1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/IR/ValueHandle.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <cstdlib> 64 #include <iterator> 65 #include <utility> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "loop-accesses" 71 72 static cl::opt<unsigned, true> 73 VectorizationFactor("force-vector-width", cl::Hidden, 74 cl::desc("Sets the SIMD width. Zero is autoselect."), 75 cl::location(VectorizerParams::VectorizationFactor)); 76 unsigned VectorizerParams::VectorizationFactor; 77 78 static cl::opt<unsigned, true> 79 VectorizationInterleave("force-vector-interleave", cl::Hidden, 80 cl::desc("Sets the vectorization interleave count. " 81 "Zero is autoselect."), 82 cl::location( 83 VectorizerParams::VectorizationInterleave)); 84 unsigned VectorizerParams::VectorizationInterleave; 85 86 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 87 "runtime-memory-check-threshold", cl::Hidden, 88 cl::desc("When performing memory disambiguation checks at runtime do not " 89 "generate more than this number of comparisons (default = 8)."), 90 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 91 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 92 93 /// The maximum iterations used to merge memory checks 94 static cl::opt<unsigned> MemoryCheckMergeThreshold( 95 "memory-check-merge-threshold", cl::Hidden, 96 cl::desc("Maximum number of comparisons done when trying to merge " 97 "runtime memory checks. (default = 100)"), 98 cl::init(100)); 99 100 /// Maximum SIMD width. 101 const unsigned VectorizerParams::MaxVectorWidth = 64; 102 103 /// We collect dependences up to this threshold. 104 static cl::opt<unsigned> 105 MaxDependences("max-dependences", cl::Hidden, 106 cl::desc("Maximum number of dependences collected by " 107 "loop-access analysis (default = 100)"), 108 cl::init(100)); 109 110 /// This enables versioning on the strides of symbolically striding memory 111 /// accesses in code like the following. 112 /// for (i = 0; i < N; ++i) 113 /// A[i * Stride1] += B[i * Stride2] ... 114 /// 115 /// Will be roughly translated to 116 /// if (Stride1 == 1 && Stride2 == 1) { 117 /// for (i = 0; i < N; i+=4) 118 /// A[i:i+3] += ... 119 /// } else 120 /// ... 121 static cl::opt<bool> EnableMemAccessVersioning( 122 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 123 cl::desc("Enable symbolic stride memory access versioning")); 124 125 /// Enable store-to-load forwarding conflict detection. This option can 126 /// be disabled for correctness testing. 127 static cl::opt<bool> EnableForwardingConflictDetection( 128 "store-to-load-forwarding-conflict-detection", cl::Hidden, 129 cl::desc("Enable conflict detection in loop-access analysis"), 130 cl::init(true)); 131 132 bool VectorizerParams::isInterleaveForced() { 133 return ::VectorizationInterleave.getNumOccurrences() > 0; 134 } 135 136 Value *llvm::stripIntegerCast(Value *V) { 137 if (auto *CI = dyn_cast<CastInst>(V)) 138 if (CI->getOperand(0)->getType()->isIntegerTy()) 139 return CI->getOperand(0); 140 return V; 141 } 142 143 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 144 const ValueToValueMap &PtrToStride, 145 Value *Ptr) { 146 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 147 148 // If there is an entry in the map return the SCEV of the pointer with the 149 // symbolic stride replaced by one. 150 ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr); 151 if (SI == PtrToStride.end()) 152 // For a non-symbolic stride, just return the original expression. 153 return OrigSCEV; 154 155 Value *StrideVal = stripIntegerCast(SI->second); 156 157 ScalarEvolution *SE = PSE.getSE(); 158 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 159 const auto *CT = 160 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 161 162 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 163 auto *Expr = PSE.getSCEV(Ptr); 164 165 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 166 << " by: " << *Expr << "\n"); 167 return Expr; 168 } 169 170 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 171 unsigned Index, RuntimePointerChecking &RtCheck) 172 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 173 AddressSpace(RtCheck.Pointers[Index] 174 .PointerValue->getType() 175 ->getPointerAddressSpace()) { 176 Members.push_back(Index); 177 } 178 179 /// Calculate Start and End points of memory access. 180 /// Let's assume A is the first access and B is a memory access on N-th loop 181 /// iteration. Then B is calculated as: 182 /// B = A + Step*N . 183 /// Step value may be positive or negative. 184 /// N is a calculated back-edge taken count: 185 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 186 /// Start and End points are calculated in the following way: 187 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 188 /// where SizeOfElt is the size of single memory access in bytes. 189 /// 190 /// There is no conflict when the intervals are disjoint: 191 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 192 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 193 unsigned DepSetId, unsigned ASId, 194 const ValueToValueMap &Strides, 195 PredicatedScalarEvolution &PSE) { 196 // Get the stride replaced scev. 197 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 198 ScalarEvolution *SE = PSE.getSE(); 199 200 const SCEV *ScStart; 201 const SCEV *ScEnd; 202 203 if (SE->isLoopInvariant(Sc, Lp)) { 204 ScStart = ScEnd = Sc; 205 } else { 206 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 207 assert(AR && "Invalid addrec expression"); 208 const SCEV *Ex = PSE.getBackedgeTakenCount(); 209 210 ScStart = AR->getStart(); 211 ScEnd = AR->evaluateAtIteration(Ex, *SE); 212 const SCEV *Step = AR->getStepRecurrence(*SE); 213 214 // For expressions with negative step, the upper bound is ScStart and the 215 // lower bound is ScEnd. 216 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 217 if (CStep->getValue()->isNegative()) 218 std::swap(ScStart, ScEnd); 219 } else { 220 // Fallback case: the step is not constant, but we can still 221 // get the upper and lower bounds of the interval by using min/max 222 // expressions. 223 ScStart = SE->getUMinExpr(ScStart, ScEnd); 224 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 225 } 226 } 227 // Add the size of the pointed element to ScEnd. 228 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 229 Type *IdxTy = DL.getIndexType(Ptr->getType()); 230 const SCEV *EltSizeSCEV = 231 SE->getStoreSizeOfExpr(IdxTy, Ptr->getType()->getPointerElementType()); 232 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 233 234 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 235 } 236 237 SmallVector<RuntimePointerCheck, 4> 238 RuntimePointerChecking::generateChecks() const { 239 SmallVector<RuntimePointerCheck, 4> Checks; 240 241 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 242 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 243 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 244 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 245 246 if (needsChecking(CGI, CGJ)) 247 Checks.push_back(std::make_pair(&CGI, &CGJ)); 248 } 249 } 250 return Checks; 251 } 252 253 void RuntimePointerChecking::generateChecks( 254 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 255 assert(Checks.empty() && "Checks is not empty"); 256 groupChecks(DepCands, UseDependencies); 257 Checks = generateChecks(); 258 } 259 260 bool RuntimePointerChecking::needsChecking( 261 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 262 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 263 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 264 if (needsChecking(M.Members[I], N.Members[J])) 265 return true; 266 return false; 267 } 268 269 /// Compare \p I and \p J and return the minimum. 270 /// Return nullptr in case we couldn't find an answer. 271 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 272 ScalarEvolution *SE) { 273 const SCEV *Diff = SE->getMinusSCEV(J, I); 274 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 275 276 if (!C) 277 return nullptr; 278 if (C->getValue()->isNegative()) 279 return J; 280 return I; 281 } 282 283 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, 284 RuntimePointerChecking &RtCheck) { 285 return addPointer( 286 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 287 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 288 *RtCheck.SE); 289 } 290 291 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 292 const SCEV *End, unsigned AS, 293 ScalarEvolution &SE) { 294 assert(AddressSpace == AS && 295 "all pointers in a checking group must be in the same address space"); 296 297 // Compare the starts and ends with the known minimum and maximum 298 // of this set. We need to know how we compare against the min/max 299 // of the set in order to be able to emit memchecks. 300 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 301 if (!Min0) 302 return false; 303 304 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 305 if (!Min1) 306 return false; 307 308 // Update the low bound expression if we've found a new min value. 309 if (Min0 == Start) 310 Low = Start; 311 312 // Update the high bound expression if we've found a new max value. 313 if (Min1 != End) 314 High = End; 315 316 Members.push_back(Index); 317 return true; 318 } 319 320 void RuntimePointerChecking::groupChecks( 321 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 322 // We build the groups from dependency candidates equivalence classes 323 // because: 324 // - We know that pointers in the same equivalence class share 325 // the same underlying object and therefore there is a chance 326 // that we can compare pointers 327 // - We wouldn't be able to merge two pointers for which we need 328 // to emit a memcheck. The classes in DepCands are already 329 // conveniently built such that no two pointers in the same 330 // class need checking against each other. 331 332 // We use the following (greedy) algorithm to construct the groups 333 // For every pointer in the equivalence class: 334 // For each existing group: 335 // - if the difference between this pointer and the min/max bounds 336 // of the group is a constant, then make the pointer part of the 337 // group and update the min/max bounds of that group as required. 338 339 CheckingGroups.clear(); 340 341 // If we need to check two pointers to the same underlying object 342 // with a non-constant difference, we shouldn't perform any pointer 343 // grouping with those pointers. This is because we can easily get 344 // into cases where the resulting check would return false, even when 345 // the accesses are safe. 346 // 347 // The following example shows this: 348 // for (i = 0; i < 1000; ++i) 349 // a[5000 + i * m] = a[i] + a[i + 9000] 350 // 351 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 352 // (0, 10000) which is always false. However, if m is 1, there is no 353 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 354 // us to perform an accurate check in this case. 355 // 356 // The above case requires that we have an UnknownDependence between 357 // accesses to the same underlying object. This cannot happen unless 358 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 359 // is also false. In this case we will use the fallback path and create 360 // separate checking groups for all pointers. 361 362 // If we don't have the dependency partitions, construct a new 363 // checking pointer group for each pointer. This is also required 364 // for correctness, because in this case we can have checking between 365 // pointers to the same underlying object. 366 if (!UseDependencies) { 367 for (unsigned I = 0; I < Pointers.size(); ++I) 368 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 369 return; 370 } 371 372 unsigned TotalComparisons = 0; 373 374 DenseMap<Value *, unsigned> PositionMap; 375 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 376 PositionMap[Pointers[Index].PointerValue] = Index; 377 378 // We need to keep track of what pointers we've already seen so we 379 // don't process them twice. 380 SmallSet<unsigned, 2> Seen; 381 382 // Go through all equivalence classes, get the "pointer check groups" 383 // and add them to the overall solution. We use the order in which accesses 384 // appear in 'Pointers' to enforce determinism. 385 for (unsigned I = 0; I < Pointers.size(); ++I) { 386 // We've seen this pointer before, and therefore already processed 387 // its equivalence class. 388 if (Seen.count(I)) 389 continue; 390 391 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 392 Pointers[I].IsWritePtr); 393 394 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 395 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 396 397 // Because DepCands is constructed by visiting accesses in the order in 398 // which they appear in alias sets (which is deterministic) and the 399 // iteration order within an equivalence class member is only dependent on 400 // the order in which unions and insertions are performed on the 401 // equivalence class, the iteration order is deterministic. 402 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 403 MI != ME; ++MI) { 404 auto PointerI = PositionMap.find(MI->getPointer()); 405 assert(PointerI != PositionMap.end() && 406 "pointer in equivalence class not found in PositionMap"); 407 unsigned Pointer = PointerI->second; 408 bool Merged = false; 409 // Mark this pointer as seen. 410 Seen.insert(Pointer); 411 412 // Go through all the existing sets and see if we can find one 413 // which can include this pointer. 414 for (RuntimeCheckingPtrGroup &Group : Groups) { 415 // Don't perform more than a certain amount of comparisons. 416 // This should limit the cost of grouping the pointers to something 417 // reasonable. If we do end up hitting this threshold, the algorithm 418 // will create separate groups for all remaining pointers. 419 if (TotalComparisons > MemoryCheckMergeThreshold) 420 break; 421 422 TotalComparisons++; 423 424 if (Group.addPointer(Pointer, *this)) { 425 Merged = true; 426 break; 427 } 428 } 429 430 if (!Merged) 431 // We couldn't add this pointer to any existing set or the threshold 432 // for the number of comparisons has been reached. Create a new group 433 // to hold the current pointer. 434 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 435 } 436 437 // We've computed the grouped checks for this partition. 438 // Save the results and continue with the next one. 439 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 440 } 441 } 442 443 bool RuntimePointerChecking::arePointersInSamePartition( 444 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 445 unsigned PtrIdx2) { 446 return (PtrToPartition[PtrIdx1] != -1 && 447 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 448 } 449 450 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 451 const PointerInfo &PointerI = Pointers[I]; 452 const PointerInfo &PointerJ = Pointers[J]; 453 454 // No need to check if two readonly pointers intersect. 455 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 456 return false; 457 458 // Only need to check pointers between two different dependency sets. 459 if (PointerI.DependencySetId == PointerJ.DependencySetId) 460 return false; 461 462 // Only need to check pointers in the same alias set. 463 if (PointerI.AliasSetId != PointerJ.AliasSetId) 464 return false; 465 466 return true; 467 } 468 469 void RuntimePointerChecking::printChecks( 470 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 471 unsigned Depth) const { 472 unsigned N = 0; 473 for (const auto &Check : Checks) { 474 const auto &First = Check.first->Members, &Second = Check.second->Members; 475 476 OS.indent(Depth) << "Check " << N++ << ":\n"; 477 478 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 479 for (unsigned K = 0; K < First.size(); ++K) 480 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 481 482 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 483 for (unsigned K = 0; K < Second.size(); ++K) 484 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 485 } 486 } 487 488 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 489 490 OS.indent(Depth) << "Run-time memory checks:\n"; 491 printChecks(OS, Checks, Depth); 492 493 OS.indent(Depth) << "Grouped accesses:\n"; 494 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 495 const auto &CG = CheckingGroups[I]; 496 497 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 498 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 499 << ")\n"; 500 for (unsigned J = 0; J < CG.Members.size(); ++J) { 501 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 502 << "\n"; 503 } 504 } 505 } 506 507 namespace { 508 509 /// Analyses memory accesses in a loop. 510 /// 511 /// Checks whether run time pointer checks are needed and builds sets for data 512 /// dependence checking. 513 class AccessAnalysis { 514 public: 515 /// Read or write access location. 516 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 517 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 518 519 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 520 MemoryDepChecker::DepCandidates &DA, 521 PredicatedScalarEvolution &PSE) 522 : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), 523 IsRTCheckAnalysisNeeded(false), PSE(PSE) {} 524 525 /// Register a load and whether it is only read from. 526 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 527 Value *Ptr = const_cast<Value*>(Loc.Ptr); 528 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 529 Accesses.insert(MemAccessInfo(Ptr, false)); 530 if (IsReadOnly) 531 ReadOnlyPtr.insert(Ptr); 532 } 533 534 /// Register a store. 535 void addStore(MemoryLocation &Loc) { 536 Value *Ptr = const_cast<Value*>(Loc.Ptr); 537 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 538 Accesses.insert(MemAccessInfo(Ptr, true)); 539 } 540 541 /// Check if we can emit a run-time no-alias check for \p Access. 542 /// 543 /// Returns true if we can emit a run-time no alias check for \p Access. 544 /// If we can check this access, this also adds it to a dependence set and 545 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 546 /// we will attempt to use additional run-time checks in order to get 547 /// the bounds of the pointer. 548 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 549 MemAccessInfo Access, 550 const ValueToValueMap &Strides, 551 DenseMap<Value *, unsigned> &DepSetId, 552 Loop *TheLoop, unsigned &RunningDepId, 553 unsigned ASId, bool ShouldCheckStride, 554 bool Assume); 555 556 /// Check whether we can check the pointers at runtime for 557 /// non-intersection. 558 /// 559 /// Returns true if we need no check or if we do and we can generate them 560 /// (i.e. the pointers have computable bounds). 561 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 562 Loop *TheLoop, const ValueToValueMap &Strides, 563 bool ShouldCheckWrap = false); 564 565 /// Goes over all memory accesses, checks whether a RT check is needed 566 /// and builds sets of dependent accesses. 567 void buildDependenceSets() { 568 processMemAccesses(); 569 } 570 571 /// Initial processing of memory accesses determined that we need to 572 /// perform dependency checking. 573 /// 574 /// Note that this can later be cleared if we retry memcheck analysis without 575 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 576 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 577 578 /// We decided that no dependence analysis would be used. Reset the state. 579 void resetDepChecks(MemoryDepChecker &DepChecker) { 580 CheckDeps.clear(); 581 DepChecker.clearDependences(); 582 } 583 584 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 585 586 private: 587 typedef SetVector<MemAccessInfo> PtrAccessSet; 588 589 /// Go over all memory access and check whether runtime pointer checks 590 /// are needed and build sets of dependency check candidates. 591 void processMemAccesses(); 592 593 /// Set of all accesses. 594 PtrAccessSet Accesses; 595 596 /// The loop being checked. 597 const Loop *TheLoop; 598 599 /// List of accesses that need a further dependence check. 600 MemAccessInfoList CheckDeps; 601 602 /// Set of pointers that are read only. 603 SmallPtrSet<Value*, 16> ReadOnlyPtr; 604 605 /// An alias set tracker to partition the access set by underlying object and 606 //intrinsic property (such as TBAA metadata). 607 AliasSetTracker AST; 608 609 LoopInfo *LI; 610 611 /// Sets of potentially dependent accesses - members of one set share an 612 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 613 /// dependence check. 614 MemoryDepChecker::DepCandidates &DepCands; 615 616 /// Initial processing of memory accesses determined that we may need 617 /// to add memchecks. Perform the analysis to determine the necessary checks. 618 /// 619 /// Note that, this is different from isDependencyCheckNeeded. When we retry 620 /// memcheck analysis without dependency checking 621 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 622 /// cleared while this remains set if we have potentially dependent accesses. 623 bool IsRTCheckAnalysisNeeded; 624 625 /// The SCEV predicate containing all the SCEV-related assumptions. 626 PredicatedScalarEvolution &PSE; 627 }; 628 629 } // end anonymous namespace 630 631 /// Check whether a pointer can participate in a runtime bounds check. 632 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 633 /// by adding run-time checks (overflow checks) if necessary. 634 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 635 const ValueToValueMap &Strides, Value *Ptr, 636 Loop *L, bool Assume) { 637 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 638 639 // The bounds for loop-invariant pointer is trivial. 640 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 641 return true; 642 643 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 644 645 if (!AR && Assume) 646 AR = PSE.getAsAddRec(Ptr); 647 648 if (!AR) 649 return false; 650 651 return AR->isAffine(); 652 } 653 654 /// Check whether a pointer address cannot wrap. 655 static bool isNoWrap(PredicatedScalarEvolution &PSE, 656 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 657 const SCEV *PtrScev = PSE.getSCEV(Ptr); 658 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 659 return true; 660 661 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 662 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 663 return true; 664 665 return false; 666 } 667 668 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 669 MemAccessInfo Access, 670 const ValueToValueMap &StridesMap, 671 DenseMap<Value *, unsigned> &DepSetId, 672 Loop *TheLoop, unsigned &RunningDepId, 673 unsigned ASId, bool ShouldCheckWrap, 674 bool Assume) { 675 Value *Ptr = Access.getPointer(); 676 677 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 678 return false; 679 680 // When we run after a failing dependency check we have to make sure 681 // we don't have wrapping pointers. 682 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { 683 auto *Expr = PSE.getSCEV(Ptr); 684 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 685 return false; 686 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 687 } 688 689 // The id of the dependence set. 690 unsigned DepId; 691 692 if (isDependencyCheckNeeded()) { 693 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 694 unsigned &LeaderId = DepSetId[Leader]; 695 if (!LeaderId) 696 LeaderId = RunningDepId++; 697 DepId = LeaderId; 698 } else 699 // Each access has its own dependence set. 700 DepId = RunningDepId++; 701 702 bool IsWrite = Access.getInt(); 703 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 704 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 705 706 return true; 707 } 708 709 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 710 ScalarEvolution *SE, Loop *TheLoop, 711 const ValueToValueMap &StridesMap, 712 bool ShouldCheckWrap) { 713 // Find pointers with computable bounds. We are going to use this information 714 // to place a runtime bound check. 715 bool CanDoRT = true; 716 717 bool MayNeedRTCheck = false; 718 if (!IsRTCheckAnalysisNeeded) return true; 719 720 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 721 722 // We assign a consecutive id to access from different alias sets. 723 // Accesses between different groups doesn't need to be checked. 724 unsigned ASId = 0; 725 for (auto &AS : AST) { 726 int NumReadPtrChecks = 0; 727 int NumWritePtrChecks = 0; 728 bool CanDoAliasSetRT = true; 729 ++ASId; 730 731 // We assign consecutive id to access from different dependence sets. 732 // Accesses within the same set don't need a runtime check. 733 unsigned RunningDepId = 1; 734 DenseMap<Value *, unsigned> DepSetId; 735 736 SmallVector<MemAccessInfo, 4> Retries; 737 738 // First, count how many write and read accesses are in the alias set. Also 739 // collect MemAccessInfos for later. 740 SmallVector<MemAccessInfo, 4> AccessInfos; 741 for (const auto &A : AS) { 742 Value *Ptr = A.getValue(); 743 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 744 745 if (IsWrite) 746 ++NumWritePtrChecks; 747 else 748 ++NumReadPtrChecks; 749 AccessInfos.emplace_back(Ptr, IsWrite); 750 } 751 752 // We do not need runtime checks for this alias set, if there are no writes 753 // or a single write and no reads. 754 if (NumWritePtrChecks == 0 || 755 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 756 assert((AS.size() <= 1 || 757 all_of(AS, 758 [this](auto AC) { 759 MemAccessInfo AccessWrite(AC.getValue(), true); 760 return DepCands.findValue(AccessWrite) == DepCands.end(); 761 })) && 762 "Can only skip updating CanDoRT below, if all entries in AS " 763 "are reads or there is at most 1 entry"); 764 continue; 765 } 766 767 for (auto &Access : AccessInfos) { 768 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, 769 RunningDepId, ASId, ShouldCheckWrap, false)) { 770 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 771 << *Access.getPointer() << '\n'); 772 Retries.push_back(Access); 773 CanDoAliasSetRT = false; 774 } 775 } 776 777 // Note that this function computes CanDoRT and MayNeedRTCheck 778 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 779 // we have a pointer for which we couldn't find the bounds but we don't 780 // actually need to emit any checks so it does not matter. 781 // 782 // We need runtime checks for this alias set, if there are at least 2 783 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 784 // any bound checks (because in that case the number of dependence sets is 785 // incomplete). 786 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 787 788 // We need to perform run-time alias checks, but some pointers had bounds 789 // that couldn't be checked. 790 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 791 // Reset the CanDoSetRt flag and retry all accesses that have failed. 792 // We know that we need these checks, so we can now be more aggressive 793 // and add further checks if required (overflow checks). 794 CanDoAliasSetRT = true; 795 for (auto Access : Retries) 796 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, 797 TheLoop, RunningDepId, ASId, 798 ShouldCheckWrap, /*Assume=*/true)) { 799 CanDoAliasSetRT = false; 800 break; 801 } 802 } 803 804 CanDoRT &= CanDoAliasSetRT; 805 MayNeedRTCheck |= NeedsAliasSetRTCheck; 806 ++ASId; 807 } 808 809 // If the pointers that we would use for the bounds comparison have different 810 // address spaces, assume the values aren't directly comparable, so we can't 811 // use them for the runtime check. We also have to assume they could 812 // overlap. In the future there should be metadata for whether address spaces 813 // are disjoint. 814 unsigned NumPointers = RtCheck.Pointers.size(); 815 for (unsigned i = 0; i < NumPointers; ++i) { 816 for (unsigned j = i + 1; j < NumPointers; ++j) { 817 // Only need to check pointers between two different dependency sets. 818 if (RtCheck.Pointers[i].DependencySetId == 819 RtCheck.Pointers[j].DependencySetId) 820 continue; 821 // Only need to check pointers in the same alias set. 822 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 823 continue; 824 825 Value *PtrI = RtCheck.Pointers[i].PointerValue; 826 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 827 828 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 829 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 830 if (ASi != ASj) { 831 LLVM_DEBUG( 832 dbgs() << "LAA: Runtime check would require comparison between" 833 " different address spaces\n"); 834 return false; 835 } 836 } 837 } 838 839 if (MayNeedRTCheck && CanDoRT) 840 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 841 842 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 843 << " pointer comparisons.\n"); 844 845 // If we can do run-time checks, but there are no checks, no runtime checks 846 // are needed. This can happen when all pointers point to the same underlying 847 // object for example. 848 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 849 850 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 851 if (!CanDoRTIfNeeded) 852 RtCheck.reset(); 853 return CanDoRTIfNeeded; 854 } 855 856 void AccessAnalysis::processMemAccesses() { 857 // We process the set twice: first we process read-write pointers, last we 858 // process read-only pointers. This allows us to skip dependence tests for 859 // read-only pointers. 860 861 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 862 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 863 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 864 LLVM_DEBUG({ 865 for (auto A : Accesses) 866 dbgs() << "\t" << *A.getPointer() << " (" << 867 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 868 "read-only" : "read")) << ")\n"; 869 }); 870 871 // The AliasSetTracker has nicely partitioned our pointers by metadata 872 // compatibility and potential for underlying-object overlap. As a result, we 873 // only need to check for potential pointer dependencies within each alias 874 // set. 875 for (const auto &AS : AST) { 876 // Note that both the alias-set tracker and the alias sets themselves used 877 // linked lists internally and so the iteration order here is deterministic 878 // (matching the original instruction order within each set). 879 880 bool SetHasWrite = false; 881 882 // Map of pointers to last access encountered. 883 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 884 UnderlyingObjToAccessMap ObjToLastAccess; 885 886 // Set of access to check after all writes have been processed. 887 PtrAccessSet DeferredAccesses; 888 889 // Iterate over each alias set twice, once to process read/write pointers, 890 // and then to process read-only pointers. 891 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 892 bool UseDeferred = SetIteration > 0; 893 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 894 895 for (const auto &AV : AS) { 896 Value *Ptr = AV.getValue(); 897 898 // For a single memory access in AliasSetTracker, Accesses may contain 899 // both read and write, and they both need to be handled for CheckDeps. 900 for (const auto &AC : S) { 901 if (AC.getPointer() != Ptr) 902 continue; 903 904 bool IsWrite = AC.getInt(); 905 906 // If we're using the deferred access set, then it contains only 907 // reads. 908 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 909 if (UseDeferred && !IsReadOnlyPtr) 910 continue; 911 // Otherwise, the pointer must be in the PtrAccessSet, either as a 912 // read or a write. 913 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 914 S.count(MemAccessInfo(Ptr, false))) && 915 "Alias-set pointer not in the access set?"); 916 917 MemAccessInfo Access(Ptr, IsWrite); 918 DepCands.insert(Access); 919 920 // Memorize read-only pointers for later processing and skip them in 921 // the first round (they need to be checked after we have seen all 922 // write pointers). Note: we also mark pointer that are not 923 // consecutive as "read-only" pointers (so that we check 924 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 925 if (!UseDeferred && IsReadOnlyPtr) { 926 DeferredAccesses.insert(Access); 927 continue; 928 } 929 930 // If this is a write - check other reads and writes for conflicts. If 931 // this is a read only check other writes for conflicts (but only if 932 // there is no other write to the ptr - this is an optimization to 933 // catch "a[i] = a[i] + " without having to do a dependence check). 934 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 935 CheckDeps.push_back(Access); 936 IsRTCheckAnalysisNeeded = true; 937 } 938 939 if (IsWrite) 940 SetHasWrite = true; 941 942 // Create sets of pointers connected by a shared alias set and 943 // underlying object. 944 typedef SmallVector<const Value *, 16> ValueVector; 945 ValueVector TempObjects; 946 947 getUnderlyingObjects(Ptr, TempObjects, LI); 948 LLVM_DEBUG(dbgs() 949 << "Underlying objects for pointer " << *Ptr << "\n"); 950 for (const Value *UnderlyingObj : TempObjects) { 951 // nullptr never alias, don't join sets for pointer that have "null" 952 // in their UnderlyingObjects list. 953 if (isa<ConstantPointerNull>(UnderlyingObj) && 954 !NullPointerIsDefined( 955 TheLoop->getHeader()->getParent(), 956 UnderlyingObj->getType()->getPointerAddressSpace())) 957 continue; 958 959 UnderlyingObjToAccessMap::iterator Prev = 960 ObjToLastAccess.find(UnderlyingObj); 961 if (Prev != ObjToLastAccess.end()) 962 DepCands.unionSets(Access, Prev->second); 963 964 ObjToLastAccess[UnderlyingObj] = Access; 965 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 966 } 967 } 968 } 969 } 970 } 971 } 972 973 static bool isInBoundsGep(Value *Ptr) { 974 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 975 return GEP->isInBounds(); 976 return false; 977 } 978 979 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 980 /// i.e. monotonically increasing/decreasing. 981 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 982 PredicatedScalarEvolution &PSE, const Loop *L) { 983 // FIXME: This should probably only return true for NUW. 984 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 985 return true; 986 987 // Scalar evolution does not propagate the non-wrapping flags to values that 988 // are derived from a non-wrapping induction variable because non-wrapping 989 // could be flow-sensitive. 990 // 991 // Look through the potentially overflowing instruction to try to prove 992 // non-wrapping for the *specific* value of Ptr. 993 994 // The arithmetic implied by an inbounds GEP can't overflow. 995 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 996 if (!GEP || !GEP->isInBounds()) 997 return false; 998 999 // Make sure there is only one non-const index and analyze that. 1000 Value *NonConstIndex = nullptr; 1001 for (Value *Index : GEP->indices()) 1002 if (!isa<ConstantInt>(Index)) { 1003 if (NonConstIndex) 1004 return false; 1005 NonConstIndex = Index; 1006 } 1007 if (!NonConstIndex) 1008 // The recurrence is on the pointer, ignore for now. 1009 return false; 1010 1011 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1012 // AddRec using a NSW operation. 1013 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1014 if (OBO->hasNoSignedWrap() && 1015 // Assume constant for other the operand so that the AddRec can be 1016 // easily found. 1017 isa<ConstantInt>(OBO->getOperand(1))) { 1018 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1019 1020 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1021 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1022 } 1023 1024 return false; 1025 } 1026 1027 /// Check whether the access through \p Ptr has a constant stride. 1028 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 1029 const Loop *Lp, const ValueToValueMap &StridesMap, 1030 bool Assume, bool ShouldCheckWrap) { 1031 Type *Ty = Ptr->getType(); 1032 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1033 1034 // Make sure that the pointer does not point to aggregate types. 1035 auto *PtrTy = cast<PointerType>(Ty); 1036 if (PtrTy->getElementType()->isAggregateType()) { 1037 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 1038 << *Ptr << "\n"); 1039 return 0; 1040 } 1041 1042 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1043 1044 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1045 if (Assume && !AR) 1046 AR = PSE.getAsAddRec(Ptr); 1047 1048 if (!AR) { 1049 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1050 << " SCEV: " << *PtrScev << "\n"); 1051 return 0; 1052 } 1053 1054 // The access function must stride over the innermost loop. 1055 if (Lp != AR->getLoop()) { 1056 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1057 << *Ptr << " SCEV: " << *AR << "\n"); 1058 return 0; 1059 } 1060 1061 // The address calculation must not wrap. Otherwise, a dependence could be 1062 // inverted. 1063 // An inbounds getelementptr that is a AddRec with a unit stride 1064 // cannot wrap per definition. The unit stride requirement is checked later. 1065 // An getelementptr without an inbounds attribute and unit stride would have 1066 // to access the pointer value "0" which is undefined behavior in address 1067 // space 0, therefore we can also vectorize this case. 1068 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1069 bool IsNoWrapAddRec = !ShouldCheckWrap || 1070 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1071 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1072 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1073 NullPointerIsDefined(Lp->getHeader()->getParent(), 1074 PtrTy->getAddressSpace())) { 1075 if (Assume) { 1076 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1077 IsNoWrapAddRec = true; 1078 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1079 << "LAA: Pointer: " << *Ptr << "\n" 1080 << "LAA: SCEV: " << *AR << "\n" 1081 << "LAA: Added an overflow assumption\n"); 1082 } else { 1083 LLVM_DEBUG( 1084 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1085 << *Ptr << " SCEV: " << *AR << "\n"); 1086 return 0; 1087 } 1088 } 1089 1090 // Check the step is constant. 1091 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1092 1093 // Calculate the pointer stride and check if it is constant. 1094 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1095 if (!C) { 1096 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1097 << " SCEV: " << *AR << "\n"); 1098 return 0; 1099 } 1100 1101 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1102 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 1103 const APInt &APStepVal = C->getAPInt(); 1104 1105 // Huge step value - give up. 1106 if (APStepVal.getBitWidth() > 64) 1107 return 0; 1108 1109 int64_t StepVal = APStepVal.getSExtValue(); 1110 1111 // Strided access. 1112 int64_t Stride = StepVal / Size; 1113 int64_t Rem = StepVal % Size; 1114 if (Rem) 1115 return 0; 1116 1117 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1118 // know we can't "wrap around the address space". In case of address space 1119 // zero we know that this won't happen without triggering undefined behavior. 1120 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1121 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1122 PtrTy->getAddressSpace()))) { 1123 if (Assume) { 1124 // We can avoid this case by adding a run-time check. 1125 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1126 << "inbounds or in address space 0 may wrap:\n" 1127 << "LAA: Pointer: " << *Ptr << "\n" 1128 << "LAA: SCEV: " << *AR << "\n" 1129 << "LAA: Added an overflow assumption\n"); 1130 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1131 } else 1132 return 0; 1133 } 1134 1135 return Stride; 1136 } 1137 1138 Optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, 1139 Value *PtrB, const DataLayout &DL, 1140 ScalarEvolution &SE, bool StrictCheck, 1141 bool CheckType) { 1142 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1143 assert(cast<PointerType>(PtrA->getType()) 1144 ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type"); 1145 assert(cast<PointerType>(PtrB->getType()) 1146 ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type"); 1147 1148 // Make sure that A and B are different pointers. 1149 if (PtrA == PtrB) 1150 return 0; 1151 1152 // Make sure that the element types are the same if required. 1153 if (CheckType && ElemTyA != ElemTyB) 1154 return None; 1155 1156 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1157 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1158 1159 // Check that the address spaces match. 1160 if (ASA != ASB) 1161 return None; 1162 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1163 1164 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1165 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1166 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1167 1168 int Val; 1169 if (PtrA1 == PtrB1) { 1170 // Retrieve the address space again as pointer stripping now tracks through 1171 // `addrspacecast`. 1172 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1173 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1174 // Check that the address spaces match and that the pointers are valid. 1175 if (ASA != ASB) 1176 return None; 1177 1178 IdxWidth = DL.getIndexSizeInBits(ASA); 1179 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1180 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1181 1182 OffsetB -= OffsetA; 1183 Val = OffsetB.getSExtValue(); 1184 } else { 1185 // Otherwise compute the distance with SCEV between the base pointers. 1186 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1187 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1188 const auto *Diff = 1189 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA)); 1190 if (!Diff) 1191 return None; 1192 Val = Diff->getAPInt().getSExtValue(); 1193 } 1194 int Size = DL.getTypeStoreSize(ElemTyA); 1195 int Dist = Val / Size; 1196 1197 // Ensure that the calculated distance matches the type-based one after all 1198 // the bitcasts removal in the provided pointers. 1199 if (!StrictCheck || Dist * Size == Val) 1200 return Dist; 1201 return None; 1202 } 1203 1204 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1205 const DataLayout &DL, ScalarEvolution &SE, 1206 SmallVectorImpl<unsigned> &SortedIndices) { 1207 assert(llvm::all_of( 1208 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1209 "Expected list of pointer operands."); 1210 // Walk over the pointers, and map each of them to an offset relative to 1211 // first pointer in the array. 1212 Value *Ptr0 = VL[0]; 1213 1214 using DistOrdPair = std::pair<int64_t, int>; 1215 auto Compare = [](const DistOrdPair &L, const DistOrdPair &R) { 1216 return L.first < R.first; 1217 }; 1218 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1219 Offsets.emplace(0, 0); 1220 int Cnt = 1; 1221 bool IsConsecutive = true; 1222 for (auto *Ptr : VL.drop_front()) { 1223 Optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1224 /*StrictCheck=*/true); 1225 if (!Diff) 1226 return false; 1227 1228 // Check if the pointer with the same offset is found. 1229 int64_t Offset = *Diff; 1230 auto Res = Offsets.emplace(Offset, Cnt); 1231 if (!Res.second) 1232 return false; 1233 // Consecutive order if the inserted element is the last one. 1234 IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end(); 1235 ++Cnt; 1236 } 1237 SortedIndices.clear(); 1238 if (!IsConsecutive) { 1239 // Fill SortedIndices array only if it is non-consecutive. 1240 SortedIndices.resize(VL.size()); 1241 Cnt = 0; 1242 for (const std::pair<int64_t, int> &Pair : Offsets) { 1243 SortedIndices[Cnt] = Pair.second; 1244 ++Cnt; 1245 } 1246 } 1247 return true; 1248 } 1249 1250 /// Returns true if the memory operations \p A and \p B are consecutive. 1251 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1252 ScalarEvolution &SE, bool CheckType) { 1253 Value *PtrA = getLoadStorePointerOperand(A); 1254 Value *PtrB = getLoadStorePointerOperand(B); 1255 if (!PtrA || !PtrB) 1256 return false; 1257 Type *ElemTyA = getLoadStoreType(A); 1258 Type *ElemTyB = getLoadStoreType(B); 1259 Optional<int> Diff = getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1260 /*StrictCheck=*/true, CheckType); 1261 return Diff && *Diff == 1; 1262 } 1263 1264 MemoryDepChecker::VectorizationSafetyStatus 1265 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1266 switch (Type) { 1267 case NoDep: 1268 case Forward: 1269 case BackwardVectorizable: 1270 return VectorizationSafetyStatus::Safe; 1271 1272 case Unknown: 1273 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1274 case ForwardButPreventsForwarding: 1275 case Backward: 1276 case BackwardVectorizableButPreventsForwarding: 1277 return VectorizationSafetyStatus::Unsafe; 1278 } 1279 llvm_unreachable("unexpected DepType!"); 1280 } 1281 1282 bool MemoryDepChecker::Dependence::isBackward() const { 1283 switch (Type) { 1284 case NoDep: 1285 case Forward: 1286 case ForwardButPreventsForwarding: 1287 case Unknown: 1288 return false; 1289 1290 case BackwardVectorizable: 1291 case Backward: 1292 case BackwardVectorizableButPreventsForwarding: 1293 return true; 1294 } 1295 llvm_unreachable("unexpected DepType!"); 1296 } 1297 1298 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1299 return isBackward() || Type == Unknown; 1300 } 1301 1302 bool MemoryDepChecker::Dependence::isForward() const { 1303 switch (Type) { 1304 case Forward: 1305 case ForwardButPreventsForwarding: 1306 return true; 1307 1308 case NoDep: 1309 case Unknown: 1310 case BackwardVectorizable: 1311 case Backward: 1312 case BackwardVectorizableButPreventsForwarding: 1313 return false; 1314 } 1315 llvm_unreachable("unexpected DepType!"); 1316 } 1317 1318 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1319 uint64_t TypeByteSize) { 1320 // If loads occur at a distance that is not a multiple of a feasible vector 1321 // factor store-load forwarding does not take place. 1322 // Positive dependences might cause troubles because vectorizing them might 1323 // prevent store-load forwarding making vectorized code run a lot slower. 1324 // a[i] = a[i-3] ^ a[i-8]; 1325 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1326 // hence on your typical architecture store-load forwarding does not take 1327 // place. Vectorizing in such cases does not make sense. 1328 // Store-load forwarding distance. 1329 1330 // After this many iterations store-to-load forwarding conflicts should not 1331 // cause any slowdowns. 1332 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1333 // Maximum vector factor. 1334 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1335 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1336 1337 // Compute the smallest VF at which the store and load would be misaligned. 1338 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1339 VF *= 2) { 1340 // If the number of vector iteration between the store and the load are 1341 // small we could incur conflicts. 1342 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1343 MaxVFWithoutSLForwardIssues = (VF >> 1); 1344 break; 1345 } 1346 } 1347 1348 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1349 LLVM_DEBUG( 1350 dbgs() << "LAA: Distance " << Distance 1351 << " that could cause a store-load forwarding conflict\n"); 1352 return true; 1353 } 1354 1355 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1356 MaxVFWithoutSLForwardIssues != 1357 VectorizerParams::MaxVectorWidth * TypeByteSize) 1358 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1359 return false; 1360 } 1361 1362 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1363 if (Status < S) 1364 Status = S; 1365 } 1366 1367 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1368 /// memory accesses, that have the same stride whose absolute value is given 1369 /// in \p Stride, and that have the same type size \p TypeByteSize, 1370 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1371 /// possible to prove statically that the dependence distance is larger 1372 /// than the range that the accesses will travel through the execution of 1373 /// the loop. If so, return true; false otherwise. This is useful for 1374 /// example in loops such as the following (PR31098): 1375 /// for (i = 0; i < D; ++i) { 1376 /// = out[i]; 1377 /// out[i+D] = 1378 /// } 1379 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1380 const SCEV &BackedgeTakenCount, 1381 const SCEV &Dist, uint64_t Stride, 1382 uint64_t TypeByteSize) { 1383 1384 // If we can prove that 1385 // (**) |Dist| > BackedgeTakenCount * Step 1386 // where Step is the absolute stride of the memory accesses in bytes, 1387 // then there is no dependence. 1388 // 1389 // Rationale: 1390 // We basically want to check if the absolute distance (|Dist/Step|) 1391 // is >= the loop iteration count (or > BackedgeTakenCount). 1392 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1393 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1394 // that the dependence distance is >= VF; This is checked elsewhere. 1395 // But in some cases we can prune unknown dependence distances early, and 1396 // even before selecting the VF, and without a runtime test, by comparing 1397 // the distance against the loop iteration count. Since the vectorized code 1398 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1399 // also guarantees that distance >= VF. 1400 // 1401 const uint64_t ByteStride = Stride * TypeByteSize; 1402 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1403 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1404 1405 const SCEV *CastedDist = &Dist; 1406 const SCEV *CastedProduct = Product; 1407 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1408 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1409 1410 // The dependence distance can be positive/negative, so we sign extend Dist; 1411 // The multiplication of the absolute stride in bytes and the 1412 // backedgeTakenCount is non-negative, so we zero extend Product. 1413 if (DistTypeSize > ProductTypeSize) 1414 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1415 else 1416 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1417 1418 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1419 // (If so, then we have proven (**) because |Dist| >= Dist) 1420 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1421 if (SE.isKnownPositive(Minus)) 1422 return true; 1423 1424 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1425 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1426 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1427 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1428 if (SE.isKnownPositive(Minus)) 1429 return true; 1430 1431 return false; 1432 } 1433 1434 /// Check the dependence for two accesses with the same stride \p Stride. 1435 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1436 /// bytes. 1437 /// 1438 /// \returns true if they are independent. 1439 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1440 uint64_t TypeByteSize) { 1441 assert(Stride > 1 && "The stride must be greater than 1"); 1442 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1443 assert(Distance > 0 && "The distance must be non-zero"); 1444 1445 // Skip if the distance is not multiple of type byte size. 1446 if (Distance % TypeByteSize) 1447 return false; 1448 1449 uint64_t ScaledDist = Distance / TypeByteSize; 1450 1451 // No dependence if the scaled distance is not multiple of the stride. 1452 // E.g. 1453 // for (i = 0; i < 1024 ; i += 4) 1454 // A[i+2] = A[i] + 1; 1455 // 1456 // Two accesses in memory (scaled distance is 2, stride is 4): 1457 // | A[0] | | | | A[4] | | | | 1458 // | | | A[2] | | | | A[6] | | 1459 // 1460 // E.g. 1461 // for (i = 0; i < 1024 ; i += 3) 1462 // A[i+4] = A[i] + 1; 1463 // 1464 // Two accesses in memory (scaled distance is 4, stride is 3): 1465 // | A[0] | | | A[3] | | | A[6] | | | 1466 // | | | | | A[4] | | | A[7] | | 1467 return ScaledDist % Stride; 1468 } 1469 1470 MemoryDepChecker::Dependence::DepType 1471 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1472 const MemAccessInfo &B, unsigned BIdx, 1473 const ValueToValueMap &Strides) { 1474 assert (AIdx < BIdx && "Must pass arguments in program order"); 1475 1476 Value *APtr = A.getPointer(); 1477 Value *BPtr = B.getPointer(); 1478 bool AIsWrite = A.getInt(); 1479 bool BIsWrite = B.getInt(); 1480 1481 // Two reads are independent. 1482 if (!AIsWrite && !BIsWrite) 1483 return Dependence::NoDep; 1484 1485 // We cannot check pointers in different address spaces. 1486 if (APtr->getType()->getPointerAddressSpace() != 1487 BPtr->getType()->getPointerAddressSpace()) 1488 return Dependence::Unknown; 1489 1490 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 1491 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 1492 1493 const SCEV *Src = PSE.getSCEV(APtr); 1494 const SCEV *Sink = PSE.getSCEV(BPtr); 1495 1496 // If the induction step is negative we have to invert source and sink of the 1497 // dependence. 1498 if (StrideAPtr < 0) { 1499 std::swap(APtr, BPtr); 1500 std::swap(Src, Sink); 1501 std::swap(AIsWrite, BIsWrite); 1502 std::swap(AIdx, BIdx); 1503 std::swap(StrideAPtr, StrideBPtr); 1504 } 1505 1506 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1507 1508 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1509 << "(Induction step: " << StrideAPtr << ")\n"); 1510 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1511 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1512 1513 // Need accesses with constant stride. We don't want to vectorize 1514 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1515 // the address space. 1516 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1517 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1518 return Dependence::Unknown; 1519 } 1520 1521 Type *ATy = APtr->getType()->getPointerElementType(); 1522 Type *BTy = BPtr->getType()->getPointerElementType(); 1523 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1524 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1525 uint64_t Stride = std::abs(StrideAPtr); 1526 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1527 if (!C) { 1528 if (!isa<SCEVCouldNotCompute>(Dist) && 1529 TypeByteSize == DL.getTypeAllocSize(BTy) && 1530 isSafeDependenceDistance(DL, *(PSE.getSE()), 1531 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1532 TypeByteSize)) 1533 return Dependence::NoDep; 1534 1535 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1536 FoundNonConstantDistanceDependence = true; 1537 return Dependence::Unknown; 1538 } 1539 1540 const APInt &Val = C->getAPInt(); 1541 int64_t Distance = Val.getSExtValue(); 1542 1543 // Attempt to prove strided accesses independent. 1544 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1545 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1546 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1547 return Dependence::NoDep; 1548 } 1549 1550 // Negative distances are not plausible dependencies. 1551 if (Val.isNegative()) { 1552 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1553 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1554 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1555 ATy != BTy)) { 1556 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1557 return Dependence::ForwardButPreventsForwarding; 1558 } 1559 1560 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1561 return Dependence::Forward; 1562 } 1563 1564 // Write to the same location with the same size. 1565 // Could be improved to assert type sizes are the same (i32 == float, etc). 1566 if (Val == 0) { 1567 if (ATy == BTy) 1568 return Dependence::Forward; 1569 LLVM_DEBUG( 1570 dbgs() << "LAA: Zero dependence difference but different types\n"); 1571 return Dependence::Unknown; 1572 } 1573 1574 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1575 1576 if (ATy != BTy) { 1577 LLVM_DEBUG( 1578 dbgs() 1579 << "LAA: ReadWrite-Write positive dependency with different types\n"); 1580 return Dependence::Unknown; 1581 } 1582 1583 // Bail out early if passed-in parameters make vectorization not feasible. 1584 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1585 VectorizerParams::VectorizationFactor : 1); 1586 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1587 VectorizerParams::VectorizationInterleave : 1); 1588 // The minimum number of iterations for a vectorized/unrolled version. 1589 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1590 1591 // It's not vectorizable if the distance is smaller than the minimum distance 1592 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1593 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1594 // TypeByteSize (No need to plus the last gap distance). 1595 // 1596 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1597 // foo(int *A) { 1598 // int *B = (int *)((char *)A + 14); 1599 // for (i = 0 ; i < 1024 ; i += 2) 1600 // B[i] = A[i] + 1; 1601 // } 1602 // 1603 // Two accesses in memory (stride is 2): 1604 // | A[0] | | A[2] | | A[4] | | A[6] | | 1605 // | B[0] | | B[2] | | B[4] | 1606 // 1607 // Distance needs for vectorizing iterations except the last iteration: 1608 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1609 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1610 // 1611 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1612 // 12, which is less than distance. 1613 // 1614 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1615 // the minimum distance needed is 28, which is greater than distance. It is 1616 // not safe to do vectorization. 1617 uint64_t MinDistanceNeeded = 1618 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1619 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1620 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1621 << Distance << '\n'); 1622 return Dependence::Backward; 1623 } 1624 1625 // Unsafe if the minimum distance needed is greater than max safe distance. 1626 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1627 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1628 << MinDistanceNeeded << " size in bytes"); 1629 return Dependence::Backward; 1630 } 1631 1632 // Positive distance bigger than max vectorization factor. 1633 // FIXME: Should use max factor instead of max distance in bytes, which could 1634 // not handle different types. 1635 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1636 // void foo (int *A, char *B) { 1637 // for (unsigned i = 0; i < 1024; i++) { 1638 // A[i+2] = A[i] + 1; 1639 // B[i+2] = B[i] + 1; 1640 // } 1641 // } 1642 // 1643 // This case is currently unsafe according to the max safe distance. If we 1644 // analyze the two accesses on array B, the max safe dependence distance 1645 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1646 // is 8, which is less than 2 and forbidden vectorization, But actually 1647 // both A and B could be vectorized by 2 iterations. 1648 MaxSafeDepDistBytes = 1649 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1650 1651 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1652 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1653 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1654 return Dependence::BackwardVectorizableButPreventsForwarding; 1655 1656 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1657 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1658 << " with max VF = " << MaxVF << '\n'); 1659 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1660 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 1661 return Dependence::BackwardVectorizable; 1662 } 1663 1664 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1665 MemAccessInfoList &CheckDeps, 1666 const ValueToValueMap &Strides) { 1667 1668 MaxSafeDepDistBytes = -1; 1669 SmallPtrSet<MemAccessInfo, 8> Visited; 1670 for (MemAccessInfo CurAccess : CheckDeps) { 1671 if (Visited.count(CurAccess)) 1672 continue; 1673 1674 // Get the relevant memory access set. 1675 EquivalenceClasses<MemAccessInfo>::iterator I = 1676 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1677 1678 // Check accesses within this set. 1679 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1680 AccessSets.member_begin(I); 1681 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1682 AccessSets.member_end(); 1683 1684 // Check every access pair. 1685 while (AI != AE) { 1686 Visited.insert(*AI); 1687 bool AIIsWrite = AI->getInt(); 1688 // Check loads only against next equivalent class, but stores also against 1689 // other stores in the same equivalence class - to the same address. 1690 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1691 (AIIsWrite ? AI : std::next(AI)); 1692 while (OI != AE) { 1693 // Check every accessing instruction pair in program order. 1694 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1695 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1696 // Scan all accesses of another equivalence class, but only the next 1697 // accesses of the same equivalent class. 1698 for (std::vector<unsigned>::iterator 1699 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 1700 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 1701 I2 != I2E; ++I2) { 1702 auto A = std::make_pair(&*AI, *I1); 1703 auto B = std::make_pair(&*OI, *I2); 1704 1705 assert(*I1 != *I2); 1706 if (*I1 > *I2) 1707 std::swap(A, B); 1708 1709 Dependence::DepType Type = 1710 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1711 mergeInStatus(Dependence::isSafeForVectorization(Type)); 1712 1713 // Gather dependences unless we accumulated MaxDependences 1714 // dependences. In that case return as soon as we find the first 1715 // unsafe dependence. This puts a limit on this quadratic 1716 // algorithm. 1717 if (RecordDependences) { 1718 if (Type != Dependence::NoDep) 1719 Dependences.push_back(Dependence(A.second, B.second, Type)); 1720 1721 if (Dependences.size() >= MaxDependences) { 1722 RecordDependences = false; 1723 Dependences.clear(); 1724 LLVM_DEBUG(dbgs() 1725 << "Too many dependences, stopped recording\n"); 1726 } 1727 } 1728 if (!RecordDependences && !isSafeForVectorization()) 1729 return false; 1730 } 1731 ++OI; 1732 } 1733 AI++; 1734 } 1735 } 1736 1737 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1738 return isSafeForVectorization(); 1739 } 1740 1741 SmallVector<Instruction *, 4> 1742 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1743 MemAccessInfo Access(Ptr, isWrite); 1744 auto &IndexVector = Accesses.find(Access)->second; 1745 1746 SmallVector<Instruction *, 4> Insts; 1747 transform(IndexVector, 1748 std::back_inserter(Insts), 1749 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1750 return Insts; 1751 } 1752 1753 const char *MemoryDepChecker::Dependence::DepName[] = { 1754 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1755 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1756 1757 void MemoryDepChecker::Dependence::print( 1758 raw_ostream &OS, unsigned Depth, 1759 const SmallVectorImpl<Instruction *> &Instrs) const { 1760 OS.indent(Depth) << DepName[Type] << ":\n"; 1761 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1762 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1763 } 1764 1765 bool LoopAccessInfo::canAnalyzeLoop() { 1766 // We need to have a loop header. 1767 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1768 << TheLoop->getHeader()->getParent()->getName() << ": " 1769 << TheLoop->getHeader()->getName() << '\n'); 1770 1771 // We can only analyze innermost loops. 1772 if (!TheLoop->isInnermost()) { 1773 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1774 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1775 return false; 1776 } 1777 1778 // We must have a single backedge. 1779 if (TheLoop->getNumBackEdges() != 1) { 1780 LLVM_DEBUG( 1781 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1782 recordAnalysis("CFGNotUnderstood") 1783 << "loop control flow is not understood by analyzer"; 1784 return false; 1785 } 1786 1787 // ScalarEvolution needs to be able to find the exit count. 1788 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1789 if (isa<SCEVCouldNotCompute>(ExitCount)) { 1790 recordAnalysis("CantComputeNumberOfIterations") 1791 << "could not determine number of loop iterations"; 1792 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1793 return false; 1794 } 1795 1796 return true; 1797 } 1798 1799 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 1800 const TargetLibraryInfo *TLI, 1801 DominatorTree *DT) { 1802 typedef SmallPtrSet<Value*, 16> ValueSet; 1803 1804 // Holds the Load and Store instructions. 1805 SmallVector<LoadInst *, 16> Loads; 1806 SmallVector<StoreInst *, 16> Stores; 1807 1808 // Holds all the different accesses in the loop. 1809 unsigned NumReads = 0; 1810 unsigned NumReadWrites = 0; 1811 1812 bool HasComplexMemInst = false; 1813 1814 // A runtime check is only legal to insert if there are no convergent calls. 1815 HasConvergentOp = false; 1816 1817 PtrRtChecking->Pointers.clear(); 1818 PtrRtChecking->Need = false; 1819 1820 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1821 1822 const bool EnableMemAccessVersioningOfLoop = 1823 EnableMemAccessVersioning && 1824 !TheLoop->getHeader()->getParent()->hasOptSize(); 1825 1826 // For each block. 1827 for (BasicBlock *BB : TheLoop->blocks()) { 1828 // Scan the BB and collect legal loads and stores. Also detect any 1829 // convergent instructions. 1830 for (Instruction &I : *BB) { 1831 if (auto *Call = dyn_cast<CallBase>(&I)) { 1832 if (Call->isConvergent()) 1833 HasConvergentOp = true; 1834 } 1835 1836 // With both a non-vectorizable memory instruction and a convergent 1837 // operation, found in this loop, no reason to continue the search. 1838 if (HasComplexMemInst && HasConvergentOp) { 1839 CanVecMem = false; 1840 return; 1841 } 1842 1843 // Avoid hitting recordAnalysis multiple times. 1844 if (HasComplexMemInst) 1845 continue; 1846 1847 // If this is a load, save it. If this instruction can read from memory 1848 // but is not a load, then we quit. Notice that we don't handle function 1849 // calls that read or write. 1850 if (I.mayReadFromMemory()) { 1851 // Many math library functions read the rounding mode. We will only 1852 // vectorize a loop if it contains known function calls that don't set 1853 // the flag. Therefore, it is safe to ignore this read from memory. 1854 auto *Call = dyn_cast<CallInst>(&I); 1855 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1856 continue; 1857 1858 // If the function has an explicit vectorized counterpart, we can safely 1859 // assume that it can be vectorized. 1860 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1861 !VFDatabase::getMappings(*Call).empty()) 1862 continue; 1863 1864 auto *Ld = dyn_cast<LoadInst>(&I); 1865 if (!Ld) { 1866 recordAnalysis("CantVectorizeInstruction", Ld) 1867 << "instruction cannot be vectorized"; 1868 HasComplexMemInst = true; 1869 continue; 1870 } 1871 if (!Ld->isSimple() && !IsAnnotatedParallel) { 1872 recordAnalysis("NonSimpleLoad", Ld) 1873 << "read with atomic ordering or volatile read"; 1874 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1875 HasComplexMemInst = true; 1876 continue; 1877 } 1878 NumLoads++; 1879 Loads.push_back(Ld); 1880 DepChecker->addAccess(Ld); 1881 if (EnableMemAccessVersioningOfLoop) 1882 collectStridedAccess(Ld); 1883 continue; 1884 } 1885 1886 // Save 'store' instructions. Abort if other instructions write to memory. 1887 if (I.mayWriteToMemory()) { 1888 auto *St = dyn_cast<StoreInst>(&I); 1889 if (!St) { 1890 recordAnalysis("CantVectorizeInstruction", St) 1891 << "instruction cannot be vectorized"; 1892 HasComplexMemInst = true; 1893 continue; 1894 } 1895 if (!St->isSimple() && !IsAnnotatedParallel) { 1896 recordAnalysis("NonSimpleStore", St) 1897 << "write with atomic ordering or volatile write"; 1898 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1899 HasComplexMemInst = true; 1900 continue; 1901 } 1902 NumStores++; 1903 Stores.push_back(St); 1904 DepChecker->addAccess(St); 1905 if (EnableMemAccessVersioningOfLoop) 1906 collectStridedAccess(St); 1907 } 1908 } // Next instr. 1909 } // Next block. 1910 1911 if (HasComplexMemInst) { 1912 CanVecMem = false; 1913 return; 1914 } 1915 1916 // Now we have two lists that hold the loads and the stores. 1917 // Next, we find the pointers that they use. 1918 1919 // Check if we see any stores. If there are no stores, then we don't 1920 // care if the pointers are *restrict*. 1921 if (!Stores.size()) { 1922 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1923 CanVecMem = true; 1924 return; 1925 } 1926 1927 MemoryDepChecker::DepCandidates DependentAccesses; 1928 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE); 1929 1930 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 1931 // multiple times on the same object. If the ptr is accessed twice, once 1932 // for read and once for write, it will only appear once (on the write 1933 // list). This is okay, since we are going to check for conflicts between 1934 // writes and between reads and writes, but not between reads and reads. 1935 ValueSet Seen; 1936 1937 // Record uniform store addresses to identify if we have multiple stores 1938 // to the same address. 1939 ValueSet UniformStores; 1940 1941 for (StoreInst *ST : Stores) { 1942 Value *Ptr = ST->getPointerOperand(); 1943 1944 if (isUniform(Ptr)) 1945 HasDependenceInvolvingLoopInvariantAddress |= 1946 !UniformStores.insert(Ptr).second; 1947 1948 // If we did *not* see this pointer before, insert it to the read-write 1949 // list. At this phase it is only a 'write' list. 1950 if (Seen.insert(Ptr).second) { 1951 ++NumReadWrites; 1952 1953 MemoryLocation Loc = MemoryLocation::get(ST); 1954 // The TBAA metadata could have a control dependency on the predication 1955 // condition, so we cannot rely on it when determining whether or not we 1956 // need runtime pointer checks. 1957 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1958 Loc.AATags.TBAA = nullptr; 1959 1960 Accesses.addStore(Loc); 1961 } 1962 } 1963 1964 if (IsAnnotatedParallel) { 1965 LLVM_DEBUG( 1966 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 1967 << "checks.\n"); 1968 CanVecMem = true; 1969 return; 1970 } 1971 1972 for (LoadInst *LD : Loads) { 1973 Value *Ptr = LD->getPointerOperand(); 1974 // If we did *not* see this pointer before, insert it to the 1975 // read list. If we *did* see it before, then it is already in 1976 // the read-write list. This allows us to vectorize expressions 1977 // such as A[i] += x; Because the address of A[i] is a read-write 1978 // pointer. This only works if the index of A[i] is consecutive. 1979 // If the address of i is unknown (for example A[B[i]]) then we may 1980 // read a few words, modify, and write a few words, and some of the 1981 // words may be written to the same address. 1982 bool IsReadOnlyPtr = false; 1983 if (Seen.insert(Ptr).second || 1984 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 1985 ++NumReads; 1986 IsReadOnlyPtr = true; 1987 } 1988 1989 // See if there is an unsafe dependency between a load to a uniform address and 1990 // store to the same uniform address. 1991 if (UniformStores.count(Ptr)) { 1992 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 1993 "load and uniform store to the same address!\n"); 1994 HasDependenceInvolvingLoopInvariantAddress = true; 1995 } 1996 1997 MemoryLocation Loc = MemoryLocation::get(LD); 1998 // The TBAA metadata could have a control dependency on the predication 1999 // condition, so we cannot rely on it when determining whether or not we 2000 // need runtime pointer checks. 2001 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2002 Loc.AATags.TBAA = nullptr; 2003 2004 Accesses.addLoad(Loc, IsReadOnlyPtr); 2005 } 2006 2007 // If we write (or read-write) to a single destination and there are no 2008 // other reads in this loop then is it safe to vectorize. 2009 if (NumReadWrites == 1 && NumReads == 0) { 2010 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2011 CanVecMem = true; 2012 return; 2013 } 2014 2015 // Build dependence sets and check whether we need a runtime pointer bounds 2016 // check. 2017 Accesses.buildDependenceSets(); 2018 2019 // Find pointers with computable bounds. We are going to use this information 2020 // to place a runtime bound check. 2021 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 2022 TheLoop, SymbolicStrides); 2023 if (!CanDoRTIfNeeded) { 2024 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 2025 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2026 << "the array bounds.\n"); 2027 CanVecMem = false; 2028 return; 2029 } 2030 2031 LLVM_DEBUG( 2032 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2033 2034 CanVecMem = true; 2035 if (Accesses.isDependencyCheckNeeded()) { 2036 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2037 CanVecMem = DepChecker->areDepsSafe( 2038 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2039 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2040 2041 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2042 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2043 2044 // Clear the dependency checks. We assume they are not needed. 2045 Accesses.resetDepChecks(*DepChecker); 2046 2047 PtrRtChecking->reset(); 2048 PtrRtChecking->Need = true; 2049 2050 auto *SE = PSE->getSE(); 2051 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 2052 SymbolicStrides, true); 2053 2054 // Check that we found the bounds for the pointer. 2055 if (!CanDoRTIfNeeded) { 2056 recordAnalysis("CantCheckMemDepsAtRunTime") 2057 << "cannot check memory dependencies at runtime"; 2058 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2059 CanVecMem = false; 2060 return; 2061 } 2062 2063 CanVecMem = true; 2064 } 2065 } 2066 2067 if (HasConvergentOp) { 2068 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2069 << "cannot add control dependency to convergent operation"; 2070 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2071 "would be needed with a convergent operation\n"); 2072 CanVecMem = false; 2073 return; 2074 } 2075 2076 if (CanVecMem) 2077 LLVM_DEBUG( 2078 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2079 << (PtrRtChecking->Need ? "" : " don't") 2080 << " need runtime memory checks.\n"); 2081 else { 2082 recordAnalysis("UnsafeMemDep") 2083 << "unsafe dependent memory operations in loop. Use " 2084 "#pragma loop distribute(enable) to allow loop distribution " 2085 "to attempt to isolate the offending operations into a separate " 2086 "loop"; 2087 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2088 } 2089 } 2090 2091 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2092 DominatorTree *DT) { 2093 assert(TheLoop->contains(BB) && "Unknown block used"); 2094 2095 // Blocks that do not dominate the latch need predication. 2096 BasicBlock* Latch = TheLoop->getLoopLatch(); 2097 return !DT->dominates(BB, Latch); 2098 } 2099 2100 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2101 Instruction *I) { 2102 assert(!Report && "Multiple reports generated"); 2103 2104 Value *CodeRegion = TheLoop->getHeader(); 2105 DebugLoc DL = TheLoop->getStartLoc(); 2106 2107 if (I) { 2108 CodeRegion = I->getParent(); 2109 // If there is no debug location attached to the instruction, revert back to 2110 // using the loop's. 2111 if (I->getDebugLoc()) 2112 DL = I->getDebugLoc(); 2113 } 2114 2115 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2116 CodeRegion); 2117 return *Report; 2118 } 2119 2120 bool LoopAccessInfo::isUniform(Value *V) const { 2121 auto *SE = PSE->getSE(); 2122 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2123 // never considered uniform. 2124 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2125 // trivially loop-invariant FP values to be considered uniform. 2126 if (!SE->isSCEVable(V->getType())) 2127 return false; 2128 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2129 } 2130 2131 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2132 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2133 if (!Ptr) 2134 return; 2135 2136 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2137 if (!Stride) 2138 return; 2139 2140 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2141 "versioning:"); 2142 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2143 2144 // Avoid adding the "Stride == 1" predicate when we know that 2145 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2146 // or zero iteration loop, as Trip-Count <= Stride == 1. 2147 // 2148 // TODO: We are currently not making a very informed decision on when it is 2149 // beneficial to apply stride versioning. It might make more sense that the 2150 // users of this analysis (such as the vectorizer) will trigger it, based on 2151 // their specific cost considerations; For example, in cases where stride 2152 // versioning does not help resolving memory accesses/dependences, the 2153 // vectorizer should evaluate the cost of the runtime test, and the benefit 2154 // of various possible stride specializations, considering the alternatives 2155 // of using gather/scatters (if available). 2156 2157 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2158 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2159 2160 // Match the types so we can compare the stride and the BETakenCount. 2161 // The Stride can be positive/negative, so we sign extend Stride; 2162 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2163 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2164 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); 2165 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); 2166 const SCEV *CastedStride = StrideExpr; 2167 const SCEV *CastedBECount = BETakenCount; 2168 ScalarEvolution *SE = PSE->getSE(); 2169 if (BETypeSize >= StrideTypeSize) 2170 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2171 else 2172 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2173 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2174 // Since TripCount == BackEdgeTakenCount + 1, checking: 2175 // "Stride >= TripCount" is equivalent to checking: 2176 // Stride - BETakenCount > 0 2177 if (SE->isKnownPositive(StrideMinusBETaken)) { 2178 LLVM_DEBUG( 2179 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2180 "Stride==1 predicate will imply that the loop executes " 2181 "at most once.\n"); 2182 return; 2183 } 2184 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); 2185 2186 SymbolicStrides[Ptr] = Stride; 2187 StrideSet.insert(Stride); 2188 } 2189 2190 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2191 const TargetLibraryInfo *TLI, AAResults *AA, 2192 DominatorTree *DT, LoopInfo *LI) 2193 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2194 PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)), 2195 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 2196 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 2197 HasConvergentOp(false), 2198 HasDependenceInvolvingLoopInvariantAddress(false) { 2199 if (canAnalyzeLoop()) 2200 analyzeLoop(AA, LI, TLI, DT); 2201 } 2202 2203 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2204 if (CanVecMem) { 2205 OS.indent(Depth) << "Memory dependences are safe"; 2206 if (MaxSafeDepDistBytes != -1ULL) 2207 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2208 << " bytes"; 2209 if (PtrRtChecking->Need) 2210 OS << " with run-time checks"; 2211 OS << "\n"; 2212 } 2213 2214 if (HasConvergentOp) 2215 OS.indent(Depth) << "Has convergent operation in loop\n"; 2216 2217 if (Report) 2218 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2219 2220 if (auto *Dependences = DepChecker->getDependences()) { 2221 OS.indent(Depth) << "Dependences:\n"; 2222 for (auto &Dep : *Dependences) { 2223 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2224 OS << "\n"; 2225 } 2226 } else 2227 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2228 2229 // List the pair of accesses need run-time checks to prove independence. 2230 PtrRtChecking->print(OS, Depth); 2231 OS << "\n"; 2232 2233 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2234 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2235 << "found in loop.\n"; 2236 2237 OS.indent(Depth) << "SCEV assumptions:\n"; 2238 PSE->getUnionPredicate().print(OS, Depth); 2239 2240 OS << "\n"; 2241 2242 OS.indent(Depth) << "Expressions re-written:\n"; 2243 PSE->print(OS, Depth); 2244 } 2245 2246 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2247 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2248 } 2249 2250 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2251 auto &LAI = LoopAccessInfoMap[L]; 2252 2253 if (!LAI) 2254 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2255 2256 return *LAI.get(); 2257 } 2258 2259 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2260 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2261 2262 for (Loop *TopLevelLoop : *LI) 2263 for (Loop *L : depth_first(TopLevelLoop)) { 2264 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2265 auto &LAI = LAA.getInfo(L); 2266 LAI.print(OS, 4); 2267 } 2268 } 2269 2270 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2271 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2272 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2273 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2274 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2275 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2276 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2277 2278 return false; 2279 } 2280 2281 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2282 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); 2283 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2284 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2285 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 2286 2287 AU.setPreservesAll(); 2288 } 2289 2290 char LoopAccessLegacyAnalysis::ID = 0; 2291 static const char laa_name[] = "Loop Access Analysis"; 2292 #define LAA_NAME "loop-accesses" 2293 2294 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2295 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2296 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2297 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2298 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2299 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2300 2301 AnalysisKey LoopAccessAnalysis::Key; 2302 2303 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2304 LoopStandardAnalysisResults &AR) { 2305 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2306 } 2307 2308 namespace llvm { 2309 2310 Pass *createLAAPass() { 2311 return new LoopAccessLegacyAnalysis(); 2312 } 2313 2314 } // end namespace llvm 2315