePointerChecking::generateChecks() const { 211 SmallVector<PointerCheck, 4> Checks; 212 213 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 214 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 215 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 216 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 217 218 if (needsChecking(CGI, CGJ)) 219 Checks.push_back(std::make_pair(&CGI, &CGJ)); 220 } 221 } 222 return Checks; 223 } 224 225 void RuntimePointerChecking::generateChecks( 226 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 227 assert(Checks.empty() && "Checks is not empty"); 228 groupChecks(DepCands, UseDependencies); 229 Checks = generateChecks(); 230 } 231 232 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 233 const CheckingPtrGroup &N) const { 234 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 235 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 236 if (needsChecking(M.Members[I], N.Members[J])) 237 return true; 238 return false; 239 } 240 241 /// Compare \p I and \p J and return the minimum. 242 /// Return nullptr in case we couldn't find an answer. 243 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 244 ScalarEvolution *SE) { 245 const SCEV *Diff = SE->getMinusSCEV(J, I); 246 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 247 248 if (!C) 249 return nullptr; 250 if (C->getValue()->isNegative()) 251 return J; 252 return I; 253 } 254 255 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 256 const SCEV *Start = RtCheck.Pointers[Index].Start; 257 const SCEV *End = RtCheck.Pointers[Index].End; 258 259 // Compare the starts and ends with the known minimum and maximum 260 // of this set. We need to know how we compare against the min/max 261 // of the set in order to be able to emit memchecks. 262 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 263 if (!Min0) 264 return false; 265 266 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 267 if (!Min1) 268 return false; 269 270 // Update the low bound expression if we've found a new min value. 271 if (Min0 == Start) 272 Low = Start; 273 274 // Update the high bound expression if we've found a new max value. 275 if (Min1 != End) 276 High = End; 277 278 Members.push_back(Index); 279 return true; 280 } 281 282 void RuntimePointerChecking::groupChecks( 283 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 284 // We build the groups from dependency candidates equivalence classes 285 // because: 286 // - We know that pointers in the same equivalence class share 287 // the same underlying object and therefore there is a chance 288 // that we can compare pointers 289 // - We wouldn't be able to merge two pointers for which we need 290 // to emit a memcheck. The classes in DepCands are already 291 // conveniently built such that no two pointers in the same 292 // class need checking against each other. 293 294 // We use the following (greedy) algorithm to construct the groups 295 // For every pointer in the equivalence class: 296 // For each existing group: 297 // - if the difference between this pointer and the min/max bounds 298 // of the group is a constant, then make the pointer part of the 299 // group and update the min/max bounds of that group as required. 300 301 CheckingGroups.clear(); 302 303 // If we need to check two pointers to the same underlying object 304 // with a non-constant difference, we shouldn't perform any pointer 305 // grouping with those pointers. This is because we can easily get 306 // into cases where the resulting check would return false, even when 307 // the accesses are safe. 308 // 309 // The following example shows this: 310 // for (i = 0; i < 1000; ++i) 311 // a[5000 + i * m] = a[i] + a[i + 9000] 312 // 313 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 314 // (0, 10000) which is always false. However, if m is 1, there is no 315 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 316 // us to perform an accurate check in this case. 317 // 318 // The above case requires that we have an UnknownDependence between 319 // accesses to the same underlying object. This cannot happen unless 320 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies 321 // is also false. In this case we will use the fallback path and create 322 // separate checking groups for all pointers. 323 324 // If we don't have the dependency partitions, construct a new 325 // checking pointer group for each pointer. This is also required 326 // for correctness, because in this case we can have checking between 327 // pointers to the same underlying object. 328 if (!UseDependencies) { 329 for (unsigned I = 0; I < Pointers.size(); ++I) 330 CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 331 return; 332 } 333 334 unsigned TotalComparisons = 0; 335 336 DenseMap<Value *, unsigned> PositionMap; 337 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 338 PositionMap[Pointers[Index].PointerValue] = Index; 339 340 // We need to keep track of what pointers we've already seen so we 341 // don't process them twice. 342 SmallSet<unsigned, 2> Seen; 343 344 // Go through all equivalence classes, get the "pointer check groups" 345 // and add them to the overall solution. We use the order in which accesses 346 // appear in 'Pointers' to enforce determinism. 347 for (unsigned I = 0; I < Pointers.size(); ++I) { 348 // We've seen this pointer before, and therefore already processed 349 // its equivalence class. 350 if (Seen.count(I)) 351 continue; 352 353 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 354 Pointers[I].IsWritePtr); 355 356 SmallVector<CheckingPtrGroup, 2> Groups; 357 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 358 359 // Because DepCands is constructed by visiting accesses in the order in 360 // which they appear in alias sets (which is deterministic) and the 361 // iteration order within an equivalence class member is only dependent on 362 // the order in which unions and insertions are performed on the 363 // equivalence class, the iteration order is deterministic. 364 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 365 MI != ME; ++MI) { 366 unsigned Pointer = PositionMap[MI->getPointer()]; 367 bool Merged = false; 368 // Mark this pointer as seen. 369 Seen.insert(Pointer); 370 371 // Go through all the existing sets and see if we can find one 372 // which can include this pointer. 373 for (CheckingPtrGroup &Group : Groups) { 374 // Don't perform more than a certain amount of comparisons. 375 // This should limit the cost of grouping the pointers to something 376 // reasonable. If we do end up hitting this threshold, the algorithm 377 // will create separate groups for all remaining pointers. 378 if (TotalComparisons > MemoryCheckMergeThreshold) 379 break; 380 381 TotalComparisons++; 382 383 if (Group.addPointer(Pointer)) { 384 Merged = true; 385 break; 386 } 387 } 388 389 if (!Merged) 390 // We couldn't add this pointer to any existing set or the threshold 391 // for the number of comparisons has been reached. Create a new group 392 // to hold the current pointer. 393 Groups.push_back(CheckingPtrGroup(Pointer, *this)); 394 } 395 396 // We've computed the grouped checks for this partition. 397 // Save the results and continue with the next one. 398 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 399 } 400 } 401 402 bool RuntimePointerChecking::arePointersInSamePartition( 403 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 404 unsigned PtrIdx2) { 405 return (PtrToPartition[PtrIdx1] != -1 && 406 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 407 } 408 409 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 410 const PointerInfo &PointerI = Pointers[I]; 411 const PointerInfo &PointerJ = Pointers[J]; 412 413 // No need to check if two readonly pointers intersect. 414 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 415 return false; 416 417 // Only need to check pointers between two different dependency sets. 418 if (PointerI.DependencySetId == PointerJ.DependencySetId) 419 return false; 420 421 // Only need to check pointers in the same alias set. 422 if (PointerI.AliasSetId != PointerJ.AliasSetId) 423 return false; 424 425 return true; 426 } 427 428 void RuntimePointerChecking::printChecks( 429 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 430 unsigned Depth) const { 431 unsigned N = 0; 432 for (const auto &Check : Checks) { 433 const auto &First = Check.first->Members, &Second = Check.second->Members; 434 435 OS.indent(Depth) << "Check " << N++ << ":\n"; 436 437 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 438 for (unsigned K = 0; K < First.size(); ++K) 439 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 440 441 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 442 for (unsigned K = 0; K < Second.size(); ++K) 443 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 444 } 445 } 446 447 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 448 449 OS.indent(Depth) << "Run-time memory checks:\n"; 450 printChecks(OS, Checks, Depth); 451 452 OS.indent(Depth) << "Grouped accesses:\n"; 453 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 454 const auto &CG = CheckingGroups[I]; 455 456 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 457 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 458 << ")\n"; 459 for (unsigned J = 0; J < CG.Members.size(); ++J) { 460 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 461 << "\n"; 462 } 463 } 464 } 465 466 namespace { 467 /// \brief Analyses memory accesses in a loop. 468 /// 469 /// Checks whether run time pointer checks are needed and builds sets for data 470 /// dependence checking. 471 class AccessAnalysis { 472 public: 473 /// \brief Read or write access location. 474 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 475 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 476 477 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 478 MemoryDepChecker::DepCandidates &DA, 479 PredicatedScalarEvolution &PSE) 480 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false), 481 PSE(PSE) {} 482 483 /// \brief Register a load and whether it is only read from. 484 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 485 Value *Ptr = const_cast<Value*>(Loc.Ptr); 486 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 487 Accesses.insert(MemAccessInfo(Ptr, false)); 488 if (IsReadOnly) 489 ReadOnlyPtr.insert(Ptr); 490 } 491 492 /// \brief Register a store. 493 void addStore(MemoryLocation &Loc) { 494 Value *Ptr = const_cast<Value*>(Loc.Ptr); 495 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 496 Accesses.insert(MemAccessInfo(Ptr, true)); 497 } 498 499 /// \brief Check whether we can check the pointers at runtime for 500 /// non-intersection. 501 /// 502 /// Returns true if we need no check or if we do and we can generate them 503 /// (i.e. the pointers have computable bounds). 504 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 505 Loop *TheLoop, const ValueToValueMap &Strides, 506 bool ShouldCheckWrap = false); 507 508 /// \brief Goes over all memory accesses, checks whether a RT check is needed 509 /// and builds sets of dependent accesses. 510 void buildDependenceSets() { 511 processMemAccesses(); 512 } 513 514 /// \brief Initial processing of memory accesses determined that we need to 515 /// perform dependency checking. 516 /// 517 /// Note that this can later be cleared if we retry memcheck analysis without 518 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 519 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 520 521 /// We decided that no dependence analysis would be used. Reset the state. 522 void resetDepChecks(MemoryDepChecker &DepChecker) { 523 CheckDeps.clear(); 524 DepChecker.clearDependences(); 525 } 526 527 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 528 529 private: 530 typedef SetVector<MemAccessInfo> PtrAccessSet; 531 532 /// \brief Go over all memory access and check whether runtime pointer checks 533 /// are needed and build sets of dependency check candidates. 534 void processMemAccesses(); 535 536 /// Set of all accesses. 537 PtrAccessSet Accesses; 538 539 const DataLayout &DL; 540 541 /// Set of accesses that need a further dependence check. 542 MemAccessInfoSet CheckDeps; 543 544 /// Set of pointers that are read only. 545 SmallPtrSet<Value*, 16> ReadOnlyPtr; 546 547 /// An alias set tracker to partition the access set by underlying object and 548 //intrinsic property (such as TBAA metadata). 549 AliasSetTracker AST; 550 551 LoopInfo *LI; 552 553 /// Sets of potentially dependent accesses - members of one set share an 554 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 555 /// dependence check. 556 MemoryDepChecker::DepCandidates &DepCands; 557 558 /// \brief Initial processing of memory accesses determined that we may need 559 /// to add memchecks. Perform the analysis to determine the necessary checks. 560 /// 561 /// Note that, this is different from isDependencyCheckNeeded. When we retry 562 /// memcheck analysis without dependency checking 563 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 564 /// while this remains set if we have potentially dependent accesses. 565 bool IsRTCheckAnalysisNeeded; 566 567 /// The SCEV predicate containing all the SCEV-related assumptions. 568 PredicatedScalarEvolution &PSE; 569 }; 570 571 } // end anonymous namespace 572 573 /// \brief Check whether a pointer can participate in a runtime bounds check. 574 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 575 const ValueToValueMap &Strides, Value *Ptr, 576 Loop *L) { 577 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 578 579 // The bounds for loop-invariant pointer is trivial. 580 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 581 return true; 582 583 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 584 if (!AR) 585 return false; 586 587 return AR->isAffine(); 588 } 589 590 /// \brief Check whether a pointer address cannot wrap. 591 static bool isNoWrap(PredicatedScalarEvolution &PSE, 592 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 593 const SCEV *PtrScev = PSE.getSCEV(Ptr); 594 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 595 return true; 596 597 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 598 return Stride == 1; 599 } 600 601 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 602 ScalarEvolution *SE, Loop *TheLoop, 603 const ValueToValueMap &StridesMap, 604 bool ShouldCheckWrap) { 605 // Find pointers with computable bounds. We are going to use this information 606 // to place a runtime bound check. 607 bool CanDoRT = true; 608 609 bool NeedRTCheck = false; 610 if (!IsRTCheckAnalysisNeeded) return true; 611 612 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 613 614 // We assign a consecutive id to access from different alias sets. 615 // Accesses between different groups doesn't need to be checked. 616 unsigned ASId = 1; 617 for (auto &AS : AST) { 618 int NumReadPtrChecks = 0; 619 int NumWritePtrChecks = 0; 620 621 // We assign consecutive id to access from different dependence sets. 622 // Accesses within the same set don't need a runtime check. 623 unsigned RunningDepId = 1; 624 DenseMap<Value *, unsigned> DepSetId; 625 626 for (auto A : AS) { 627 Value *Ptr = A.getValue(); 628 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 629 MemAccessInfo Access(Ptr, IsWrite); 630 631 if (IsWrite) 632 ++NumWritePtrChecks; 633 else 634 ++NumReadPtrChecks; 635 636 if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) && 637 // When we run after a failing dependency check we have to make sure 638 // we don't have wrapping pointers. 639 (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) { 640 // The id of the dependence set. 641 unsigned DepId; 642 643 if (IsDepCheckNeeded) { 644 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 645 unsigned &LeaderId = DepSetId[Leader]; 646 if (!LeaderId) 647 LeaderId = RunningDepId++; 648 DepId = LeaderId; 649 } else 650 // Each access has its own dependence set. 651 DepId = RunningDepId++; 652 653 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 654 655 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 656 } else { 657 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 658 CanDoRT = false; 659 } 660 } 661 662 // If we have at least two writes or one write and a read then we need to 663 // check them. But there is no need to checks if there is only one 664 // dependence set for this alias set. 665 // 666 // Note that this function computes CanDoRT and NeedRTCheck independently. 667 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 668 // for which we couldn't find the bounds but we don't actually need to emit 669 // any checks so it does not matter. 670 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) 671 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && 672 NumWritePtrChecks >= 1)); 673 674 ++ASId; 675 } 676 677 // If the pointers that we would use for the bounds comparison have different 678 // address spaces, assume the values aren't directly comparable, so we can't 679 // use them for the runtime check. We also have to assume they could 680 // overlap. In the future there should be metadata for whether address spaces 681 // are disjoint. 682 unsigned NumPointers = RtCheck.Pointers.size(); 683 for (unsigned i = 0; i < NumPointers; ++i) { 684 for (unsigned j = i + 1; j < NumPointers; ++j) { 685 // Only need to check pointers between two different dependency sets. 686 if (RtCheck.Pointers[i].DependencySetId == 687 RtCheck.Pointers[j].DependencySetId) 688 continue; 689 // Only need to check pointers in the same alias set. 690 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 691 continue; 692 693 Value *PtrI = RtCheck.Pointers[i].PointerValue; 694 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 695 696 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 697 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 698 if (ASi != ASj) { 699 DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 700 " different address spaces\n"); 701 return false; 702 } 703 } 704 } 705 706 if (NeedRTCheck && CanDoRT) 707 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 708 709 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 710 << " pointer comparisons.\n"); 711 712 RtCheck.Need = NeedRTCheck; 713 714 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 715 if (!CanDoRTIfNeeded) 716 RtCheck.reset(); 717 return CanDoRTIfNeeded; 718 } 719 720 void AccessAnalysis::processMemAccesses() { 721 // We process the set twice: first we process read-write pointers, last we 722 // process read-only pointers. This allows us to skip dependence tests for 723 // read-only pointers. 724 725 DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 726 DEBUG(dbgs() << " AST: "; AST.dump()); 727 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 728 DEBUG({ 729 for (auto A : Accesses) 730 dbgs() << "\t" << *A.getPointer() << " (" << 731 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 732 "read-only" : "read")) << ")\n"; 733 }); 734 735 // The AliasSetTracker has nicely partitioned our pointers by metadata 736 // compatibility and potential for underlying-object overlap. As a result, we 737 // only need to check for potential pointer dependencies within each alias 738 // set. 739 for (auto &AS : AST) { 740 // Note that both the alias-set tracker and the alias sets themselves used 741 // linked lists internally and so the iteration order here is deterministic 742 // (matching the original instruction order within each set). 743 744 bool SetHasWrite = false; 745 746 // Map of pointers to last access encountered. 747 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 748 UnderlyingObjToAccessMap ObjToLastAccess; 749 750 // Set of access to check after all writes have been processed. 751 PtrAccessSet DeferredAccesses; 752 753 // Iterate over each alias set twice, once to process read/write pointers, 754 // and then to process read-only pointers. 755 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 756 bool UseDeferred = SetIteration > 0; 757 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 758 759 for (auto AV : AS) { 760 Value *Ptr = AV.getValue(); 761 762 // For a single memory access in AliasSetTracker, Accesses may contain 763 // both read and write, and they both need to be handled for CheckDeps. 764 for (auto AC : S) { 765 if (AC.getPointer() != Ptr) 766 continue; 767 768 bool IsWrite = AC.getInt(); 769 770 // If we're using the deferred access set, then it contains only 771 // reads. 772 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 773 if (UseDeferred && !IsReadOnlyPtr) 774 continue; 775 // Otherwise, the pointer must be in the PtrAccessSet, either as a 776 // read or a write. 777 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 778 S.count(MemAccessInfo(Ptr, false))) && 779 "Alias-set pointer not in the access set?"); 780 781 MemAccessInfo Access(Ptr, IsWrite); 782 DepCands.insert(Access); 783 784 // Memorize read-only pointers for later processing and skip them in 785 // the first round (they need to be checked after we have seen all 786 // write pointers). Note: we also mark pointer that are not 787 // consecutive as "read-only" pointers (so that we check 788 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 789 if (!UseDeferred && IsReadOnlyPtr) { 790 DeferredAccesses.insert(Access); 791 continue; 792 } 793 794 // If this is a write - check other reads and writes for conflicts. If 795 // this is a read only check other writes for conflicts (but only if 796 // there is no other write to the ptr - this is an optimization to 797 // catch "a[i] = a[i] + " without having to do a dependence check). 798 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 799 CheckDeps.insert(Access); 800 IsRTCheckAnalysisNeeded = true; 801 } 802 803 if (IsWrite) 804 SetHasWrite = true; 805 806 // Create sets of pointers connected by a shared alias set and 807 // underlying object. 808 typedef SmallVector<Value *, 16> ValueVector; 809 ValueVector TempObjects; 810 811 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 812 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 813 for (Value *UnderlyingObj : TempObjects) { 814 // nullptr never alias, don't join sets for pointer that have "null" 815 // in their UnderlyingObjects list. 816 if (isa<ConstantPointerNull>(UnderlyingObj)) 817 continue; 818 819 UnderlyingObjToAccessMap::iterator Prev = 820 ObjToLastAccess.find(UnderlyingObj); 821 if (Prev != ObjToLastAccess.end()) 822 DepCands.unionSets(Access, Prev->second); 823 824 ObjToLastAccess[UnderlyingObj] = Access; 825 DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 826 } 827 } 828 } 829 } 830 } 831 } 832 833 static bool isInBoundsGep(Value *Ptr) { 834 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 835 return GEP->isInBounds(); 836 return false; 837 } 838 839 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 840 /// i.e. monotonically increasing/decreasing. 841 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 842 PredicatedScalarEvolution &PSE, const Loop *L) { 843 // FIXME: This should probably only return true for NUW. 844 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 845 return true; 846 847 // Scalar evolution does not propagate the non-wrapping flags to values that 848 // are derived from a non-wrapping induction variable because non-wrapping 849 // could be flow-sensitive. 850 // 851 // Look through the potentially overflowing instruction to try to prove 852 // non-wrapping for the *specific* value of Ptr. 853 854 // The arithmetic implied by an inbounds GEP can't overflow. 855 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 856 if (!GEP || !GEP->isInBounds()) 857 return false; 858 859 // Make sure there is only one non-const index and analyze that. 860 Value *NonConstIndex = nullptr; 861 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 862 if (!isa<ConstantInt>(Index)) { 863 if (NonConstIndex) 864 return false; 865 NonConstIndex = Index; 866 } 867 if (!NonConstIndex) 868 // The recurrence is on the pointer, ignore for now. 869 return false; 870 871 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 872 // AddRec using a NSW operation. 873 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 874 if (OBO->hasNoSignedWrap() && 875 // Assume constant for other the operand so that the AddRec can be 876 // easily found. 877 isa<ConstantInt>(OBO->getOperand(1))) { 878 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 879 880 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 881 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 882 } 883 884 return false; 885 } 886 887 /// \brief Check whether the access through \p Ptr has a constant stride. 888 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 889 const Loop *Lp, const ValueToValueMap &StridesMap, 890 bool Assume) { 891 Type *Ty = Ptr->getType(); 892 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 893 894 // Make sure that the pointer does not point to aggregate types. 895 auto *PtrTy = cast<PointerType>(Ty); 896 if (PtrTy->getElementType()->isAggregateType()) { 897 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr 898 << "\n"); 899 return 0; 900 } 901 902 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 903 904 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 905 if (Assume && !AR) 906 AR = PSE.getAsAddRec(Ptr); 907 908 if (!AR) { 909 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 910 << " SCEV: " << *PtrScev << "\n"); 911 return 0; 912 } 913 914 // The accesss function must stride over the innermost loop. 915 if (Lp != AR->getLoop()) { 916 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 917 *Ptr << " SCEV: " << *AR << "\n"); 918 return 0; 919 } 920 921 // The address calculation must not wrap. Otherwise, a dependence could be 922 // inverted. 923 // An inbounds getelementptr that is a AddRec with a unit stride 924 // cannot wrap per definition. The unit stride requirement is checked later. 925 // An getelementptr without an inbounds attribute and unit stride would have 926 // to access the pointer value "0" which is undefined behavior in address 927 // space 0, therefore we can also vectorize this case. 928 bool IsInBoundsGEP = isInBoundsGep(Ptr); 929 bool IsNoWrapAddRec = 930 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 931 isNoWrapAddRec(Ptr, AR, PSE, Lp); 932 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 933 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 934 if (Assume) { 935 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 936 IsNoWrapAddRec = true; 937 DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 938 << "LAA: Pointer: " << *Ptr << "\n" 939 << "LAA: SCEV: " << *AR << "\n" 940 << "LAA: Added an overflow assumption\n"); 941 } else { 942 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 943 << *Ptr << " SCEV: " << *AR << "\n"); 944 return 0; 945 } 946 } 947 948 // Check the step is constant. 949 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 950 951 // Calculate the pointer stride and check if it is constant. 952 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 953 if (!C) { 954 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 955 " SCEV: " << *AR << "\n"); 956 return 0; 957 } 958 959 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 960 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 961 const APInt &APStepVal = C->getAPInt(); 962 963 // Huge step value - give up. 964 if (APStepVal.getBitWidth() > 64) 965 return 0; 966 967 int64_t StepVal = APStepVal.getSExtValue(); 968 969 // Strided access. 970 int64_t Stride = StepVal / Size; 971 int64_t Rem = StepVal % Size; 972 if (Rem) 973 return 0; 974 975 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 976 // know we can't "wrap around the address space". In case of address space 977 // zero we know that this won't happen without triggering undefined behavior. 978 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 979 Stride != 1 && Stride != -1) { 980 if (Assume) { 981 // We can avoid this case by adding a run-time check. 982 DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 983 << "inbouds or in address space 0 may wrap:\n" 984 << "LAA: Pointer: " << *Ptr << "\n" 985 << "LAA: SCEV: " << *AR << "\n" 986 << "LAA: Added an overflow assumption\n"); 987 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 988 } else 989 return 0; 990 } 991 992 return Stride; 993 } 994 995 /// Take the pointer operand from the Load/Store instruction. 996 /// Returns NULL if this is not a valid Load/Store instruction. 997 static Value *getPointerOperand(Value *I) { 998 if (auto *LI = dyn_cast<LoadInst>(I)) 999 return LI->getPointerOperand(); 1000 if (auto *SI = dyn_cast<StoreInst>(I)) 1001 return SI->getPointerOperand(); 1002 return nullptr; 1003 } 1004 1005 /// Take the address space operand from the Load/Store instruction. 1006 /// Returns -1 if this is not a valid Load/Store instruction. 1007 static unsigned getAddressSpaceOperand(Value *I) { 1008 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1009 return L->getPointerAddressSpace(); 1010 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1011 return S->getPointerAddressSpace(); 1012 return -1; 1013 } 1014 1015 /// Returns true if the memory operations \p A and \p B are consecutive. 1016 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1017 ScalarEvolution &SE, bool CheckType) { 1018 Value *PtrA = getPointerOperand(A); 1019 Value *PtrB = getPointerOperand(B); 1020 unsigned ASA = getAddressSpaceOperand(A); 1021 unsigned ASB = getAddressSpaceOperand(B); 1022 1023 // Check that the address spaces match and that the pointers are valid. 1024 if (!PtrA || !PtrB || (ASA != ASB)) 1025 return false; 1026 1027 // Make sure that A and B are different pointers. 1028 if (PtrA == PtrB) 1029 return false; 1030 1031 // Make sure that A and B have the same type if required. 1032 if (CheckType && PtrA->getType() != PtrB->getType()) 1033 return false; 1034 1035 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 1036 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1037 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); 1038 1039 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1040 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1041 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1042 1043 // OffsetDelta = OffsetB - OffsetA; 1044 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1045 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1046 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1047 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); 1048 const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); 1049 // Check if they are based on the same pointer. That makes the offsets 1050 // sufficient. 1051 if (PtrA == PtrB) 1052 return OffsetDelta == Size; 1053 1054 // Compute the necessary base pointer delta to have the necessary final delta 1055 // equal to the size. 1056 // BaseDelta = Size - OffsetDelta; 1057 const SCEV *SizeSCEV = SE.getConstant(Size); 1058 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1059 1060 // Otherwise compute the distance with SCEV between the base pointers. 1061 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1062 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1063 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1064 return X == PtrSCEVB; 1065 } 1066 1067 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1068 switch (Type) { 1069 case NoDep: 1070 case Forward: 1071 case BackwardVectorizable: 1072 return true; 1073 1074 case Unknown: 1075 case ForwardButPreventsForwarding: 1076 case Backward: 1077 case BackwardVectorizableButPreventsForwarding: 1078 return false; 1079 } 1080 llvm_unreachable("unexpected DepType!"); 1081 } 1082 1083 bool MemoryDepChecker::Dependence::isBackward() const { 1084 switch (Type) { 1085 case NoDep: 1086 case Forward: 1087 case ForwardButPreventsForwarding: 1088 case Unknown: 1089 return false; 1090 1091 case BackwardVectorizable: 1092 case Backward: 1093 case BackwardVectorizableButPreventsForwarding: 1094 return true; 1095 } 1096 llvm_unreachable("unexpected DepType!"); 1097 } 1098 1099 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1100 return isBackward() || Type == Unknown; 1101 } 1102 1103 bool MemoryDepChecker::Dependence::isForward() const { 1104 switch (Type) { 1105 case Forward: 1106 case ForwardButPreventsForwarding: 1107 return true; 1108 1109 case NoDep: 1110 case Unknown: 1111 case BackwardVectorizable: 1112 case Backward: 1113 case BackwardVectorizableButPreventsForwarding: 1114 return false; 1115 } 1116 llvm_unreachable("unexpected DepType!"); 1117 } 1118 1119 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1120 uint64_t TypeByteSize) { 1121 // If loads occur at a distance that is not a multiple of a feasible vector 1122 // factor store-load forwarding does not take place. 1123 // Positive dependences might cause troubles because vectorizing them might 1124 // prevent store-load forwarding making vectorized code run a lot slower. 1125 // a[i] = a[i-3] ^ a[i-8]; 1126 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1127 // hence on your typical architecture store-load forwarding does not take 1128 // place. Vectorizing in such cases does not make sense. 1129 // Store-load forwarding distance. 1130 1131 // After this many iterations store-to-load forwarding conflicts should not 1132 // cause any slowdowns. 1133 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1134 // Maximum vector factor. 1135 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1136 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1137 1138 // Compute the smallest VF at which the store and load would be misaligned. 1139 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1140 VF *= 2) { 1141 // If the number of vector iteration between the store and the load are 1142 // small we could incur conflicts. 1143 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1144 MaxVFWithoutSLForwardIssues = (VF >>= 1); 1145 break; 1146 } 1147 } 1148 1149 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1150 DEBUG(dbgs() << "LAA: Distance " << Distance 1151 << " that could cause a store-load forwarding conflict\n"); 1152 return true; 1153 } 1154 1155 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1156 MaxVFWithoutSLForwardIssues != 1157 VectorizerParams::MaxVectorWidth * TypeByteSize) 1158 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1159 return false; 1160 } 1161 1162 /// \brief Check the dependence for two accesses with the same stride \p Stride. 1163 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1164 /// bytes. 1165 /// 1166 /// \returns true if they are independent. 1167 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1168 uint64_t TypeByteSize) { 1169 assert(Stride > 1 && "The stride must be greater than 1"); 1170 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1171 assert(Distance > 0 && "The distance must be non-zero"); 1172 1173 // Skip if the distance is not multiple of type byte size. 1174 if (Distance % TypeByteSize) 1175 return false; 1176 1177 uint64_t ScaledDist = Distance / TypeByteSize; 1178 1179 // No dependence if the scaled distance is not multiple of the stride. 1180 // E.g. 1181 // for (i = 0; i < 1024 ; i += 4) 1182 // A[i+2] = A[i] + 1; 1183 // 1184 // Two accesses in memory (scaled distance is 2, stride is 4): 1185 // | A[0] | | | | A[4] | | | | 1186 // | | | A[2] | | | | A[6] | | 1187 // 1188 // E.g. 1189 // for (i = 0; i < 1024 ; i += 3) 1190 // A[i+4] = A[i] + 1; 1191 // 1192 // Two accesses in memory (scaled distance is 4, stride is 3): 1193 // | A[0] | | | A[3] | | | A[6] | | | 1194 // | | | | | A[4] | | | A[7] | | 1195 return ScaledDist % Stride; 1196 } 1197 1198 MemoryDepChecker::Dependence::DepType 1199 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1200 const MemAccessInfo &B, unsigned BIdx, 1201 const ValueToValueMap &Strides) { 1202 assert (AIdx < BIdx && "Must pass arguments in program order"); 1203 1204 Value *APtr = A.getPointer(); 1205 Value *BPtr = B.getPointer(); 1206 bool AIsWrite = A.getInt(); 1207 bool BIsWrite = B.getInt(); 1208 1209 // Two reads are independent. 1210 if (!AIsWrite && !BIsWrite) 1211 return Dependence::NoDep; 1212 1213 // We cannot check pointers in different address spaces. 1214 if (APtr->getType()->getPointerAddressSpace() != 1215 BPtr->getType()->getPointerAddressSpace()) 1216 return Dependence::Unknown; 1217 1218 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 1219 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 1220 1221 const SCEV *Src = PSE.getSCEV(APtr); 1222 const SCEV *Sink = PSE.getSCEV(BPtr); 1223 1224 // If the induction step is negative we have to invert source and sink of the 1225 // dependence. 1226 if (StrideAPtr < 0) { 1227 std::swap(APtr, BPtr); 1228 std::swap(Src, Sink); 1229 std::swap(AIsWrite, BIsWrite); 1230 std::swap(AIdx, BIdx); 1231 std::swap(StrideAPtr, StrideBPtr); 1232 } 1233 1234 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1235 1236 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1237 << "(Induction step: " << StrideAPtr << ")\n"); 1238 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1239 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1240 1241 // Need accesses with constant stride. We don't want to vectorize 1242 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1243 // the address space. 1244 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1245 DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1246 return Dependence::Unknown; 1247 } 1248 1249 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1250 if (!C) { 1251 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1252 ShouldRetryWithRuntimeCheck = true; 1253 return Dependence::Unknown; 1254 } 1255 1256 Type *ATy = APtr->getType()->getPointerElementType(); 1257 Type *BTy = BPtr->getType()->getPointerElementType(); 1258 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1259 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1260 1261 const APInt &Val = C->getAPInt(); 1262 int64_t Distance = Val.getSExtValue(); 1263 uint64_t Stride = std::abs(StrideAPtr); 1264 1265 // Attempt to prove strided accesses independent. 1266 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1267 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1268 DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1269 return Dependence::NoDep; 1270 } 1271 1272 // Negative distances are not plausible dependencies. 1273 if (Val.isNegative()) { 1274 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1275 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1276 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1277 ATy != BTy)) { 1278 DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1279 return Dependence::ForwardButPreventsForwarding; 1280 } 1281 1282 DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1283 return Dependence::Forward; 1284 } 1285 1286 // Write to the same location with the same size. 1287 // Could be improved to assert type sizes are the same (i32 == float, etc). 1288 if (Val == 0) { 1289 if (ATy == BTy) 1290 return Dependence::Forward; 1291 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 1292 return Dependence::Unknown; 1293 } 1294 1295 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1296 1297 if (ATy != BTy) { 1298 DEBUG(dbgs() << 1299 "LAA: ReadWrite-Write positive dependency with different types\n"); 1300 return Dependence::Unknown; 1301 } 1302 1303 // Bail out early if passed-in parameters make vectorization not feasible. 1304 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1305 VectorizerParams::VectorizationFactor : 1); 1306 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1307 VectorizerParams::VectorizationInterleave : 1); 1308 // The minimum number of iterations for a vectorized/unrolled version. 1309 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1310 1311 // It's not vectorizable if the distance is smaller than the minimum distance 1312 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1313 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1314 // TypeByteSize (No need to plus the last gap distance). 1315 // 1316 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1317 // foo(int *A) { 1318 // int *B = (int *)((char *)A + 14); 1319 // for (i = 0 ; i < 1024 ; i += 2) 1320 // B[i] = A[i] + 1; 1321 // } 1322 // 1323 // Two accesses in memory (stride is 2): 1324 // | A[0] | | A[2] | | A[4] | | A[6] | | 1325 // | B[0] | | B[2] | | B[4] | 1326 // 1327 // Distance needs for vectorizing iterations except the last iteration: 1328 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1329 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1330 // 1331 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1332 // 12, which is less than distance. 1333 // 1334 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1335 // the minimum distance needed is 28, which is greater than distance. It is 1336 // not safe to do vectorization. 1337 uint64_t MinDistanceNeeded = 1338 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1339 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1340 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1341 << '\n'); 1342 return Dependence::Backward; 1343 } 1344 1345 // Unsafe if the minimum distance needed is greater than max safe distance. 1346 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1347 DEBUG(dbgs() << "LAA: Failure because it needs at least " 1348 << MinDistanceNeeded << " size in bytes"); 1349 return Dependence::Backward; 1350 } 1351 1352 // Positive distance bigger than max vectorization factor. 1353 // FIXME: Should use max factor instead of max distance in bytes, which could 1354 // not handle different types. 1355 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1356 // void foo (int *A, char *B) { 1357 // for (unsigned i = 0; i < 1024; i++) { 1358 // A[i+2] = A[i] + 1; 1359 // B[i+2] = B[i] + 1; 1360 // } 1361 // } 1362 // 1363 // This case is currently unsafe according to the max safe distance. If we 1364 // analyze the two accesses on array B, the max safe dependence distance 1365 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1366 // is 8, which is less than 2 and forbidden vectorization, But actually 1367 // both A and B could be vectorized by 2 iterations. 1368 MaxSafeDepDistBytes = 1369 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1370 1371 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1372 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1373 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1374 return Dependence::BackwardVectorizableButPreventsForwarding; 1375 1376 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1377 << " with max VF = " 1378 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); 1379 1380 return Dependence::BackwardVectorizable; 1381 } 1382 1383 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1384 MemAccessInfoSet &CheckDeps, 1385 const ValueToValueMap &Strides) { 1386 1387 MaxSafeDepDistBytes = -1; 1388 while (!CheckDeps.empty()) { 1389 MemAccessInfo CurAccess = *CheckDeps.begin(); 1390 1391 // Get the relevant memory access set. 1392 EquivalenceClasses<MemAccessInfo>::iterator I = 1393 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1394 1395 // Check accesses within this set. 1396 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1397 AccessSets.member_begin(I); 1398 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1399 AccessSets.member_end(); 1400 1401 // Check every access pair. 1402 while (AI != AE) { 1403 CheckDeps.erase(*AI); 1404 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 1405 while (OI != AE) { 1406 // Check every accessing instruction pair in program order. 1407 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1408 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1409 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 1410 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 1411 auto A = std::make_pair(&*AI, *I1); 1412 auto B = std::make_pair(&*OI, *I2); 1413 1414 assert(*I1 != *I2); 1415 if (*I1 > *I2) 1416 std::swap(A, B); 1417 1418 Dependence::DepType Type = 1419 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1420 SafeForVectorization &= Dependence::isSafeForVectorization(Type); 1421 1422 // Gather dependences unless we accumulated MaxDependences 1423 // dependences. In that case return as soon as we find the first 1424 // unsafe dependence. This puts a limit on this quadratic 1425 // algorithm. 1426 if (RecordDependences) { 1427 if (Type != Dependence::NoDep) 1428 Dependences.push_back(Dependence(A.second, B.second, Type)); 1429 1430 if (Dependences.size() >= MaxDependences) { 1431 RecordDependences = false; 1432 Dependences.clear(); 1433 DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 1434 } 1435 } 1436 if (!RecordDependences && !SafeForVectorization) 1437 return false; 1438 } 1439 ++OI; 1440 } 1441 AI++; 1442 } 1443 } 1444 1445 DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1446 return SafeForVectorization; 1447 } 1448 1449 SmallVector<Instruction *, 4> 1450 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1451 MemAccessInfo Access(Ptr, isWrite); 1452 auto &IndexVector = Accesses.find(Access)->second; 1453 1454 SmallVector<Instruction *, 4> Insts; 1455 transform(IndexVector, 1456 std::back_inserter(Insts), 1457 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1458 return Insts; 1459 } 1460 1461 const char *MemoryDepChecker::Dependence::DepName[] = { 1462 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1463 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1464 1465 void MemoryDepChecker::Dependence::print( 1466 raw_ostream &OS, unsigned Depth, 1467 const SmallVectorImpl<Instruction *> &Instrs) const { 1468 OS.indent(Depth) << DepName[Type] << ":\n"; 1469 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1470 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1471 } 1472 1473 bool LoopAccessInfo::canAnalyzeLoop() { 1474 // We need to have a loop header. 1475 DEBUG(dbgs() << "LAA: Found a loop in " 1476 << TheLoop->getHeader()->getParent()->getName() << ": " 1477 << TheLoop->getHeader()->getName() << '\n'); 1478 1479 // We can only analyze innermost loops. 1480 if (!TheLoop->empty()) { 1481 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1482 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); 1483 return false; 1484 } 1485 1486 // We must have a single backedge. 1487 if (TheLoop->getNumBackEdges() != 1) { 1488 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1489 emitAnalysis( 1490 LoopAccessReport() << 1491 "loop control flow is not understood by analyzer"); 1492 return false; 1493 } 1494 1495 // We must have a single exiting block. 1496 if (!TheLoop->getExitingBlock()) { 1497 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1498 emitAnalysis( 1499 LoopAccessReport() << 1500 "loop control flow is not understood by analyzer"); 1501 return false; 1502 } 1503 1504 // We only handle bottom-tested loops, i.e. loop in which the condition is 1505 // checked at the end of each iteration. With that we can assume that all 1506 // instructions in the loop are executed the same number of times. 1507 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1508 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1509 emitAnalysis( 1510 LoopAccessReport() << 1511 "loop control flow is not understood by analyzer"); 1512 return false; 1513 } 1514 1515 // ScalarEvolution needs to be able to find the exit count. 1516 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1517 if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1518 emitAnalysis(LoopAccessReport() 1519 << "could not determine number of loop iterations"); 1520 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1521 return false; 1522 } 1523 1524 return true; 1525 } 1526 1527 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, 1528 const TargetLibraryInfo *TLI, 1529 DominatorTree *DT) { 1530 typedef SmallPtrSet<Value*, 16> ValueSet; 1531 1532 // Holds the Load and Store instructions. 1533 SmallVector<LoadInst *, 16> Loads; 1534 SmallVector<StoreInst *, 16> Stores; 1535 1536 // Holds all the different accesses in the loop. 1537 unsigned NumReads = 0; 1538 unsigned NumReadWrites = 0; 1539 1540 PtrRtChecking->Pointers.clear(); 1541 PtrRtChecking->Need = false; 1542 1543 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1544 1545 // For each block. 1546 for (BasicBlock *BB : TheLoop->blocks()) { 1547 // Scan the BB and collect legal loads and stores. 1548 for (Instruction &I : *BB) { 1549 // If this is a load, save it. If this instruction can read from memory 1550 // but is not a load, then we quit. Notice that we don't handle function 1551 // calls that read or write. 1552 if (I.mayReadFromMemory()) { 1553 // Many math library functions read the rounding mode. We will only 1554 // vectorize a loop if it contains known function calls that don't set 1555 // the flag. Therefore, it is safe to ignore this read from memory. 1556 auto *Call = dyn_cast<CallInst>(&I); 1557 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1558 continue; 1559 1560 // If the function has an explicit vectorized counterpart, we can safely 1561 // assume that it can be vectorized. 1562 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1563 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 1564 continue; 1565 1566 auto *Ld = dyn_cast<LoadInst>(&I); 1567 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1568 emitAnalysis(LoopAccessReport(Ld) 1569 << "read with atomic ordering or volatile read"); 1570 DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1571 CanVecMem = false; 1572 return; 1573 } 1574 NumLoads++; 1575 Loads.push_back(Ld); 1576 DepChecker->addAccess(Ld); 1577 if (EnableMemAccessVersioning) 1578 collectStridedAccess(Ld); 1579 continue; 1580 } 1581 1582 // Save 'store' instructions. Abort if other instructions write to memory. 1583 if (I.mayWriteToMemory()) { 1584 auto *St = dyn_cast<StoreInst>(&I); 1585 if (!St) { 1586 emitAnalysis(LoopAccessReport(St) 1587 << "instruction cannot be vectorized"); 1588 CanVecMem = false; 1589 return; 1590 } 1591 if (!St->isSimple() && !IsAnnotatedParallel) { 1592 emitAnalysis(LoopAccessReport(St) 1593 << "write with atomic ordering or volatile write"); 1594 DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1595 CanVecMem = false; 1596 return; 1597 } 1598 NumStores++; 1599 Stores.push_back(St); 1600 DepChecker->addAccess(St); 1601 if (EnableMemAccessVersioning) 1602 collectStridedAccess(St); 1603 } 1604 } // Next instr. 1605 } // Next block. 1606 1607 // Now we have two lists that hold the loads and the stores. 1608 // Next, we find the pointers that they use. 1609 1610 // Check if we see any stores. If there are no stores, then we don't 1611 // care if the pointers are *restrict*. 1612 if (!Stores.size()) { 1613 DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1614 CanVecMem = true; 1615 return; 1616 } 1617 1618 MemoryDepChecker::DepCandidates DependentAccesses; 1619 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1620 AA, LI, DependentAccesses, *PSE); 1621 1622 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1623 // multiple times on the same object. If the ptr is accessed twice, once 1624 // for read and once for write, it will only appear once (on the write 1625 // list). This is okay, since we are going to check for conflicts between 1626 // writes and between reads and writes, but not between reads and reads. 1627 ValueSet Seen; 1628 1629 for (StoreInst *ST : Stores) { 1630 Value *Ptr = ST->getPointerOperand(); 1631 // Check for store to loop invariant address. 1632 StoreToLoopInvariantAddress |= isUniform(Ptr); 1633 // If we did *not* see this pointer before, insert it to the read-write 1634 // list. At this phase it is only a 'write' list. 1635 if (Seen.insert(Ptr).second) { 1636 ++NumReadWrites; 1637 1638 MemoryLocation Loc = MemoryLocation::get(ST); 1639 // The TBAA metadata could have a control dependency on the predication 1640 // condition, so we cannot rely on it when determining whether or not we 1641 // need runtime pointer checks. 1642 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1643 Loc.AATags.TBAA = nullptr; 1644 1645 Accesses.addStore(Loc); 1646 } 1647 } 1648 1649 if (IsAnnotatedParallel) { 1650 DEBUG(dbgs() 1651 << "LAA: A loop annotated parallel, ignore memory dependency " 1652 << "checks.\n"); 1653 CanVecMem = true; 1654 return; 1655 } 1656 1657 for (LoadInst *LD : Loads) { 1658 Value *Ptr = LD->getPointerOperand(); 1659 // If we did *not* see this pointer before, insert it to the 1660 // read list. If we *did* see it before, then it is already in 1661 // the read-write list. This allows us to vectorize expressions 1662 // such as A[i] += x; Because the address of A[i] is a read-write 1663 // pointer. This only works if the index of A[i] is consecutive. 1664 // If the address of i is unknown (for example A[B[i]]) then we may 1665 // read a few words, modify, and write a few words, and some of the 1666 // words may be written to the same address. 1667 bool IsReadOnlyPtr = false; 1668 if (Seen.insert(Ptr).second || 1669 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 1670 ++NumReads; 1671 IsReadOnlyPtr = true; 1672 } 1673 1674 MemoryLocation Loc = MemoryLocation::get(LD); 1675 // The TBAA metadata could have a control dependency on the predication 1676 // condition, so we cannot rely on it when determining whether or not we 1677 // need runtime pointer checks. 1678 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1679 Loc.AATags.TBAA = nullptr; 1680 1681 Accesses.addLoad(Loc, IsReadOnlyPtr); 1682 } 1683 1684 // If we write (or read-write) to a single destination and there are no 1685 // other reads in this loop then is it safe to vectorize. 1686 if (NumReadWrites == 1 && NumReads == 0) { 1687 DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1688 CanVecMem = true; 1689 return; 1690 } 1691 1692 // Build dependence sets and check whether we need a runtime pointer bounds 1693 // check. 1694 Accesses.buildDependenceSets(); 1695 1696 // Find pointers with computable bounds. We are going to use this information 1697 // to place a runtime bound check. 1698 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 1699 TheLoop, SymbolicStrides); 1700 if (!CanDoRTIfNeeded) { 1701 emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); 1702 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1703 << "the array bounds.\n"); 1704 CanVecMem = false; 1705 return; 1706 } 1707 1708 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 1709 1710 CanVecMem = true; 1711 if (Accesses.isDependencyCheckNeeded()) { 1712 DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1713 CanVecMem = DepChecker->areDepsSafe( 1714 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 1715 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 1716 1717 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 1718 DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 1719 1720 // Clear the dependency checks. We assume they are not needed. 1721 Accesses.resetDepChecks(*DepChecker); 1722 1723 PtrRtChecking->reset(); 1724 PtrRtChecking->Need = true; 1725 1726 auto *SE = PSE->getSE(); 1727 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 1728 SymbolicStrides, true); 1729 1730 // Check that we found the bounds for the pointer. 1731 if (!CanDoRTIfNeeded) { 1732 emitAnalysis(LoopAccessReport() 1733 << "cannot check memory dependencies at runtime"); 1734 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1735 CanVecMem = false; 1736 return; 1737 } 1738 1739 CanVecMem = true; 1740 } 1741 } 1742 1743 if (CanVecMem) 1744 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1745 << (PtrRtChecking->Need ? "" : " don't") 1746 << " need runtime memory checks.\n"); 1747 else { 1748 emitAnalysis( 1749 LoopAccessReport() 1750 << "unsafe dependent memory operations in loop. Use " 1751 "#pragma loop distribute(enable) to allow loop distribution " 1752 "to attempt to isolate the offending operations into a separate " 1753 "loop"); 1754 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 1755 } 1756 } 1757 1758 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 1759 DominatorTree *DT) { 1760 assert(TheLoop->contains(BB) && "Unknown block used"); 1761 1762 // Blocks that do not dominate the latch need predication. 1763 BasicBlock* Latch = TheLoop->getLoopLatch(); 1764 return !DT->dominates(BB, Latch); 1765 } 1766 1767 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { 1768 assert(!Report && "Multiple reports generated"); 1769 Report = Message; 1770 } 1771 1772 bool LoopAccessInfo::isUniform(Value *V) const { 1773 auto *SE = PSE->getSE(); 1774 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 1775 // never considered uniform. 1776 // TODO: Is this really what we want? Even without FP SCEV, we may want some 1777 // trivially loop-invariant FP values to be considered uniform. 1778 if (!SE->isSCEVable(V->getType())) 1779 return false; 1780 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1781 } 1782 1783 // FIXME: this function is currently a duplicate of the one in 1784 // LoopVectorize.cpp. 1785 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1786 Instruction *Loc) { 1787 if (FirstInst) 1788 return FirstInst; 1789 if (Instruction *I = dyn_cast<Instruction>(V)) 1790 return I->getParent() == Loc->getParent() ? I : nullptr; 1791 return nullptr; 1792 } 1793 1794 namespace { 1795 /// \brief IR Values for the lower and upper bounds of a pointer evolution. We 1796 /// need to use value-handles because SCEV expansion can invalidate previously 1797 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1798 /// a previous one. 1799 struct PointerBounds { 1800 TrackingVH<Value> Start; 1801 TrackingVH<Value> End; 1802 }; 1803 } // end anonymous namespace 1804 1805 /// \brief Expand code for the lower and upper bound of the pointer group \p CG 1806 /// in \p TheLoop. \return the values for the bounds. 1807 static PointerBounds 1808 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 1809 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 1810 const RuntimePointerChecking &PtrRtChecking) { 1811 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 1812 const SCEV *Sc = SE->getSCEV(Ptr); 1813 1814 if (SE->isLoopInvariant(Sc, TheLoop)) { 1815 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 1816 << "\n"); 1817 return {Ptr, Ptr}; 1818 } else { 1819 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1820 LLVMContext &Ctx = Loc->getContext(); 1821 1822 // Use this type for pointer arithmetic. 1823 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1824 Value *Start = nullptr, *End = nullptr; 1825 1826 DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1827 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 1828 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 1829 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 1830 return {Start, End}; 1831 } 1832 } 1833 1834 /// \brief Turns a collection of checks into a collection of expanded upper and 1835 /// lower bounds for both pointers in the check. 1836 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 1837 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 1838 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 1839 const RuntimePointerChecking &PtrRtChecking) { 1840 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1841 1842 // Here we're relying on the SCEV Expander's cache to only emit code for the 1843 // same bounds once. 1844 transform( 1845 PointerChecks, std::back_inserter(ChecksWithBounds), 1846 [&](const RuntimePointerChecking::PointerCheck &Check) { 1847 PointerBounds 1848 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 1849 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 1850 return std::make_pair(First, Second); 1851 }); 1852 1853 return ChecksWithBounds; 1854 } 1855 1856 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 1857 Instruction *Loc, 1858 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 1859 const { 1860 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 1861 auto *SE = PSE->getSE(); 1862 SCEVExpander Exp(*SE, DL, "induction"); 1863 auto ExpandedChecks = 1864 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); 1865 1866 LLVMContext &Ctx = Loc->getContext(); 1867 Instruction *FirstInst = nullptr; 1868 IRBuilder<> ChkBuilder(Loc); 1869 // Our instructions might fold to a constant. 1870 Value *MemoryRuntimeCheck = nullptr; 1871 1872 for (const auto &Check : ExpandedChecks) { 1873 const PointerBounds &A = Check.first, &B = Check.second; 1874 // Check if two pointers (A and B) conflict where conflict is computed as: 1875 // start(A) <= end(B) && start(B) <= end(A) 1876 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 1877 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 1878 1879 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 1880 (AS1 == A.End->getType()->getPointerAddressSpace()) && 1881 "Trying to bounds check pointers with different address spaces"); 1882 1883 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1884 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1885 1886 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 1887 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 1888 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 1889 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 1890 1891 // [A|B].Start points to the first accessed byte under base [A|B]. 1892 // [A|B].End points to the last accessed byte, plus one. 1893 // There is no conflict when the intervals are disjoint: 1894 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 1895 // 1896 // bound0 = (B.Start < A.End) 1897 // bound1 = (A.Start < B.End) 1898 // IsConflict = bound0 & bound1 1899 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 1900 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1901 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 1902 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1903 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1904 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1905 if (MemoryRuntimeCheck) { 1906 IsConflict = 1907 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1908 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1909 } 1910 MemoryRuntimeCheck = IsConflict; 1911 } 1912 1913 if (!MemoryRuntimeCheck) 1914 return std::make_pair(nullptr, nullptr); 1915 1916 // We have to do this trickery because the IRBuilder might fold the check to a 1917 // constant expression in which case there is no Instruction anchored in a 1918 // the block. 1919 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1920 ConstantInt::getTrue(Ctx)); 1921 ChkBuilder.Insert(Check, "memcheck.conflict"); 1922 FirstInst = getFirstInst(FirstInst, Check, Loc); 1923 return std::make_pair(FirstInst, Check); 1924 } 1925 1926 std::pair<Instruction *, Instruction *> 1927 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 1928 if (!PtrRtChecking->Need) 1929 return std::make_pair(nullptr, nullptr); 1930 1931 return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); 1932 } 1933 1934 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 1935 Value *Ptr = nullptr; 1936 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 1937 Ptr = LI->getPointerOperand(); 1938 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 1939 Ptr = SI->getPointerOperand(); 1940 else 1941 return; 1942 1943 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 1944 if (!Stride) 1945 return; 1946 1947 DEBUG(dbgs() << "LAA: Found a strided access that we can version"); 1948 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 1949 SymbolicStrides[Ptr] = Stride; 1950 StrideSet.insert(Stride); 1951 } 1952 1953 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 1954 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1955 DominatorTree *DT, LoopInfo *LI) 1956 : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)), 1957 PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), 1958 DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 1959 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 1960 StoreToLoopInvariantAddress(false) { 1961 if (canAnalyzeLoop()) 1962 analyzeLoop(AA, LI, TLI, DT); 1963 } 1964 1965 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1966 if (CanVecMem) { 1967 OS.indent(Depth) << "Memory dependences are safe"; 1968 if (MaxSafeDepDistBytes != -1ULL) 1969 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 1970 << " bytes"; 1971 if (PtrRtChecking->Need) 1972 OS << " with run-time checks"; 1973 OS << "\n"; 1974 } 1975 1976 if (Report) 1977 OS.indent(Depth) << "Report: " << Report->str() << "\n"; 1978 1979 if (auto *Dependences = DepChecker->getDependences()) { 1980 OS.indent(Depth) << "Dependences:\n"; 1981 for (auto &Dep : *Dependences) { 1982 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 1983 OS << "\n"; 1984 } 1985 } else 1986 OS.indent(Depth) << "Too many dependences, not recorded\n"; 1987 1988 // List the pair of accesses need run-time checks to prove independence. 1989 PtrRtChecking->print(OS, Depth); 1990 OS << "\n"; 1991 1992 OS.indent(Depth) << "Store to invariant address was " 1993 << (StoreToLoopInvariantAddress ? "" : "not ") 1994 << "found in loop.\n"; 1995 1996 OS.indent(Depth) << "SCEV assumptions:\n"; 1997 PSE->getUnionPredicate().print(OS, Depth); 1998 1999 OS << "\n"; 2000 2001 OS.indent(Depth) << "Expressions re-written:\n"; 2002 PSE->print(OS, Depth); 2003 } 2004 2005 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2006 auto &LAI = LoopAccessInfoMap[L]; 2007 2008 if (!LAI) 2009 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2010 2011 return *LAI.get(); 2012 } 2013 2014 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2015 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2016 2017 for (Loop *TopLevelLoop : *LI) 2018 for (Loop *L : depth_first(TopLevelLoop)) { 2019 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2020 auto &LAI = LAA.getInfo(L); 2021 LAI.print(OS, 4); 2022 } 2023 } 2024 2025 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2026 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2027 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2028 TLI = TLIP ? &TLIP->getTLI() : nullptr; 2029 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2030 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2031 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2032 2033 return false; 2034 } 2035 2036 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2037 AU.addRequired<ScalarEvolutionWrapperPass>(); 2038 AU.addRequired<AAResultsWrapperPass>(); 2039 AU.addRequired<DominatorTreeWrapperPass>(); 2040 AU.addRequired<LoopInfoWrapperPass>(); 2041 2042 AU.setPreservesAll(); 2043 } 2044 2045 char LoopAccessLegacyAnalysis::ID = 0; 2046 static const char laa_name[] = "Loop Access Analysis"; 2047 #define LAA_NAME "loop-accesses" 2048 2049 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2050 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2051 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2052 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2053 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2054 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2055 2056 char LoopAccessAnalysis::PassID; 2057 2058 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM) { 2059 const FunctionAnalysisManager &FAM = 2060 AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 2061 Function &F = *L.getHeader()->getParent(); 2062 auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(F); 2063 auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(F); 2064 auto *AA = FAM.getCachedResult<AAManager>(F); 2065 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 2066 auto *LI = FAM.getCachedResult<LoopAnalysis>(F); 2067 if (!SE) 2068 report_fatal_error( 2069 "ScalarEvolution must have been cached at a higher level"); 2070 if (!AA) 2071 report_fatal_error("AliasAnalysis must have been cached at a higher level"); 2072 if (!DT) 2073 report_fatal_error("DominatorTree must have been cached at a higher level"); 2074 if (!LI) 2075 report_fatal_error("LoopInfo must have been cached at a higher level"); 2076 return LoopAccessInfo(&L, SE, TLI, AA, DT, LI); 2077 } 2078 2079 PreservedAnalyses LoopAccessInfoPrinterPass::run(Loop &L, 2080 LoopAnalysisManager &AM) { 2081 Function &F = *L.getHeader()->getParent(); 2082 auto &LAI = AM.getResult<LoopAccessAnalysis>(L); 2083 OS << "Loop access info in function '" << F.getName() << "':\n"; 2084 OS.indent(2) << L.getHeader()->getName() << ":\n"; 2085 LAI.print(OS, 4); 2086 return PreservedAnalyses::all(); 2087 } 2088 2089 namespace llvm { 2090 Pass *createLAAPass() { 2091 return new LoopAccessLegacyAnalysis(); 2092 } 2093 } 2094