1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/EquivalenceClasses.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AliasSetTracker.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueHandle.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <cstdlib>
64 #include <iterator>
65 #include <utility>
66 #include <vector>
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "loop-accesses"
71 
72 static cl::opt<unsigned, true>
73 VectorizationFactor("force-vector-width", cl::Hidden,
74                     cl::desc("Sets the SIMD width. Zero is autoselect."),
75                     cl::location(VectorizerParams::VectorizationFactor));
76 unsigned VectorizerParams::VectorizationFactor;
77 
78 static cl::opt<unsigned, true>
79 VectorizationInterleave("force-vector-interleave", cl::Hidden,
80                         cl::desc("Sets the vectorization interleave count. "
81                                  "Zero is autoselect."),
82                         cl::location(
83                             VectorizerParams::VectorizationInterleave));
84 unsigned VectorizerParams::VectorizationInterleave;
85 
86 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
87     "runtime-memory-check-threshold", cl::Hidden,
88     cl::desc("When performing memory disambiguation checks at runtime do not "
89              "generate more than this number of comparisons (default = 8)."),
90     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
91 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
92 
93 /// The maximum iterations used to merge memory checks
94 static cl::opt<unsigned> MemoryCheckMergeThreshold(
95     "memory-check-merge-threshold", cl::Hidden,
96     cl::desc("Maximum number of comparisons done when trying to merge "
97              "runtime memory checks. (default = 100)"),
98     cl::init(100));
99 
100 /// Maximum SIMD width.
101 const unsigned VectorizerParams::MaxVectorWidth = 64;
102 
103 /// We collect dependences up to this threshold.
104 static cl::opt<unsigned>
105     MaxDependences("max-dependences", cl::Hidden,
106                    cl::desc("Maximum number of dependences collected by "
107                             "loop-access analysis (default = 100)"),
108                    cl::init(100));
109 
110 /// This enables versioning on the strides of symbolically striding memory
111 /// accesses in code like the following.
112 ///   for (i = 0; i < N; ++i)
113 ///     A[i * Stride1] += B[i * Stride2] ...
114 ///
115 /// Will be roughly translated to
116 ///    if (Stride1 == 1 && Stride2 == 1) {
117 ///      for (i = 0; i < N; i+=4)
118 ///       A[i:i+3] += ...
119 ///    } else
120 ///      ...
121 static cl::opt<bool> EnableMemAccessVersioning(
122     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
123     cl::desc("Enable symbolic stride memory access versioning"));
124 
125 /// Enable store-to-load forwarding conflict detection. This option can
126 /// be disabled for correctness testing.
127 static cl::opt<bool> EnableForwardingConflictDetection(
128     "store-to-load-forwarding-conflict-detection", cl::Hidden,
129     cl::desc("Enable conflict detection in loop-access analysis"),
130     cl::init(true));
131 
132 bool VectorizerParams::isInterleaveForced() {
133   return ::VectorizationInterleave.getNumOccurrences() > 0;
134 }
135 
136 Value *llvm::stripIntegerCast(Value *V) {
137   if (auto *CI = dyn_cast<CastInst>(V))
138     if (CI->getOperand(0)->getType()->isIntegerTy())
139       return CI->getOperand(0);
140   return V;
141 }
142 
143 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
144                                             const ValueToValueMap &PtrToStride,
145                                             Value *Ptr, Value *OrigPtr) {
146   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
147 
148   // If there is an entry in the map return the SCEV of the pointer with the
149   // symbolic stride replaced by one.
150   ValueToValueMap::const_iterator SI =
151       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
152   if (SI == PtrToStride.end())
153     // For a non-symbolic stride, just return the original expression.
154     return OrigSCEV;
155 
156   Value *StrideVal = stripIntegerCast(SI->second);
157 
158   ScalarEvolution *SE = PSE.getSE();
159   const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
160   const auto *CT =
161     static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
162 
163   PSE.addPredicate(*SE->getEqualPredicate(U, CT));
164   auto *Expr = PSE.getSCEV(Ptr);
165 
166   LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
167 	     << " by: " << *Expr << "\n");
168   return Expr;
169 }
170 
171 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
172     unsigned Index, RuntimePointerChecking &RtCheck)
173     : RtCheck(RtCheck), High(RtCheck.Pointers[Index].End),
174       Low(RtCheck.Pointers[Index].Start) {
175   Members.push_back(Index);
176 }
177 
178 /// Calculate Start and End points of memory access.
179 /// Let's assume A is the first access and B is a memory access on N-th loop
180 /// iteration. Then B is calculated as:
181 ///   B = A + Step*N .
182 /// Step value may be positive or negative.
183 /// N is a calculated back-edge taken count:
184 ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
185 /// Start and End points are calculated in the following way:
186 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
187 /// where SizeOfElt is the size of single memory access in bytes.
188 ///
189 /// There is no conflict when the intervals are disjoint:
190 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
191 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
192                                     unsigned DepSetId, unsigned ASId,
193                                     const ValueToValueMap &Strides,
194                                     PredicatedScalarEvolution &PSE) {
195   // Get the stride replaced scev.
196   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
197   ScalarEvolution *SE = PSE.getSE();
198 
199   const SCEV *ScStart;
200   const SCEV *ScEnd;
201 
202   if (SE->isLoopInvariant(Sc, Lp)) {
203     ScStart = ScEnd = Sc;
204   } else {
205     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
206     assert(AR && "Invalid addrec expression");
207     const SCEV *Ex = PSE.getBackedgeTakenCount();
208 
209     ScStart = AR->getStart();
210     ScEnd = AR->evaluateAtIteration(Ex, *SE);
211     const SCEV *Step = AR->getStepRecurrence(*SE);
212 
213     // For expressions with negative step, the upper bound is ScStart and the
214     // lower bound is ScEnd.
215     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
216       if (CStep->getValue()->isNegative())
217         std::swap(ScStart, ScEnd);
218     } else {
219       // Fallback case: the step is not constant, but we can still
220       // get the upper and lower bounds of the interval by using min/max
221       // expressions.
222       ScStart = SE->getUMinExpr(ScStart, ScEnd);
223       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
224     }
225   }
226   // Add the size of the pointed element to ScEnd.
227   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
228   Type *IdxTy = DL.getIndexType(Ptr->getType());
229   const SCEV *EltSizeSCEV =
230       SE->getStoreSizeOfExpr(IdxTy, Ptr->getType()->getPointerElementType());
231   ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
232 
233   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
234 }
235 
236 SmallVector<RuntimePointerCheck, 4>
237 RuntimePointerChecking::generateChecks() const {
238   SmallVector<RuntimePointerCheck, 4> Checks;
239 
240   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
241     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
242       const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
243       const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
244 
245       if (needsChecking(CGI, CGJ))
246         Checks.push_back(std::make_pair(&CGI, &CGJ));
247     }
248   }
249   return Checks;
250 }
251 
252 void RuntimePointerChecking::generateChecks(
253     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
254   assert(Checks.empty() && "Checks is not empty");
255   groupChecks(DepCands, UseDependencies);
256   Checks = generateChecks();
257 }
258 
259 bool RuntimePointerChecking::needsChecking(
260     const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
261   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
262     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
263       if (needsChecking(M.Members[I], N.Members[J]))
264         return true;
265   return false;
266 }
267 
268 /// Compare \p I and \p J and return the minimum.
269 /// Return nullptr in case we couldn't find an answer.
270 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
271                                    ScalarEvolution *SE) {
272   const SCEV *Diff = SE->getMinusSCEV(J, I);
273   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
274 
275   if (!C)
276     return nullptr;
277   if (C->getValue()->isNegative())
278     return J;
279   return I;
280 }
281 
282 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index) {
283   const SCEV *Start = RtCheck.Pointers[Index].Start;
284   const SCEV *End = RtCheck.Pointers[Index].End;
285 
286   // Compare the starts and ends with the known minimum and maximum
287   // of this set. We need to know how we compare against the min/max
288   // of the set in order to be able to emit memchecks.
289   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
290   if (!Min0)
291     return false;
292 
293   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
294   if (!Min1)
295     return false;
296 
297   // Update the low bound  expression if we've found a new min value.
298   if (Min0 == Start)
299     Low = Start;
300 
301   // Update the high bound expression if we've found a new max value.
302   if (Min1 != End)
303     High = End;
304 
305   Members.push_back(Index);
306   return true;
307 }
308 
309 void RuntimePointerChecking::groupChecks(
310     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
311   // We build the groups from dependency candidates equivalence classes
312   // because:
313   //    - We know that pointers in the same equivalence class share
314   //      the same underlying object and therefore there is a chance
315   //      that we can compare pointers
316   //    - We wouldn't be able to merge two pointers for which we need
317   //      to emit a memcheck. The classes in DepCands are already
318   //      conveniently built such that no two pointers in the same
319   //      class need checking against each other.
320 
321   // We use the following (greedy) algorithm to construct the groups
322   // For every pointer in the equivalence class:
323   //   For each existing group:
324   //   - if the difference between this pointer and the min/max bounds
325   //     of the group is a constant, then make the pointer part of the
326   //     group and update the min/max bounds of that group as required.
327 
328   CheckingGroups.clear();
329 
330   // If we need to check two pointers to the same underlying object
331   // with a non-constant difference, we shouldn't perform any pointer
332   // grouping with those pointers. This is because we can easily get
333   // into cases where the resulting check would return false, even when
334   // the accesses are safe.
335   //
336   // The following example shows this:
337   // for (i = 0; i < 1000; ++i)
338   //   a[5000 + i * m] = a[i] + a[i + 9000]
339   //
340   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
341   // (0, 10000) which is always false. However, if m is 1, there is no
342   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
343   // us to perform an accurate check in this case.
344   //
345   // The above case requires that we have an UnknownDependence between
346   // accesses to the same underlying object. This cannot happen unless
347   // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
348   // is also false. In this case we will use the fallback path and create
349   // separate checking groups for all pointers.
350 
351   // If we don't have the dependency partitions, construct a new
352   // checking pointer group for each pointer. This is also required
353   // for correctness, because in this case we can have checking between
354   // pointers to the same underlying object.
355   if (!UseDependencies) {
356     for (unsigned I = 0; I < Pointers.size(); ++I)
357       CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
358     return;
359   }
360 
361   unsigned TotalComparisons = 0;
362 
363   DenseMap<Value *, unsigned> PositionMap;
364   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
365     PositionMap[Pointers[Index].PointerValue] = Index;
366 
367   // We need to keep track of what pointers we've already seen so we
368   // don't process them twice.
369   SmallSet<unsigned, 2> Seen;
370 
371   // Go through all equivalence classes, get the "pointer check groups"
372   // and add them to the overall solution. We use the order in which accesses
373   // appear in 'Pointers' to enforce determinism.
374   for (unsigned I = 0; I < Pointers.size(); ++I) {
375     // We've seen this pointer before, and therefore already processed
376     // its equivalence class.
377     if (Seen.count(I))
378       continue;
379 
380     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
381                                            Pointers[I].IsWritePtr);
382 
383     SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
384     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
385 
386     // Because DepCands is constructed by visiting accesses in the order in
387     // which they appear in alias sets (which is deterministic) and the
388     // iteration order within an equivalence class member is only dependent on
389     // the order in which unions and insertions are performed on the
390     // equivalence class, the iteration order is deterministic.
391     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
392          MI != ME; ++MI) {
393       auto PointerI = PositionMap.find(MI->getPointer());
394       assert(PointerI != PositionMap.end() &&
395              "pointer in equivalence class not found in PositionMap");
396       unsigned Pointer = PointerI->second;
397       bool Merged = false;
398       // Mark this pointer as seen.
399       Seen.insert(Pointer);
400 
401       // Go through all the existing sets and see if we can find one
402       // which can include this pointer.
403       for (RuntimeCheckingPtrGroup &Group : Groups) {
404         // Don't perform more than a certain amount of comparisons.
405         // This should limit the cost of grouping the pointers to something
406         // reasonable.  If we do end up hitting this threshold, the algorithm
407         // will create separate groups for all remaining pointers.
408         if (TotalComparisons > MemoryCheckMergeThreshold)
409           break;
410 
411         TotalComparisons++;
412 
413         if (Group.addPointer(Pointer)) {
414           Merged = true;
415           break;
416         }
417       }
418 
419       if (!Merged)
420         // We couldn't add this pointer to any existing set or the threshold
421         // for the number of comparisons has been reached. Create a new group
422         // to hold the current pointer.
423         Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
424     }
425 
426     // We've computed the grouped checks for this partition.
427     // Save the results and continue with the next one.
428     llvm::copy(Groups, std::back_inserter(CheckingGroups));
429   }
430 }
431 
432 bool RuntimePointerChecking::arePointersInSamePartition(
433     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
434     unsigned PtrIdx2) {
435   return (PtrToPartition[PtrIdx1] != -1 &&
436           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
437 }
438 
439 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
440   const PointerInfo &PointerI = Pointers[I];
441   const PointerInfo &PointerJ = Pointers[J];
442 
443   // No need to check if two readonly pointers intersect.
444   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
445     return false;
446 
447   // Only need to check pointers between two different dependency sets.
448   if (PointerI.DependencySetId == PointerJ.DependencySetId)
449     return false;
450 
451   // Only need to check pointers in the same alias set.
452   if (PointerI.AliasSetId != PointerJ.AliasSetId)
453     return false;
454 
455   return true;
456 }
457 
458 void RuntimePointerChecking::printChecks(
459     raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
460     unsigned Depth) const {
461   unsigned N = 0;
462   for (const auto &Check : Checks) {
463     const auto &First = Check.first->Members, &Second = Check.second->Members;
464 
465     OS.indent(Depth) << "Check " << N++ << ":\n";
466 
467     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
468     for (unsigned K = 0; K < First.size(); ++K)
469       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
470 
471     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
472     for (unsigned K = 0; K < Second.size(); ++K)
473       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
474   }
475 }
476 
477 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
478 
479   OS.indent(Depth) << "Run-time memory checks:\n";
480   printChecks(OS, Checks, Depth);
481 
482   OS.indent(Depth) << "Grouped accesses:\n";
483   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
484     const auto &CG = CheckingGroups[I];
485 
486     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
487     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
488                          << ")\n";
489     for (unsigned J = 0; J < CG.Members.size(); ++J) {
490       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
491                            << "\n";
492     }
493   }
494 }
495 
496 namespace {
497 
498 /// Analyses memory accesses in a loop.
499 ///
500 /// Checks whether run time pointer checks are needed and builds sets for data
501 /// dependence checking.
502 class AccessAnalysis {
503 public:
504   /// Read or write access location.
505   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
506   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
507 
508   AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI,
509                  MemoryDepChecker::DepCandidates &DA,
510                  PredicatedScalarEvolution &PSE)
511       : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA),
512         IsRTCheckAnalysisNeeded(false), PSE(PSE) {}
513 
514   /// Register a load  and whether it is only read from.
515   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
516     Value *Ptr = const_cast<Value*>(Loc.Ptr);
517     AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
518     Accesses.insert(MemAccessInfo(Ptr, false));
519     if (IsReadOnly)
520       ReadOnlyPtr.insert(Ptr);
521   }
522 
523   /// Register a store.
524   void addStore(MemoryLocation &Loc) {
525     Value *Ptr = const_cast<Value*>(Loc.Ptr);
526     AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
527     Accesses.insert(MemAccessInfo(Ptr, true));
528   }
529 
530   /// Check if we can emit a run-time no-alias check for \p Access.
531   ///
532   /// Returns true if we can emit a run-time no alias check for \p Access.
533   /// If we can check this access, this also adds it to a dependence set and
534   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
535   /// we will attempt to use additional run-time checks in order to get
536   /// the bounds of the pointer.
537   bool createCheckForAccess(RuntimePointerChecking &RtCheck,
538                             MemAccessInfo Access,
539                             const ValueToValueMap &Strides,
540                             DenseMap<Value *, unsigned> &DepSetId,
541                             Loop *TheLoop, unsigned &RunningDepId,
542                             unsigned ASId, bool ShouldCheckStride,
543                             bool Assume);
544 
545   /// Check whether we can check the pointers at runtime for
546   /// non-intersection.
547   ///
548   /// Returns true if we need no check or if we do and we can generate them
549   /// (i.e. the pointers have computable bounds).
550   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
551                        Loop *TheLoop, const ValueToValueMap &Strides,
552                        bool ShouldCheckWrap = false);
553 
554   /// Goes over all memory accesses, checks whether a RT check is needed
555   /// and builds sets of dependent accesses.
556   void buildDependenceSets() {
557     processMemAccesses();
558   }
559 
560   /// Initial processing of memory accesses determined that we need to
561   /// perform dependency checking.
562   ///
563   /// Note that this can later be cleared if we retry memcheck analysis without
564   /// dependency checking (i.e. FoundNonConstantDistanceDependence).
565   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
566 
567   /// We decided that no dependence analysis would be used.  Reset the state.
568   void resetDepChecks(MemoryDepChecker &DepChecker) {
569     CheckDeps.clear();
570     DepChecker.clearDependences();
571   }
572 
573   MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
574 
575 private:
576   typedef SetVector<MemAccessInfo> PtrAccessSet;
577 
578   /// Go over all memory access and check whether runtime pointer checks
579   /// are needed and build sets of dependency check candidates.
580   void processMemAccesses();
581 
582   /// Set of all accesses.
583   PtrAccessSet Accesses;
584 
585   /// The loop being checked.
586   const Loop *TheLoop;
587 
588   /// List of accesses that need a further dependence check.
589   MemAccessInfoList CheckDeps;
590 
591   /// Set of pointers that are read only.
592   SmallPtrSet<Value*, 16> ReadOnlyPtr;
593 
594   /// An alias set tracker to partition the access set by underlying object and
595   //intrinsic property (such as TBAA metadata).
596   AliasSetTracker AST;
597 
598   LoopInfo *LI;
599 
600   /// Sets of potentially dependent accesses - members of one set share an
601   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
602   /// dependence check.
603   MemoryDepChecker::DepCandidates &DepCands;
604 
605   /// Initial processing of memory accesses determined that we may need
606   /// to add memchecks.  Perform the analysis to determine the necessary checks.
607   ///
608   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
609   /// memcheck analysis without dependency checking
610   /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
611   /// cleared while this remains set if we have potentially dependent accesses.
612   bool IsRTCheckAnalysisNeeded;
613 
614   /// The SCEV predicate containing all the SCEV-related assumptions.
615   PredicatedScalarEvolution &PSE;
616 };
617 
618 } // end anonymous namespace
619 
620 /// Check whether a pointer can participate in a runtime bounds check.
621 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
622 /// by adding run-time checks (overflow checks) if necessary.
623 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
624                                 const ValueToValueMap &Strides, Value *Ptr,
625                                 Loop *L, bool Assume) {
626   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
627 
628   // The bounds for loop-invariant pointer is trivial.
629   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
630     return true;
631 
632   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
633 
634   if (!AR && Assume)
635     AR = PSE.getAsAddRec(Ptr);
636 
637   if (!AR)
638     return false;
639 
640   return AR->isAffine();
641 }
642 
643 /// Check whether a pointer address cannot wrap.
644 static bool isNoWrap(PredicatedScalarEvolution &PSE,
645                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
646   const SCEV *PtrScev = PSE.getSCEV(Ptr);
647   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
648     return true;
649 
650   int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
651   if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
652     return true;
653 
654   return false;
655 }
656 
657 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
658                                           MemAccessInfo Access,
659                                           const ValueToValueMap &StridesMap,
660                                           DenseMap<Value *, unsigned> &DepSetId,
661                                           Loop *TheLoop, unsigned &RunningDepId,
662                                           unsigned ASId, bool ShouldCheckWrap,
663                                           bool Assume) {
664   Value *Ptr = Access.getPointer();
665 
666   if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume))
667     return false;
668 
669   // When we run after a failing dependency check we have to make sure
670   // we don't have wrapping pointers.
671   if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) {
672     auto *Expr = PSE.getSCEV(Ptr);
673     if (!Assume || !isa<SCEVAddRecExpr>(Expr))
674       return false;
675     PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
676   }
677 
678   // The id of the dependence set.
679   unsigned DepId;
680 
681   if (isDependencyCheckNeeded()) {
682     Value *Leader = DepCands.getLeaderValue(Access).getPointer();
683     unsigned &LeaderId = DepSetId[Leader];
684     if (!LeaderId)
685       LeaderId = RunningDepId++;
686     DepId = LeaderId;
687   } else
688     // Each access has its own dependence set.
689     DepId = RunningDepId++;
690 
691   bool IsWrite = Access.getInt();
692   RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
693   LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
694 
695   return true;
696  }
697 
698 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
699                                      ScalarEvolution *SE, Loop *TheLoop,
700                                      const ValueToValueMap &StridesMap,
701                                      bool ShouldCheckWrap) {
702   // Find pointers with computable bounds. We are going to use this information
703   // to place a runtime bound check.
704   bool CanDoRT = true;
705 
706   bool MayNeedRTCheck = false;
707   if (!IsRTCheckAnalysisNeeded) return true;
708 
709   bool IsDepCheckNeeded = isDependencyCheckNeeded();
710 
711   // We assign a consecutive id to access from different alias sets.
712   // Accesses between different groups doesn't need to be checked.
713   unsigned ASId = 0;
714   for (auto &AS : AST) {
715     int NumReadPtrChecks = 0;
716     int NumWritePtrChecks = 0;
717     bool CanDoAliasSetRT = true;
718     ++ASId;
719 
720     // We assign consecutive id to access from different dependence sets.
721     // Accesses within the same set don't need a runtime check.
722     unsigned RunningDepId = 1;
723     DenseMap<Value *, unsigned> DepSetId;
724 
725     SmallVector<MemAccessInfo, 4> Retries;
726 
727     // First, count how many write and read accesses are in the alias set. Also
728     // collect MemAccessInfos for later.
729     SmallVector<MemAccessInfo, 4> AccessInfos;
730     for (const auto &A : AS) {
731       Value *Ptr = A.getValue();
732       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
733 
734       if (IsWrite)
735         ++NumWritePtrChecks;
736       else
737         ++NumReadPtrChecks;
738       AccessInfos.emplace_back(Ptr, IsWrite);
739     }
740 
741     // We do not need runtime checks for this alias set, if there are no writes
742     // or a single write and no reads.
743     if (NumWritePtrChecks == 0 ||
744         (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
745       assert((AS.size() <= 1 ||
746               all_of(AS,
747                      [this](auto AC) {
748                        MemAccessInfo AccessWrite(AC.getValue(), true);
749                        return DepCands.findValue(AccessWrite) == DepCands.end();
750                      })) &&
751              "Can only skip updating CanDoRT below, if all entries in AS "
752              "are reads or there is at most 1 entry");
753       continue;
754     }
755 
756     for (auto &Access : AccessInfos) {
757       if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop,
758                                 RunningDepId, ASId, ShouldCheckWrap, false)) {
759         LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
760                           << *Access.getPointer() << '\n');
761         Retries.push_back(Access);
762         CanDoAliasSetRT = false;
763       }
764     }
765 
766     // Note that this function computes CanDoRT and MayNeedRTCheck
767     // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
768     // we have a pointer for which we couldn't find the bounds but we don't
769     // actually need to emit any checks so it does not matter.
770     //
771     // We need runtime checks for this alias set, if there are at least 2
772     // dependence sets (in which case RunningDepId > 2) or if we need to re-try
773     // any bound checks (because in that case the number of dependence sets is
774     // incomplete).
775     bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
776 
777     // We need to perform run-time alias checks, but some pointers had bounds
778     // that couldn't be checked.
779     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
780       // Reset the CanDoSetRt flag and retry all accesses that have failed.
781       // We know that we need these checks, so we can now be more aggressive
782       // and add further checks if required (overflow checks).
783       CanDoAliasSetRT = true;
784       for (auto Access : Retries)
785         if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId,
786                                   TheLoop, RunningDepId, ASId,
787                                   ShouldCheckWrap, /*Assume=*/true)) {
788           CanDoAliasSetRT = false;
789           break;
790         }
791     }
792 
793     CanDoRT &= CanDoAliasSetRT;
794     MayNeedRTCheck |= NeedsAliasSetRTCheck;
795     ++ASId;
796   }
797 
798   // If the pointers that we would use for the bounds comparison have different
799   // address spaces, assume the values aren't directly comparable, so we can't
800   // use them for the runtime check. We also have to assume they could
801   // overlap. In the future there should be metadata for whether address spaces
802   // are disjoint.
803   unsigned NumPointers = RtCheck.Pointers.size();
804   for (unsigned i = 0; i < NumPointers; ++i) {
805     for (unsigned j = i + 1; j < NumPointers; ++j) {
806       // Only need to check pointers between two different dependency sets.
807       if (RtCheck.Pointers[i].DependencySetId ==
808           RtCheck.Pointers[j].DependencySetId)
809        continue;
810       // Only need to check pointers in the same alias set.
811       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
812         continue;
813 
814       Value *PtrI = RtCheck.Pointers[i].PointerValue;
815       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
816 
817       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
818       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
819       if (ASi != ASj) {
820         LLVM_DEBUG(
821             dbgs() << "LAA: Runtime check would require comparison between"
822                       " different address spaces\n");
823         return false;
824       }
825     }
826   }
827 
828   if (MayNeedRTCheck && CanDoRT)
829     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
830 
831   LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
832                     << " pointer comparisons.\n");
833 
834   // If we can do run-time checks, but there are no checks, no runtime checks
835   // are needed. This can happen when all pointers point to the same underlying
836   // object for example.
837   RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
838 
839   bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
840   if (!CanDoRTIfNeeded)
841     RtCheck.reset();
842   return CanDoRTIfNeeded;
843 }
844 
845 void AccessAnalysis::processMemAccesses() {
846   // We process the set twice: first we process read-write pointers, last we
847   // process read-only pointers. This allows us to skip dependence tests for
848   // read-only pointers.
849 
850   LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
851   LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
852   LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
853   LLVM_DEBUG({
854     for (auto A : Accesses)
855       dbgs() << "\t" << *A.getPointer() << " (" <<
856                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
857                                          "read-only" : "read")) << ")\n";
858   });
859 
860   // The AliasSetTracker has nicely partitioned our pointers by metadata
861   // compatibility and potential for underlying-object overlap. As a result, we
862   // only need to check for potential pointer dependencies within each alias
863   // set.
864   for (const auto &AS : AST) {
865     // Note that both the alias-set tracker and the alias sets themselves used
866     // linked lists internally and so the iteration order here is deterministic
867     // (matching the original instruction order within each set).
868 
869     bool SetHasWrite = false;
870 
871     // Map of pointers to last access encountered.
872     typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
873     UnderlyingObjToAccessMap ObjToLastAccess;
874 
875     // Set of access to check after all writes have been processed.
876     PtrAccessSet DeferredAccesses;
877 
878     // Iterate over each alias set twice, once to process read/write pointers,
879     // and then to process read-only pointers.
880     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
881       bool UseDeferred = SetIteration > 0;
882       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
883 
884       for (const auto &AV : AS) {
885         Value *Ptr = AV.getValue();
886 
887         // For a single memory access in AliasSetTracker, Accesses may contain
888         // both read and write, and they both need to be handled for CheckDeps.
889         for (const auto &AC : S) {
890           if (AC.getPointer() != Ptr)
891             continue;
892 
893           bool IsWrite = AC.getInt();
894 
895           // If we're using the deferred access set, then it contains only
896           // reads.
897           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
898           if (UseDeferred && !IsReadOnlyPtr)
899             continue;
900           // Otherwise, the pointer must be in the PtrAccessSet, either as a
901           // read or a write.
902           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
903                   S.count(MemAccessInfo(Ptr, false))) &&
904                  "Alias-set pointer not in the access set?");
905 
906           MemAccessInfo Access(Ptr, IsWrite);
907           DepCands.insert(Access);
908 
909           // Memorize read-only pointers for later processing and skip them in
910           // the first round (they need to be checked after we have seen all
911           // write pointers). Note: we also mark pointer that are not
912           // consecutive as "read-only" pointers (so that we check
913           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
914           if (!UseDeferred && IsReadOnlyPtr) {
915             DeferredAccesses.insert(Access);
916             continue;
917           }
918 
919           // If this is a write - check other reads and writes for conflicts. If
920           // this is a read only check other writes for conflicts (but only if
921           // there is no other write to the ptr - this is an optimization to
922           // catch "a[i] = a[i] + " without having to do a dependence check).
923           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
924             CheckDeps.push_back(Access);
925             IsRTCheckAnalysisNeeded = true;
926           }
927 
928           if (IsWrite)
929             SetHasWrite = true;
930 
931           // Create sets of pointers connected by a shared alias set and
932           // underlying object.
933           typedef SmallVector<const Value *, 16> ValueVector;
934           ValueVector TempObjects;
935 
936           getUnderlyingObjects(Ptr, TempObjects, LI);
937           LLVM_DEBUG(dbgs()
938                      << "Underlying objects for pointer " << *Ptr << "\n");
939           for (const Value *UnderlyingObj : TempObjects) {
940             // nullptr never alias, don't join sets for pointer that have "null"
941             // in their UnderlyingObjects list.
942             if (isa<ConstantPointerNull>(UnderlyingObj) &&
943                 !NullPointerIsDefined(
944                     TheLoop->getHeader()->getParent(),
945                     UnderlyingObj->getType()->getPointerAddressSpace()))
946               continue;
947 
948             UnderlyingObjToAccessMap::iterator Prev =
949                 ObjToLastAccess.find(UnderlyingObj);
950             if (Prev != ObjToLastAccess.end())
951               DepCands.unionSets(Access, Prev->second);
952 
953             ObjToLastAccess[UnderlyingObj] = Access;
954             LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
955           }
956         }
957       }
958     }
959   }
960 }
961 
962 static bool isInBoundsGep(Value *Ptr) {
963   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
964     return GEP->isInBounds();
965   return false;
966 }
967 
968 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
969 /// i.e. monotonically increasing/decreasing.
970 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
971                            PredicatedScalarEvolution &PSE, const Loop *L) {
972   // FIXME: This should probably only return true for NUW.
973   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
974     return true;
975 
976   // Scalar evolution does not propagate the non-wrapping flags to values that
977   // are derived from a non-wrapping induction variable because non-wrapping
978   // could be flow-sensitive.
979   //
980   // Look through the potentially overflowing instruction to try to prove
981   // non-wrapping for the *specific* value of Ptr.
982 
983   // The arithmetic implied by an inbounds GEP can't overflow.
984   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
985   if (!GEP || !GEP->isInBounds())
986     return false;
987 
988   // Make sure there is only one non-const index and analyze that.
989   Value *NonConstIndex = nullptr;
990   for (Value *Index : GEP->indices())
991     if (!isa<ConstantInt>(Index)) {
992       if (NonConstIndex)
993         return false;
994       NonConstIndex = Index;
995     }
996   if (!NonConstIndex)
997     // The recurrence is on the pointer, ignore for now.
998     return false;
999 
1000   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
1001   // AddRec using a NSW operation.
1002   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1003     if (OBO->hasNoSignedWrap() &&
1004         // Assume constant for other the operand so that the AddRec can be
1005         // easily found.
1006         isa<ConstantInt>(OBO->getOperand(1))) {
1007       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
1008 
1009       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1010         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
1011     }
1012 
1013   return false;
1014 }
1015 
1016 /// Check whether the access through \p Ptr has a constant stride.
1017 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
1018                            const Loop *Lp, const ValueToValueMap &StridesMap,
1019                            bool Assume, bool ShouldCheckWrap) {
1020   Type *Ty = Ptr->getType();
1021   assert(Ty->isPointerTy() && "Unexpected non-ptr");
1022 
1023   // Make sure that the pointer does not point to aggregate types.
1024   auto *PtrTy = cast<PointerType>(Ty);
1025   if (PtrTy->getElementType()->isAggregateType()) {
1026     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
1027                       << *Ptr << "\n");
1028     return 0;
1029   }
1030 
1031   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1032 
1033   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1034   if (Assume && !AR)
1035     AR = PSE.getAsAddRec(Ptr);
1036 
1037   if (!AR) {
1038     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1039                       << " SCEV: " << *PtrScev << "\n");
1040     return 0;
1041   }
1042 
1043   // The access function must stride over the innermost loop.
1044   if (Lp != AR->getLoop()) {
1045     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1046                       << *Ptr << " SCEV: " << *AR << "\n");
1047     return 0;
1048   }
1049 
1050   // The address calculation must not wrap. Otherwise, a dependence could be
1051   // inverted.
1052   // An inbounds getelementptr that is a AddRec with a unit stride
1053   // cannot wrap per definition. The unit stride requirement is checked later.
1054   // An getelementptr without an inbounds attribute and unit stride would have
1055   // to access the pointer value "0" which is undefined behavior in address
1056   // space 0, therefore we can also vectorize this case.
1057   bool IsInBoundsGEP = isInBoundsGep(Ptr);
1058   bool IsNoWrapAddRec = !ShouldCheckWrap ||
1059     PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
1060     isNoWrapAddRec(Ptr, AR, PSE, Lp);
1061   if (!IsNoWrapAddRec && !IsInBoundsGEP &&
1062       NullPointerIsDefined(Lp->getHeader()->getParent(),
1063                            PtrTy->getAddressSpace())) {
1064     if (Assume) {
1065       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1066       IsNoWrapAddRec = true;
1067       LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
1068                         << "LAA:   Pointer: " << *Ptr << "\n"
1069                         << "LAA:   SCEV: " << *AR << "\n"
1070                         << "LAA:   Added an overflow assumption\n");
1071     } else {
1072       LLVM_DEBUG(
1073           dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1074                  << *Ptr << " SCEV: " << *AR << "\n");
1075       return 0;
1076     }
1077   }
1078 
1079   // Check the step is constant.
1080   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1081 
1082   // Calculate the pointer stride and check if it is constant.
1083   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1084   if (!C) {
1085     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1086                       << " SCEV: " << *AR << "\n");
1087     return 0;
1088   }
1089 
1090   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1091   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
1092   const APInt &APStepVal = C->getAPInt();
1093 
1094   // Huge step value - give up.
1095   if (APStepVal.getBitWidth() > 64)
1096     return 0;
1097 
1098   int64_t StepVal = APStepVal.getSExtValue();
1099 
1100   // Strided access.
1101   int64_t Stride = StepVal / Size;
1102   int64_t Rem = StepVal % Size;
1103   if (Rem)
1104     return 0;
1105 
1106   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1107   // know we can't "wrap around the address space". In case of address space
1108   // zero we know that this won't happen without triggering undefined behavior.
1109   if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
1110       (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
1111                                               PtrTy->getAddressSpace()))) {
1112     if (Assume) {
1113       // We can avoid this case by adding a run-time check.
1114       LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1115                         << "inbounds or in address space 0 may wrap:\n"
1116                         << "LAA:   Pointer: " << *Ptr << "\n"
1117                         << "LAA:   SCEV: " << *AR << "\n"
1118                         << "LAA:   Added an overflow assumption\n");
1119       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1120     } else
1121       return 0;
1122   }
1123 
1124   return Stride;
1125 }
1126 
1127 Optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB,
1128                                     Value *PtrB, const DataLayout &DL,
1129                                     ScalarEvolution &SE, bool StrictCheck,
1130                                     bool CheckType) {
1131   assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1132   assert(cast<PointerType>(PtrA->getType())
1133              ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type");
1134   assert(cast<PointerType>(PtrB->getType())
1135              ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type");
1136 
1137   // Make sure that A and B are different pointers.
1138   if (PtrA == PtrB)
1139     return 0;
1140 
1141   // Make sure that the element types are the same if required.
1142   if (CheckType && ElemTyA != ElemTyB)
1143     return None;
1144 
1145   unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1146   unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1147 
1148   // Check that the address spaces match.
1149   if (ASA != ASB)
1150     return None;
1151   unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1152 
1153   APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1154   Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1155   Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1156 
1157   int Val;
1158   if (PtrA1 == PtrB1) {
1159     // Retrieve the address space again as pointer stripping now tracks through
1160     // `addrspacecast`.
1161     ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1162     ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1163     // Check that the address spaces match and that the pointers are valid.
1164     if (ASA != ASB)
1165       return None;
1166 
1167     IdxWidth = DL.getIndexSizeInBits(ASA);
1168     OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1169     OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1170 
1171     OffsetB -= OffsetA;
1172     Val = OffsetB.getSExtValue();
1173   } else {
1174     // Otherwise compute the distance with SCEV between the base pointers.
1175     const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1176     const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1177     const auto *Diff =
1178         dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA));
1179     if (!Diff)
1180       return None;
1181     Val = Diff->getAPInt().getSExtValue();
1182   }
1183   int Size = DL.getTypeStoreSize(ElemTyA);
1184   int Dist = Val / Size;
1185 
1186   // Ensure that the calculated distance matches the type-based one after all
1187   // the bitcasts removal in the provided pointers.
1188   if (!StrictCheck || Dist * Size == Val)
1189     return Dist;
1190   return None;
1191 }
1192 
1193 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
1194                            const DataLayout &DL, ScalarEvolution &SE,
1195                            SmallVectorImpl<unsigned> &SortedIndices) {
1196   assert(llvm::all_of(
1197              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1198          "Expected list of pointer operands.");
1199   // Walk over the pointers, and map each of them to an offset relative to
1200   // first pointer in the array.
1201   Value *Ptr0 = VL[0];
1202 
1203   using DistOrdPair = std::pair<int64_t, int>;
1204   auto Compare = [](const DistOrdPair &L, const DistOrdPair &R) {
1205     return L.first < R.first;
1206   };
1207   std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1208   Offsets.emplace(0, 0);
1209   int Cnt = 1;
1210   bool IsConsecutive = true;
1211   for (auto *Ptr : VL.drop_front()) {
1212     Optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1213                                          /*StrictCheck=*/true);
1214     if (!Diff)
1215       return false;
1216 
1217     // Check if the pointer with the same offset is found.
1218     int64_t Offset = *Diff;
1219     auto Res = Offsets.emplace(Offset, Cnt);
1220     if (!Res.second)
1221       return false;
1222     // Consecutive order if the inserted element is the last one.
1223     IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end();
1224     ++Cnt;
1225   }
1226   SortedIndices.clear();
1227   if (!IsConsecutive) {
1228     // Fill SortedIndices array only if it is non-consecutive.
1229     SortedIndices.resize(VL.size());
1230     Cnt = 0;
1231     for (const std::pair<int64_t, int> &Pair : Offsets) {
1232       SortedIndices[Cnt] = Pair.second;
1233       ++Cnt;
1234     }
1235   }
1236   return true;
1237 }
1238 
1239 /// Returns true if the memory operations \p A and \p B are consecutive.
1240 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1241                                ScalarEvolution &SE, bool CheckType) {
1242   Value *PtrA = getLoadStorePointerOperand(A);
1243   Value *PtrB = getLoadStorePointerOperand(B);
1244   if (!PtrA || !PtrB)
1245     return false;
1246   Type *ElemTyA = getLoadStoreType(A);
1247   Type *ElemTyB = getLoadStoreType(B);
1248   Optional<int> Diff = getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1249                                        /*StrictCheck=*/true, CheckType);
1250   return Diff && *Diff == 1;
1251 }
1252 
1253 MemoryDepChecker::VectorizationSafetyStatus
1254 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1255   switch (Type) {
1256   case NoDep:
1257   case Forward:
1258   case BackwardVectorizable:
1259     return VectorizationSafetyStatus::Safe;
1260 
1261   case Unknown:
1262     return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1263   case ForwardButPreventsForwarding:
1264   case Backward:
1265   case BackwardVectorizableButPreventsForwarding:
1266     return VectorizationSafetyStatus::Unsafe;
1267   }
1268   llvm_unreachable("unexpected DepType!");
1269 }
1270 
1271 bool MemoryDepChecker::Dependence::isBackward() const {
1272   switch (Type) {
1273   case NoDep:
1274   case Forward:
1275   case ForwardButPreventsForwarding:
1276   case Unknown:
1277     return false;
1278 
1279   case BackwardVectorizable:
1280   case Backward:
1281   case BackwardVectorizableButPreventsForwarding:
1282     return true;
1283   }
1284   llvm_unreachable("unexpected DepType!");
1285 }
1286 
1287 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1288   return isBackward() || Type == Unknown;
1289 }
1290 
1291 bool MemoryDepChecker::Dependence::isForward() const {
1292   switch (Type) {
1293   case Forward:
1294   case ForwardButPreventsForwarding:
1295     return true;
1296 
1297   case NoDep:
1298   case Unknown:
1299   case BackwardVectorizable:
1300   case Backward:
1301   case BackwardVectorizableButPreventsForwarding:
1302     return false;
1303   }
1304   llvm_unreachable("unexpected DepType!");
1305 }
1306 
1307 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1308                                                     uint64_t TypeByteSize) {
1309   // If loads occur at a distance that is not a multiple of a feasible vector
1310   // factor store-load forwarding does not take place.
1311   // Positive dependences might cause troubles because vectorizing them might
1312   // prevent store-load forwarding making vectorized code run a lot slower.
1313   //   a[i] = a[i-3] ^ a[i-8];
1314   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1315   //   hence on your typical architecture store-load forwarding does not take
1316   //   place. Vectorizing in such cases does not make sense.
1317   // Store-load forwarding distance.
1318 
1319   // After this many iterations store-to-load forwarding conflicts should not
1320   // cause any slowdowns.
1321   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1322   // Maximum vector factor.
1323   uint64_t MaxVFWithoutSLForwardIssues = std::min(
1324       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1325 
1326   // Compute the smallest VF at which the store and load would be misaligned.
1327   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1328        VF *= 2) {
1329     // If the number of vector iteration between the store and the load are
1330     // small we could incur conflicts.
1331     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1332       MaxVFWithoutSLForwardIssues = (VF >> 1);
1333       break;
1334     }
1335   }
1336 
1337   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1338     LLVM_DEBUG(
1339         dbgs() << "LAA: Distance " << Distance
1340                << " that could cause a store-load forwarding conflict\n");
1341     return true;
1342   }
1343 
1344   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1345       MaxVFWithoutSLForwardIssues !=
1346           VectorizerParams::MaxVectorWidth * TypeByteSize)
1347     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1348   return false;
1349 }
1350 
1351 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1352   if (Status < S)
1353     Status = S;
1354 }
1355 
1356 /// Given a non-constant (unknown) dependence-distance \p Dist between two
1357 /// memory accesses, that have the same stride whose absolute value is given
1358 /// in \p Stride, and that have the same type size \p TypeByteSize,
1359 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1360 /// possible to prove statically that the dependence distance is larger
1361 /// than the range that the accesses will travel through the execution of
1362 /// the loop. If so, return true; false otherwise. This is useful for
1363 /// example in loops such as the following (PR31098):
1364 ///     for (i = 0; i < D; ++i) {
1365 ///                = out[i];
1366 ///       out[i+D] =
1367 ///     }
1368 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1369                                      const SCEV &BackedgeTakenCount,
1370                                      const SCEV &Dist, uint64_t Stride,
1371                                      uint64_t TypeByteSize) {
1372 
1373   // If we can prove that
1374   //      (**) |Dist| > BackedgeTakenCount * Step
1375   // where Step is the absolute stride of the memory accesses in bytes,
1376   // then there is no dependence.
1377   //
1378   // Rationale:
1379   // We basically want to check if the absolute distance (|Dist/Step|)
1380   // is >= the loop iteration count (or > BackedgeTakenCount).
1381   // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1382   // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1383   // that the dependence distance is >= VF; This is checked elsewhere.
1384   // But in some cases we can prune unknown dependence distances early, and
1385   // even before selecting the VF, and without a runtime test, by comparing
1386   // the distance against the loop iteration count. Since the vectorized code
1387   // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1388   // also guarantees that distance >= VF.
1389   //
1390   const uint64_t ByteStride = Stride * TypeByteSize;
1391   const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1392   const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1393 
1394   const SCEV *CastedDist = &Dist;
1395   const SCEV *CastedProduct = Product;
1396   uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
1397   uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());
1398 
1399   // The dependence distance can be positive/negative, so we sign extend Dist;
1400   // The multiplication of the absolute stride in bytes and the
1401   // backedgeTakenCount is non-negative, so we zero extend Product.
1402   if (DistTypeSize > ProductTypeSize)
1403     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1404   else
1405     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1406 
1407   // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
1408   // (If so, then we have proven (**) because |Dist| >= Dist)
1409   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1410   if (SE.isKnownPositive(Minus))
1411     return true;
1412 
1413   // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
1414   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1415   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1416   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1417   if (SE.isKnownPositive(Minus))
1418     return true;
1419 
1420   return false;
1421 }
1422 
1423 /// Check the dependence for two accesses with the same stride \p Stride.
1424 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1425 /// bytes.
1426 ///
1427 /// \returns true if they are independent.
1428 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1429                                           uint64_t TypeByteSize) {
1430   assert(Stride > 1 && "The stride must be greater than 1");
1431   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1432   assert(Distance > 0 && "The distance must be non-zero");
1433 
1434   // Skip if the distance is not multiple of type byte size.
1435   if (Distance % TypeByteSize)
1436     return false;
1437 
1438   uint64_t ScaledDist = Distance / TypeByteSize;
1439 
1440   // No dependence if the scaled distance is not multiple of the stride.
1441   // E.g.
1442   //      for (i = 0; i < 1024 ; i += 4)
1443   //        A[i+2] = A[i] + 1;
1444   //
1445   // Two accesses in memory (scaled distance is 2, stride is 4):
1446   //     | A[0] |      |      |      | A[4] |      |      |      |
1447   //     |      |      | A[2] |      |      |      | A[6] |      |
1448   //
1449   // E.g.
1450   //      for (i = 0; i < 1024 ; i += 3)
1451   //        A[i+4] = A[i] + 1;
1452   //
1453   // Two accesses in memory (scaled distance is 4, stride is 3):
1454   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1455   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1456   return ScaledDist % Stride;
1457 }
1458 
1459 MemoryDepChecker::Dependence::DepType
1460 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1461                               const MemAccessInfo &B, unsigned BIdx,
1462                               const ValueToValueMap &Strides) {
1463   assert (AIdx < BIdx && "Must pass arguments in program order");
1464 
1465   Value *APtr = A.getPointer();
1466   Value *BPtr = B.getPointer();
1467   bool AIsWrite = A.getInt();
1468   bool BIsWrite = B.getInt();
1469 
1470   // Two reads are independent.
1471   if (!AIsWrite && !BIsWrite)
1472     return Dependence::NoDep;
1473 
1474   // We cannot check pointers in different address spaces.
1475   if (APtr->getType()->getPointerAddressSpace() !=
1476       BPtr->getType()->getPointerAddressSpace())
1477     return Dependence::Unknown;
1478 
1479   int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1480   int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
1481 
1482   const SCEV *Src = PSE.getSCEV(APtr);
1483   const SCEV *Sink = PSE.getSCEV(BPtr);
1484 
1485   // If the induction step is negative we have to invert source and sink of the
1486   // dependence.
1487   if (StrideAPtr < 0) {
1488     std::swap(APtr, BPtr);
1489     std::swap(Src, Sink);
1490     std::swap(AIsWrite, BIsWrite);
1491     std::swap(AIdx, BIdx);
1492     std::swap(StrideAPtr, StrideBPtr);
1493   }
1494 
1495   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1496 
1497   LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1498                     << "(Induction step: " << StrideAPtr << ")\n");
1499   LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1500                     << *InstMap[BIdx] << ": " << *Dist << "\n");
1501 
1502   // Need accesses with constant stride. We don't want to vectorize
1503   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1504   // the address space.
1505   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1506     LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1507     return Dependence::Unknown;
1508   }
1509 
1510   Type *ATy = APtr->getType()->getPointerElementType();
1511   Type *BTy = BPtr->getType()->getPointerElementType();
1512   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1513   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1514   uint64_t Stride = std::abs(StrideAPtr);
1515   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1516   if (!C) {
1517     if (!isa<SCEVCouldNotCompute>(Dist) &&
1518         TypeByteSize == DL.getTypeAllocSize(BTy) &&
1519         isSafeDependenceDistance(DL, *(PSE.getSE()),
1520                                  *(PSE.getBackedgeTakenCount()), *Dist, Stride,
1521                                  TypeByteSize))
1522       return Dependence::NoDep;
1523 
1524     LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1525     FoundNonConstantDistanceDependence = true;
1526     return Dependence::Unknown;
1527   }
1528 
1529   const APInt &Val = C->getAPInt();
1530   int64_t Distance = Val.getSExtValue();
1531 
1532   // Attempt to prove strided accesses independent.
1533   if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1534       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1535     LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1536     return Dependence::NoDep;
1537   }
1538 
1539   // Negative distances are not plausible dependencies.
1540   if (Val.isNegative()) {
1541     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1542     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1543         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1544          ATy != BTy)) {
1545       LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1546       return Dependence::ForwardButPreventsForwarding;
1547     }
1548 
1549     LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
1550     return Dependence::Forward;
1551   }
1552 
1553   // Write to the same location with the same size.
1554   // Could be improved to assert type sizes are the same (i32 == float, etc).
1555   if (Val == 0) {
1556     if (ATy == BTy)
1557       return Dependence::Forward;
1558     LLVM_DEBUG(
1559         dbgs() << "LAA: Zero dependence difference but different types\n");
1560     return Dependence::Unknown;
1561   }
1562 
1563   assert(Val.isStrictlyPositive() && "Expect a positive value");
1564 
1565   if (ATy != BTy) {
1566     LLVM_DEBUG(
1567         dbgs()
1568         << "LAA: ReadWrite-Write positive dependency with different types\n");
1569     return Dependence::Unknown;
1570   }
1571 
1572   // Bail out early if passed-in parameters make vectorization not feasible.
1573   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1574                            VectorizerParams::VectorizationFactor : 1);
1575   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1576                            VectorizerParams::VectorizationInterleave : 1);
1577   // The minimum number of iterations for a vectorized/unrolled version.
1578   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1579 
1580   // It's not vectorizable if the distance is smaller than the minimum distance
1581   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1582   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1583   // TypeByteSize (No need to plus the last gap distance).
1584   //
1585   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1586   //      foo(int *A) {
1587   //        int *B = (int *)((char *)A + 14);
1588   //        for (i = 0 ; i < 1024 ; i += 2)
1589   //          B[i] = A[i] + 1;
1590   //      }
1591   //
1592   // Two accesses in memory (stride is 2):
1593   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1594   //                              | B[0] |      | B[2] |      | B[4] |
1595   //
1596   // Distance needs for vectorizing iterations except the last iteration:
1597   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1598   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1599   //
1600   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1601   // 12, which is less than distance.
1602   //
1603   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1604   // the minimum distance needed is 28, which is greater than distance. It is
1605   // not safe to do vectorization.
1606   uint64_t MinDistanceNeeded =
1607       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1608   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1609     LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
1610                       << Distance << '\n');
1611     return Dependence::Backward;
1612   }
1613 
1614   // Unsafe if the minimum distance needed is greater than max safe distance.
1615   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1616     LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
1617                       << MinDistanceNeeded << " size in bytes");
1618     return Dependence::Backward;
1619   }
1620 
1621   // Positive distance bigger than max vectorization factor.
1622   // FIXME: Should use max factor instead of max distance in bytes, which could
1623   // not handle different types.
1624   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1625   //      void foo (int *A, char *B) {
1626   //        for (unsigned i = 0; i < 1024; i++) {
1627   //          A[i+2] = A[i] + 1;
1628   //          B[i+2] = B[i] + 1;
1629   //        }
1630   //      }
1631   //
1632   // This case is currently unsafe according to the max safe distance. If we
1633   // analyze the two accesses on array B, the max safe dependence distance
1634   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1635   // is 8, which is less than 2 and forbidden vectorization, But actually
1636   // both A and B could be vectorized by 2 iterations.
1637   MaxSafeDepDistBytes =
1638       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
1639 
1640   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1641   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1642       couldPreventStoreLoadForward(Distance, TypeByteSize))
1643     return Dependence::BackwardVectorizableButPreventsForwarding;
1644 
1645   uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
1646   LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1647                     << " with max VF = " << MaxVF << '\n');
1648   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1649   MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
1650   return Dependence::BackwardVectorizable;
1651 }
1652 
1653 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1654                                    MemAccessInfoList &CheckDeps,
1655                                    const ValueToValueMap &Strides) {
1656 
1657   MaxSafeDepDistBytes = -1;
1658   SmallPtrSet<MemAccessInfo, 8> Visited;
1659   for (MemAccessInfo CurAccess : CheckDeps) {
1660     if (Visited.count(CurAccess))
1661       continue;
1662 
1663     // Get the relevant memory access set.
1664     EquivalenceClasses<MemAccessInfo>::iterator I =
1665       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1666 
1667     // Check accesses within this set.
1668     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1669         AccessSets.member_begin(I);
1670     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1671         AccessSets.member_end();
1672 
1673     // Check every access pair.
1674     while (AI != AE) {
1675       Visited.insert(*AI);
1676       bool AIIsWrite = AI->getInt();
1677       // Check loads only against next equivalent class, but stores also against
1678       // other stores in the same equivalence class - to the same address.
1679       EquivalenceClasses<MemAccessInfo>::member_iterator OI =
1680           (AIIsWrite ? AI : std::next(AI));
1681       while (OI != AE) {
1682         // Check every accessing instruction pair in program order.
1683         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1684              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1685           // Scan all accesses of another equivalence class, but only the next
1686           // accesses of the same equivalent class.
1687           for (std::vector<unsigned>::iterator
1688                    I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
1689                    I2E = (OI == AI ? I1E : Accesses[*OI].end());
1690                I2 != I2E; ++I2) {
1691             auto A = std::make_pair(&*AI, *I1);
1692             auto B = std::make_pair(&*OI, *I2);
1693 
1694             assert(*I1 != *I2);
1695             if (*I1 > *I2)
1696               std::swap(A, B);
1697 
1698             Dependence::DepType Type =
1699                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1700             mergeInStatus(Dependence::isSafeForVectorization(Type));
1701 
1702             // Gather dependences unless we accumulated MaxDependences
1703             // dependences.  In that case return as soon as we find the first
1704             // unsafe dependence.  This puts a limit on this quadratic
1705             // algorithm.
1706             if (RecordDependences) {
1707               if (Type != Dependence::NoDep)
1708                 Dependences.push_back(Dependence(A.second, B.second, Type));
1709 
1710               if (Dependences.size() >= MaxDependences) {
1711                 RecordDependences = false;
1712                 Dependences.clear();
1713                 LLVM_DEBUG(dbgs()
1714                            << "Too many dependences, stopped recording\n");
1715               }
1716             }
1717             if (!RecordDependences && !isSafeForVectorization())
1718               return false;
1719           }
1720         ++OI;
1721       }
1722       AI++;
1723     }
1724   }
1725 
1726   LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1727   return isSafeForVectorization();
1728 }
1729 
1730 SmallVector<Instruction *, 4>
1731 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1732   MemAccessInfo Access(Ptr, isWrite);
1733   auto &IndexVector = Accesses.find(Access)->second;
1734 
1735   SmallVector<Instruction *, 4> Insts;
1736   transform(IndexVector,
1737                  std::back_inserter(Insts),
1738                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1739   return Insts;
1740 }
1741 
1742 const char *MemoryDepChecker::Dependence::DepName[] = {
1743     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1744     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1745 
1746 void MemoryDepChecker::Dependence::print(
1747     raw_ostream &OS, unsigned Depth,
1748     const SmallVectorImpl<Instruction *> &Instrs) const {
1749   OS.indent(Depth) << DepName[Type] << ":\n";
1750   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1751   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1752 }
1753 
1754 bool LoopAccessInfo::canAnalyzeLoop() {
1755   // We need to have a loop header.
1756   LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
1757                     << TheLoop->getHeader()->getParent()->getName() << ": "
1758                     << TheLoop->getHeader()->getName() << '\n');
1759 
1760   // We can only analyze innermost loops.
1761   if (!TheLoop->isInnermost()) {
1762     LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1763     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
1764     return false;
1765   }
1766 
1767   // We must have a single backedge.
1768   if (TheLoop->getNumBackEdges() != 1) {
1769     LLVM_DEBUG(
1770         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1771     recordAnalysis("CFGNotUnderstood")
1772         << "loop control flow is not understood by analyzer";
1773     return false;
1774   }
1775 
1776   // ScalarEvolution needs to be able to find the exit count.
1777   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1778   if (isa<SCEVCouldNotCompute>(ExitCount)) {
1779     recordAnalysis("CantComputeNumberOfIterations")
1780         << "could not determine number of loop iterations";
1781     LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1782     return false;
1783   }
1784 
1785   return true;
1786 }
1787 
1788 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI,
1789                                  const TargetLibraryInfo *TLI,
1790                                  DominatorTree *DT) {
1791   typedef SmallPtrSet<Value*, 16> ValueSet;
1792 
1793   // Holds the Load and Store instructions.
1794   SmallVector<LoadInst *, 16> Loads;
1795   SmallVector<StoreInst *, 16> Stores;
1796 
1797   // Holds all the different accesses in the loop.
1798   unsigned NumReads = 0;
1799   unsigned NumReadWrites = 0;
1800 
1801   bool HasComplexMemInst = false;
1802 
1803   // A runtime check is only legal to insert if there are no convergent calls.
1804   HasConvergentOp = false;
1805 
1806   PtrRtChecking->Pointers.clear();
1807   PtrRtChecking->Need = false;
1808 
1809   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1810 
1811   const bool EnableMemAccessVersioningOfLoop =
1812       EnableMemAccessVersioning &&
1813       !TheLoop->getHeader()->getParent()->hasOptSize();
1814 
1815   // For each block.
1816   for (BasicBlock *BB : TheLoop->blocks()) {
1817     // Scan the BB and collect legal loads and stores. Also detect any
1818     // convergent instructions.
1819     for (Instruction &I : *BB) {
1820       if (auto *Call = dyn_cast<CallBase>(&I)) {
1821         if (Call->isConvergent())
1822           HasConvergentOp = true;
1823       }
1824 
1825       // With both a non-vectorizable memory instruction and a convergent
1826       // operation, found in this loop, no reason to continue the search.
1827       if (HasComplexMemInst && HasConvergentOp) {
1828         CanVecMem = false;
1829         return;
1830       }
1831 
1832       // Avoid hitting recordAnalysis multiple times.
1833       if (HasComplexMemInst)
1834         continue;
1835 
1836       // If this is a load, save it. If this instruction can read from memory
1837       // but is not a load, then we quit. Notice that we don't handle function
1838       // calls that read or write.
1839       if (I.mayReadFromMemory()) {
1840         // Many math library functions read the rounding mode. We will only
1841         // vectorize a loop if it contains known function calls that don't set
1842         // the flag. Therefore, it is safe to ignore this read from memory.
1843         auto *Call = dyn_cast<CallInst>(&I);
1844         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
1845           continue;
1846 
1847         // If the function has an explicit vectorized counterpart, we can safely
1848         // assume that it can be vectorized.
1849         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1850             !VFDatabase::getMappings(*Call).empty())
1851           continue;
1852 
1853         auto *Ld = dyn_cast<LoadInst>(&I);
1854         if (!Ld) {
1855           recordAnalysis("CantVectorizeInstruction", Ld)
1856             << "instruction cannot be vectorized";
1857           HasComplexMemInst = true;
1858           continue;
1859         }
1860         if (!Ld->isSimple() && !IsAnnotatedParallel) {
1861           recordAnalysis("NonSimpleLoad", Ld)
1862               << "read with atomic ordering or volatile read";
1863           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1864           HasComplexMemInst = true;
1865           continue;
1866         }
1867         NumLoads++;
1868         Loads.push_back(Ld);
1869         DepChecker->addAccess(Ld);
1870         if (EnableMemAccessVersioningOfLoop)
1871           collectStridedAccess(Ld);
1872         continue;
1873       }
1874 
1875       // Save 'store' instructions. Abort if other instructions write to memory.
1876       if (I.mayWriteToMemory()) {
1877         auto *St = dyn_cast<StoreInst>(&I);
1878         if (!St) {
1879           recordAnalysis("CantVectorizeInstruction", St)
1880               << "instruction cannot be vectorized";
1881           HasComplexMemInst = true;
1882           continue;
1883         }
1884         if (!St->isSimple() && !IsAnnotatedParallel) {
1885           recordAnalysis("NonSimpleStore", St)
1886               << "write with atomic ordering or volatile write";
1887           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1888           HasComplexMemInst = true;
1889           continue;
1890         }
1891         NumStores++;
1892         Stores.push_back(St);
1893         DepChecker->addAccess(St);
1894         if (EnableMemAccessVersioningOfLoop)
1895           collectStridedAccess(St);
1896       }
1897     } // Next instr.
1898   } // Next block.
1899 
1900   if (HasComplexMemInst) {
1901     CanVecMem = false;
1902     return;
1903   }
1904 
1905   // Now we have two lists that hold the loads and the stores.
1906   // Next, we find the pointers that they use.
1907 
1908   // Check if we see any stores. If there are no stores, then we don't
1909   // care if the pointers are *restrict*.
1910   if (!Stores.size()) {
1911     LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1912     CanVecMem = true;
1913     return;
1914   }
1915 
1916   MemoryDepChecker::DepCandidates DependentAccesses;
1917   AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE);
1918 
1919   // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
1920   // multiple times on the same object. If the ptr is accessed twice, once
1921   // for read and once for write, it will only appear once (on the write
1922   // list). This is okay, since we are going to check for conflicts between
1923   // writes and between reads and writes, but not between reads and reads.
1924   ValueSet Seen;
1925 
1926   // Record uniform store addresses to identify if we have multiple stores
1927   // to the same address.
1928   ValueSet UniformStores;
1929 
1930   for (StoreInst *ST : Stores) {
1931     Value *Ptr = ST->getPointerOperand();
1932 
1933     if (isUniform(Ptr))
1934       HasDependenceInvolvingLoopInvariantAddress |=
1935           !UniformStores.insert(Ptr).second;
1936 
1937     // If we did *not* see this pointer before, insert it to  the read-write
1938     // list. At this phase it is only a 'write' list.
1939     if (Seen.insert(Ptr).second) {
1940       ++NumReadWrites;
1941 
1942       MemoryLocation Loc = MemoryLocation::get(ST);
1943       // The TBAA metadata could have a control dependency on the predication
1944       // condition, so we cannot rely on it when determining whether or not we
1945       // need runtime pointer checks.
1946       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1947         Loc.AATags.TBAA = nullptr;
1948 
1949       Accesses.addStore(Loc);
1950     }
1951   }
1952 
1953   if (IsAnnotatedParallel) {
1954     LLVM_DEBUG(
1955         dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
1956                << "checks.\n");
1957     CanVecMem = true;
1958     return;
1959   }
1960 
1961   for (LoadInst *LD : Loads) {
1962     Value *Ptr = LD->getPointerOperand();
1963     // If we did *not* see this pointer before, insert it to the
1964     // read list. If we *did* see it before, then it is already in
1965     // the read-write list. This allows us to vectorize expressions
1966     // such as A[i] += x;  Because the address of A[i] is a read-write
1967     // pointer. This only works if the index of A[i] is consecutive.
1968     // If the address of i is unknown (for example A[B[i]]) then we may
1969     // read a few words, modify, and write a few words, and some of the
1970     // words may be written to the same address.
1971     bool IsReadOnlyPtr = false;
1972     if (Seen.insert(Ptr).second ||
1973         !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
1974       ++NumReads;
1975       IsReadOnlyPtr = true;
1976     }
1977 
1978     // See if there is an unsafe dependency between a load to a uniform address and
1979     // store to the same uniform address.
1980     if (UniformStores.count(Ptr)) {
1981       LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
1982                            "load and uniform store to the same address!\n");
1983       HasDependenceInvolvingLoopInvariantAddress = true;
1984     }
1985 
1986     MemoryLocation Loc = MemoryLocation::get(LD);
1987     // The TBAA metadata could have a control dependency on the predication
1988     // condition, so we cannot rely on it when determining whether or not we
1989     // need runtime pointer checks.
1990     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1991       Loc.AATags.TBAA = nullptr;
1992 
1993     Accesses.addLoad(Loc, IsReadOnlyPtr);
1994   }
1995 
1996   // If we write (or read-write) to a single destination and there are no
1997   // other reads in this loop then is it safe to vectorize.
1998   if (NumReadWrites == 1 && NumReads == 0) {
1999     LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2000     CanVecMem = true;
2001     return;
2002   }
2003 
2004   // Build dependence sets and check whether we need a runtime pointer bounds
2005   // check.
2006   Accesses.buildDependenceSets();
2007 
2008   // Find pointers with computable bounds. We are going to use this information
2009   // to place a runtime bound check.
2010   bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
2011                                                   TheLoop, SymbolicStrides);
2012   if (!CanDoRTIfNeeded) {
2013     recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
2014     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2015                       << "the array bounds.\n");
2016     CanVecMem = false;
2017     return;
2018   }
2019 
2020   LLVM_DEBUG(
2021     dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2022 
2023   CanVecMem = true;
2024   if (Accesses.isDependencyCheckNeeded()) {
2025     LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2026     CanVecMem = DepChecker->areDepsSafe(
2027         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
2028     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
2029 
2030     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
2031       LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2032 
2033       // Clear the dependency checks. We assume they are not needed.
2034       Accesses.resetDepChecks(*DepChecker);
2035 
2036       PtrRtChecking->reset();
2037       PtrRtChecking->Need = true;
2038 
2039       auto *SE = PSE->getSE();
2040       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
2041                                                  SymbolicStrides, true);
2042 
2043       // Check that we found the bounds for the pointer.
2044       if (!CanDoRTIfNeeded) {
2045         recordAnalysis("CantCheckMemDepsAtRunTime")
2046             << "cannot check memory dependencies at runtime";
2047         LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2048         CanVecMem = false;
2049         return;
2050       }
2051 
2052       CanVecMem = true;
2053     }
2054   }
2055 
2056   if (HasConvergentOp) {
2057     recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2058       << "cannot add control dependency to convergent operation";
2059     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2060                          "would be needed with a convergent operation\n");
2061     CanVecMem = false;
2062     return;
2063   }
2064 
2065   if (CanVecMem)
2066     LLVM_DEBUG(
2067         dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
2068                << (PtrRtChecking->Need ? "" : " don't")
2069                << " need runtime memory checks.\n");
2070   else {
2071     recordAnalysis("UnsafeMemDep")
2072         << "unsafe dependent memory operations in loop. Use "
2073            "#pragma loop distribute(enable) to allow loop distribution "
2074            "to attempt to isolate the offending operations into a separate "
2075            "loop";
2076     LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2077   }
2078 }
2079 
2080 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2081                                            DominatorTree *DT)  {
2082   assert(TheLoop->contains(BB) && "Unknown block used");
2083 
2084   // Blocks that do not dominate the latch need predication.
2085   BasicBlock* Latch = TheLoop->getLoopLatch();
2086   return !DT->dominates(BB, Latch);
2087 }
2088 
2089 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2090                                                            Instruction *I) {
2091   assert(!Report && "Multiple reports generated");
2092 
2093   Value *CodeRegion = TheLoop->getHeader();
2094   DebugLoc DL = TheLoop->getStartLoc();
2095 
2096   if (I) {
2097     CodeRegion = I->getParent();
2098     // If there is no debug location attached to the instruction, revert back to
2099     // using the loop's.
2100     if (I->getDebugLoc())
2101       DL = I->getDebugLoc();
2102   }
2103 
2104   Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2105                                                    CodeRegion);
2106   return *Report;
2107 }
2108 
2109 bool LoopAccessInfo::isUniform(Value *V) const {
2110   auto *SE = PSE->getSE();
2111   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
2112   // never considered uniform.
2113   // TODO: Is this really what we want? Even without FP SCEV, we may want some
2114   // trivially loop-invariant FP values to be considered uniform.
2115   if (!SE->isSCEVable(V->getType()))
2116     return false;
2117   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
2118 }
2119 
2120 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2121   Value *Ptr = getLoadStorePointerOperand(MemAccess);
2122   if (!Ptr)
2123     return;
2124 
2125   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2126   if (!Stride)
2127     return;
2128 
2129   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2130                        "versioning:");
2131   LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2132 
2133   // Avoid adding the "Stride == 1" predicate when we know that
2134   // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2135   // or zero iteration loop, as Trip-Count <= Stride == 1.
2136   //
2137   // TODO: We are currently not making a very informed decision on when it is
2138   // beneficial to apply stride versioning. It might make more sense that the
2139   // users of this analysis (such as the vectorizer) will trigger it, based on
2140   // their specific cost considerations; For example, in cases where stride
2141   // versioning does  not help resolving memory accesses/dependences, the
2142   // vectorizer should evaluate the cost of the runtime test, and the benefit
2143   // of various possible stride specializations, considering the alternatives
2144   // of using gather/scatters (if available).
2145 
2146   const SCEV *StrideExpr = PSE->getSCEV(Stride);
2147   const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
2148 
2149   // Match the types so we can compare the stride and the BETakenCount.
2150   // The Stride can be positive/negative, so we sign extend Stride;
2151   // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
2152   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2153   uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType());
2154   uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType());
2155   const SCEV *CastedStride = StrideExpr;
2156   const SCEV *CastedBECount = BETakenCount;
2157   ScalarEvolution *SE = PSE->getSE();
2158   if (BETypeSize >= StrideTypeSize)
2159     CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2160   else
2161     CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2162   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2163   // Since TripCount == BackEdgeTakenCount + 1, checking:
2164   // "Stride >= TripCount" is equivalent to checking:
2165   // Stride - BETakenCount > 0
2166   if (SE->isKnownPositive(StrideMinusBETaken)) {
2167     LLVM_DEBUG(
2168         dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2169                   "Stride==1 predicate will imply that the loop executes "
2170                   "at most once.\n");
2171     return;
2172   }
2173   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.");
2174 
2175   SymbolicStrides[Ptr] = Stride;
2176   StrideSet.insert(Stride);
2177 }
2178 
2179 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2180                                const TargetLibraryInfo *TLI, AAResults *AA,
2181                                DominatorTree *DT, LoopInfo *LI)
2182     : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2183       PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)),
2184       DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
2185       NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
2186       HasConvergentOp(false),
2187       HasDependenceInvolvingLoopInvariantAddress(false) {
2188   if (canAnalyzeLoop())
2189     analyzeLoop(AA, LI, TLI, DT);
2190 }
2191 
2192 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2193   if (CanVecMem) {
2194     OS.indent(Depth) << "Memory dependences are safe";
2195     if (MaxSafeDepDistBytes != -1ULL)
2196       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2197          << " bytes";
2198     if (PtrRtChecking->Need)
2199       OS << " with run-time checks";
2200     OS << "\n";
2201   }
2202 
2203   if (HasConvergentOp)
2204     OS.indent(Depth) << "Has convergent operation in loop\n";
2205 
2206   if (Report)
2207     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2208 
2209   if (auto *Dependences = DepChecker->getDependences()) {
2210     OS.indent(Depth) << "Dependences:\n";
2211     for (auto &Dep : *Dependences) {
2212       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
2213       OS << "\n";
2214     }
2215   } else
2216     OS.indent(Depth) << "Too many dependences, not recorded\n";
2217 
2218   // List the pair of accesses need run-time checks to prove independence.
2219   PtrRtChecking->print(OS, Depth);
2220   OS << "\n";
2221 
2222   OS.indent(Depth) << "Non vectorizable stores to invariant address were "
2223                    << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
2224                    << "found in loop.\n";
2225 
2226   OS.indent(Depth) << "SCEV assumptions:\n";
2227   PSE->getUnionPredicate().print(OS, Depth);
2228 
2229   OS << "\n";
2230 
2231   OS.indent(Depth) << "Expressions re-written:\n";
2232   PSE->print(OS, Depth);
2233 }
2234 
2235 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) {
2236   initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
2237 }
2238 
2239 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
2240   auto &LAI = LoopAccessInfoMap[L];
2241 
2242   if (!LAI)
2243     LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2244 
2245   return *LAI.get();
2246 }
2247 
2248 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2249   LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
2250 
2251   for (Loop *TopLevelLoop : *LI)
2252     for (Loop *L : depth_first(TopLevelLoop)) {
2253       OS.indent(2) << L->getHeader()->getName() << ":\n";
2254       auto &LAI = LAA.getInfo(L);
2255       LAI.print(OS, 4);
2256     }
2257 }
2258 
2259 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2260   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2261   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2262   TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2263   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2264   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2265   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2266 
2267   return false;
2268 }
2269 
2270 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
2271   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
2272   AU.addRequiredTransitive<AAResultsWrapperPass>();
2273   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2274   AU.addRequiredTransitive<LoopInfoWrapperPass>();
2275 
2276   AU.setPreservesAll();
2277 }
2278 
2279 char LoopAccessLegacyAnalysis::ID = 0;
2280 static const char laa_name[] = "Loop Access Analysis";
2281 #define LAA_NAME "loop-accesses"
2282 
2283 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2284 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2285 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2286 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2287 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2288 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2289 
2290 AnalysisKey LoopAccessAnalysis::Key;
2291 
2292 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2293                                        LoopStandardAnalysisResults &AR) {
2294   return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
2295 }
2296 
2297 namespace llvm {
2298 
2299   Pass *createLAAPass() {
2300     return new LoopAccessLegacyAnalysis();
2301   }
2302 
2303 } // end namespace llvm
2304