1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The implementation for the loop memory dependence that was originally
11 // developed for the loop vectorizer.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/LoopAccessAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/EquivalenceClasses.h"
20 #include "llvm/ADT/PointerIntPair.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/AliasSetTracker.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
33 #include "llvm/Analysis/ScalarEvolution.h"
34 #include "llvm/Analysis/ScalarEvolutionExpander.h"
35 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/DiagnosticInfo.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Operator.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueHandle.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <cstdlib>
66 #include <iterator>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "loop-accesses"
73 
74 static cl::opt<unsigned, true>
75 VectorizationFactor("force-vector-width", cl::Hidden,
76                     cl::desc("Sets the SIMD width. Zero is autoselect."),
77                     cl::location(VectorizerParams::VectorizationFactor));
78 unsigned VectorizerParams::VectorizationFactor;
79 
80 static cl::opt<unsigned, true>
81 VectorizationInterleave("force-vector-interleave", cl::Hidden,
82                         cl::desc("Sets the vectorization interleave count. "
83                                  "Zero is autoselect."),
84                         cl::location(
85                             VectorizerParams::VectorizationInterleave));
86 unsigned VectorizerParams::VectorizationInterleave;
87 
88 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
89     "runtime-memory-check-threshold", cl::Hidden,
90     cl::desc("When performing memory disambiguation checks at runtime do not "
91              "generate more than this number of comparisons (default = 8)."),
92     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
93 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
94 
95 /// \brief The maximum iterations used to merge memory checks
96 static cl::opt<unsigned> MemoryCheckMergeThreshold(
97     "memory-check-merge-threshold", cl::Hidden,
98     cl::desc("Maximum number of comparisons done when trying to merge "
99              "runtime memory checks. (default = 100)"),
100     cl::init(100));
101 
102 /// Maximum SIMD width.
103 const unsigned VectorizerParams::MaxVectorWidth = 64;
104 
105 /// \brief We collect dependences up to this threshold.
106 static cl::opt<unsigned>
107     MaxDependences("max-dependences", cl::Hidden,
108                    cl::desc("Maximum number of dependences collected by "
109                             "loop-access analysis (default = 100)"),
110                    cl::init(100));
111 
112 /// This enables versioning on the strides of symbolically striding memory
113 /// accesses in code like the following.
114 ///   for (i = 0; i < N; ++i)
115 ///     A[i * Stride1] += B[i * Stride2] ...
116 ///
117 /// Will be roughly translated to
118 ///    if (Stride1 == 1 && Stride2 == 1) {
119 ///      for (i = 0; i < N; i+=4)
120 ///       A[i:i+3] += ...
121 ///    } else
122 ///      ...
123 static cl::opt<bool> EnableMemAccessVersioning(
124     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
125     cl::desc("Enable symbolic stride memory access versioning"));
126 
127 /// \brief Enable store-to-load forwarding conflict detection. This option can
128 /// be disabled for correctness testing.
129 static cl::opt<bool> EnableForwardingConflictDetection(
130     "store-to-load-forwarding-conflict-detection", cl::Hidden,
131     cl::desc("Enable conflict detection in loop-access analysis"),
132     cl::init(true));
133 
134 bool VectorizerParams::isInterleaveForced() {
135   return ::VectorizationInterleave.getNumOccurrences() > 0;
136 }
137 
138 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
139                                     const Loop *TheLoop, const char *PassName,
140                                     OptimizationRemarkEmitter &ORE) {
141   DebugLoc DL = TheLoop->getStartLoc();
142   const Value *V = TheLoop->getHeader();
143   if (const Instruction *I = Message.getInstr()) {
144     // If there is no debug location attached to the instruction, revert back to
145     // using the loop's.
146     if (I->getDebugLoc())
147       DL = I->getDebugLoc();
148     V = I->getParent();
149   }
150   ORE.emitOptimizationRemarkAnalysis(PassName, DL, V, Message.str());
151 }
152 
153 Value *llvm::stripIntegerCast(Value *V) {
154   if (auto *CI = dyn_cast<CastInst>(V))
155     if (CI->getOperand(0)->getType()->isIntegerTy())
156       return CI->getOperand(0);
157   return V;
158 }
159 
160 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
161                                             const ValueToValueMap &PtrToStride,
162                                             Value *Ptr, Value *OrigPtr) {
163   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
164 
165   // If there is an entry in the map return the SCEV of the pointer with the
166   // symbolic stride replaced by one.
167   ValueToValueMap::const_iterator SI =
168       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
169   if (SI != PtrToStride.end()) {
170     Value *StrideVal = SI->second;
171 
172     // Strip casts.
173     StrideVal = stripIntegerCast(StrideVal);
174 
175     // Replace symbolic stride by one.
176     Value *One = ConstantInt::get(StrideVal->getType(), 1);
177     ValueToValueMap RewriteMap;
178     RewriteMap[StrideVal] = One;
179 
180     ScalarEvolution *SE = PSE.getSE();
181     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
182     const auto *CT =
183         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
184 
185     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
186     auto *Expr = PSE.getSCEV(Ptr);
187 
188     DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
189                  << "\n");
190     return Expr;
191   }
192 
193   // Otherwise, just return the SCEV of the original pointer.
194   return OrigSCEV;
195 }
196 
197 /// Calculate Start and End points of memory access.
198 /// Let's assume A is the first access and B is a memory access on N-th loop
199 /// iteration. Then B is calculated as:
200 ///   B = A + Step*N .
201 /// Step value may be positive or negative.
202 /// N is a calculated back-edge taken count:
203 ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
204 /// Start and End points are calculated in the following way:
205 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
206 /// where SizeOfElt is the size of single memory access in bytes.
207 ///
208 /// There is no conflict when the intervals are disjoint:
209 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
210 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
211                                     unsigned DepSetId, unsigned ASId,
212                                     const ValueToValueMap &Strides,
213                                     PredicatedScalarEvolution &PSE) {
214   // Get the stride replaced scev.
215   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
216   ScalarEvolution *SE = PSE.getSE();
217 
218   const SCEV *ScStart;
219   const SCEV *ScEnd;
220 
221   if (SE->isLoopInvariant(Sc, Lp))
222     ScStart = ScEnd = Sc;
223   else {
224     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
225     assert(AR && "Invalid addrec expression");
226     const SCEV *Ex = PSE.getBackedgeTakenCount();
227 
228     ScStart = AR->getStart();
229     ScEnd = AR->evaluateAtIteration(Ex, *SE);
230     const SCEV *Step = AR->getStepRecurrence(*SE);
231 
232     // For expressions with negative step, the upper bound is ScStart and the
233     // lower bound is ScEnd.
234     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
235       if (CStep->getValue()->isNegative())
236         std::swap(ScStart, ScEnd);
237     } else {
238       // Fallback case: the step is not constant, but we can still
239       // get the upper and lower bounds of the interval by using min/max
240       // expressions.
241       ScStart = SE->getUMinExpr(ScStart, ScEnd);
242       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
243     }
244     // Add the size of the pointed element to ScEnd.
245     unsigned EltSize =
246       Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
247     const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
248     ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
249   }
250 
251   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
252 }
253 
254 SmallVector<RuntimePointerChecking::PointerCheck, 4>
255 RuntimePointerChecking::generateChecks() const {
256   SmallVector<PointerCheck, 4> Checks;
257 
258   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
259     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
260       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
261       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
262 
263       if (needsChecking(CGI, CGJ))
264         Checks.push_back(std::make_pair(&CGI, &CGJ));
265     }
266   }
267   return Checks;
268 }
269 
270 void RuntimePointerChecking::generateChecks(
271     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
272   assert(Checks.empty() && "Checks is not empty");
273   groupChecks(DepCands, UseDependencies);
274   Checks = generateChecks();
275 }
276 
277 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
278                                            const CheckingPtrGroup &N) const {
279   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
280     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
281       if (needsChecking(M.Members[I], N.Members[J]))
282         return true;
283   return false;
284 }
285 
286 /// Compare \p I and \p J and return the minimum.
287 /// Return nullptr in case we couldn't find an answer.
288 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
289                                    ScalarEvolution *SE) {
290   const SCEV *Diff = SE->getMinusSCEV(J, I);
291   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
292 
293   if (!C)
294     return nullptr;
295   if (C->getValue()->isNegative())
296     return J;
297   return I;
298 }
299 
300 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
301   const SCEV *Start = RtCheck.Pointers[Index].Start;
302   const SCEV *End = RtCheck.Pointers[Index].End;
303 
304   // Compare the starts and ends with the known minimum and maximum
305   // of this set. We need to know how we compare against the min/max
306   // of the set in order to be able to emit memchecks.
307   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
308   if (!Min0)
309     return false;
310 
311   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
312   if (!Min1)
313     return false;
314 
315   // Update the low bound  expression if we've found a new min value.
316   if (Min0 == Start)
317     Low = Start;
318 
319   // Update the high bound expression if we've found a new max value.
320   if (Min1 != End)
321     High = End;
322 
323   Members.push_back(Index);
324   return true;
325 }
326 
327 void RuntimePointerChecking::groupChecks(
328     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
329   // We build the groups from dependency candidates equivalence classes
330   // because:
331   //    - We know that pointers in the same equivalence class share
332   //      the same underlying object and therefore there is a chance
333   //      that we can compare pointers
334   //    - We wouldn't be able to merge two pointers for which we need
335   //      to emit a memcheck. The classes in DepCands are already
336   //      conveniently built such that no two pointers in the same
337   //      class need checking against each other.
338 
339   // We use the following (greedy) algorithm to construct the groups
340   // For every pointer in the equivalence class:
341   //   For each existing group:
342   //   - if the difference between this pointer and the min/max bounds
343   //     of the group is a constant, then make the pointer part of the
344   //     group and update the min/max bounds of that group as required.
345 
346   CheckingGroups.clear();
347 
348   // If we need to check two pointers to the same underlying object
349   // with a non-constant difference, we shouldn't perform any pointer
350   // grouping with those pointers. This is because we can easily get
351   // into cases where the resulting check would return false, even when
352   // the accesses are safe.
353   //
354   // The following example shows this:
355   // for (i = 0; i < 1000; ++i)
356   //   a[5000 + i * m] = a[i] + a[i + 9000]
357   //
358   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
359   // (0, 10000) which is always false. However, if m is 1, there is no
360   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
361   // us to perform an accurate check in this case.
362   //
363   // The above case requires that we have an UnknownDependence between
364   // accesses to the same underlying object. This cannot happen unless
365   // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
366   // is also false. In this case we will use the fallback path and create
367   // separate checking groups for all pointers.
368 
369   // If we don't have the dependency partitions, construct a new
370   // checking pointer group for each pointer. This is also required
371   // for correctness, because in this case we can have checking between
372   // pointers to the same underlying object.
373   if (!UseDependencies) {
374     for (unsigned I = 0; I < Pointers.size(); ++I)
375       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
376     return;
377   }
378 
379   unsigned TotalComparisons = 0;
380 
381   DenseMap<Value *, unsigned> PositionMap;
382   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
383     PositionMap[Pointers[Index].PointerValue] = Index;
384 
385   // We need to keep track of what pointers we've already seen so we
386   // don't process them twice.
387   SmallSet<unsigned, 2> Seen;
388 
389   // Go through all equivalence classes, get the "pointer check groups"
390   // and add them to the overall solution. We use the order in which accesses
391   // appear in 'Pointers' to enforce determinism.
392   for (unsigned I = 0; I < Pointers.size(); ++I) {
393     // We've seen this pointer before, and therefore already processed
394     // its equivalence class.
395     if (Seen.count(I))
396       continue;
397 
398     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
399                                            Pointers[I].IsWritePtr);
400 
401     SmallVector<CheckingPtrGroup, 2> Groups;
402     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
403 
404     // Because DepCands is constructed by visiting accesses in the order in
405     // which they appear in alias sets (which is deterministic) and the
406     // iteration order within an equivalence class member is only dependent on
407     // the order in which unions and insertions are performed on the
408     // equivalence class, the iteration order is deterministic.
409     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
410          MI != ME; ++MI) {
411       unsigned Pointer = PositionMap[MI->getPointer()];
412       bool Merged = false;
413       // Mark this pointer as seen.
414       Seen.insert(Pointer);
415 
416       // Go through all the existing sets and see if we can find one
417       // which can include this pointer.
418       for (CheckingPtrGroup &Group : Groups) {
419         // Don't perform more than a certain amount of comparisons.
420         // This should limit the cost of grouping the pointers to something
421         // reasonable.  If we do end up hitting this threshold, the algorithm
422         // will create separate groups for all remaining pointers.
423         if (TotalComparisons > MemoryCheckMergeThreshold)
424           break;
425 
426         TotalComparisons++;
427 
428         if (Group.addPointer(Pointer)) {
429           Merged = true;
430           break;
431         }
432       }
433 
434       if (!Merged)
435         // We couldn't add this pointer to any existing set or the threshold
436         // for the number of comparisons has been reached. Create a new group
437         // to hold the current pointer.
438         Groups.push_back(CheckingPtrGroup(Pointer, *this));
439     }
440 
441     // We've computed the grouped checks for this partition.
442     // Save the results and continue with the next one.
443     std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
444   }
445 }
446 
447 bool RuntimePointerChecking::arePointersInSamePartition(
448     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
449     unsigned PtrIdx2) {
450   return (PtrToPartition[PtrIdx1] != -1 &&
451           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
452 }
453 
454 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
455   const PointerInfo &PointerI = Pointers[I];
456   const PointerInfo &PointerJ = Pointers[J];
457 
458   // No need to check if two readonly pointers intersect.
459   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
460     return false;
461 
462   // Only need to check pointers between two different dependency sets.
463   if (PointerI.DependencySetId == PointerJ.DependencySetId)
464     return false;
465 
466   // Only need to check pointers in the same alias set.
467   if (PointerI.AliasSetId != PointerJ.AliasSetId)
468     return false;
469 
470   return true;
471 }
472 
473 void RuntimePointerChecking::printChecks(
474     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
475     unsigned Depth) const {
476   unsigned N = 0;
477   for (const auto &Check : Checks) {
478     const auto &First = Check.first->Members, &Second = Check.second->Members;
479 
480     OS.indent(Depth) << "Check " << N++ << ":\n";
481 
482     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
483     for (unsigned K = 0; K < First.size(); ++K)
484       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
485 
486     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
487     for (unsigned K = 0; K < Second.size(); ++K)
488       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
489   }
490 }
491 
492 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
493 
494   OS.indent(Depth) << "Run-time memory checks:\n";
495   printChecks(OS, Checks, Depth);
496 
497   OS.indent(Depth) << "Grouped accesses:\n";
498   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
499     const auto &CG = CheckingGroups[I];
500 
501     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
502     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
503                          << ")\n";
504     for (unsigned J = 0; J < CG.Members.size(); ++J) {
505       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
506                            << "\n";
507     }
508   }
509 }
510 
511 namespace {
512 
513 /// \brief Analyses memory accesses in a loop.
514 ///
515 /// Checks whether run time pointer checks are needed and builds sets for data
516 /// dependence checking.
517 class AccessAnalysis {
518 public:
519   /// \brief Read or write access location.
520   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
521   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
522 
523   AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
524                  MemoryDepChecker::DepCandidates &DA,
525                  PredicatedScalarEvolution &PSE)
526       : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
527         PSE(PSE) {}
528 
529   /// \brief Register a load  and whether it is only read from.
530   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
531     Value *Ptr = const_cast<Value*>(Loc.Ptr);
532     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
533     Accesses.insert(MemAccessInfo(Ptr, false));
534     if (IsReadOnly)
535       ReadOnlyPtr.insert(Ptr);
536   }
537 
538   /// \brief Register a store.
539   void addStore(MemoryLocation &Loc) {
540     Value *Ptr = const_cast<Value*>(Loc.Ptr);
541     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
542     Accesses.insert(MemAccessInfo(Ptr, true));
543   }
544 
545   /// \brief Check whether we can check the pointers at runtime for
546   /// non-intersection.
547   ///
548   /// Returns true if we need no check or if we do and we can generate them
549   /// (i.e. the pointers have computable bounds).
550   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
551                        Loop *TheLoop, const ValueToValueMap &Strides,
552                        bool ShouldCheckWrap = false);
553 
554   /// \brief Goes over all memory accesses, checks whether a RT check is needed
555   /// and builds sets of dependent accesses.
556   void buildDependenceSets() {
557     processMemAccesses();
558   }
559 
560   /// \brief Initial processing of memory accesses determined that we need to
561   /// perform dependency checking.
562   ///
563   /// Note that this can later be cleared if we retry memcheck analysis without
564   /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
565   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
566 
567   /// We decided that no dependence analysis would be used.  Reset the state.
568   void resetDepChecks(MemoryDepChecker &DepChecker) {
569     CheckDeps.clear();
570     DepChecker.clearDependences();
571   }
572 
573   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
574 
575 private:
576   typedef SetVector<MemAccessInfo> PtrAccessSet;
577 
578   /// \brief Go over all memory access and check whether runtime pointer checks
579   /// are needed and build sets of dependency check candidates.
580   void processMemAccesses();
581 
582   /// Set of all accesses.
583   PtrAccessSet Accesses;
584 
585   const DataLayout &DL;
586 
587   /// Set of accesses that need a further dependence check.
588   MemAccessInfoSet CheckDeps;
589 
590   /// Set of pointers that are read only.
591   SmallPtrSet<Value*, 16> ReadOnlyPtr;
592 
593   /// An alias set tracker to partition the access set by underlying object and
594   //intrinsic property (such as TBAA metadata).
595   AliasSetTracker AST;
596 
597   LoopInfo *LI;
598 
599   /// Sets of potentially dependent accesses - members of one set share an
600   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
601   /// dependence check.
602   MemoryDepChecker::DepCandidates &DepCands;
603 
604   /// \brief Initial processing of memory accesses determined that we may need
605   /// to add memchecks.  Perform the analysis to determine the necessary checks.
606   ///
607   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
608   /// memcheck analysis without dependency checking
609   /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
610   /// while this remains set if we have potentially dependent accesses.
611   bool IsRTCheckAnalysisNeeded;
612 
613   /// The SCEV predicate containing all the SCEV-related assumptions.
614   PredicatedScalarEvolution &PSE;
615 };
616 
617 } // end anonymous namespace
618 
619 /// \brief Check whether a pointer can participate in a runtime bounds check.
620 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
621                                 const ValueToValueMap &Strides, Value *Ptr,
622                                 Loop *L) {
623   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
624 
625   // The bounds for loop-invariant pointer is trivial.
626   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
627     return true;
628 
629   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
630   if (!AR)
631     return false;
632 
633   return AR->isAffine();
634 }
635 
636 /// \brief Check whether a pointer address cannot wrap.
637 static bool isNoWrap(PredicatedScalarEvolution &PSE,
638                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
639   const SCEV *PtrScev = PSE.getSCEV(Ptr);
640   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
641     return true;
642 
643   int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
644   return Stride == 1;
645 }
646 
647 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
648                                      ScalarEvolution *SE, Loop *TheLoop,
649                                      const ValueToValueMap &StridesMap,
650                                      bool ShouldCheckWrap) {
651   // Find pointers with computable bounds. We are going to use this information
652   // to place a runtime bound check.
653   bool CanDoRT = true;
654 
655   bool NeedRTCheck = false;
656   if (!IsRTCheckAnalysisNeeded) return true;
657 
658   bool IsDepCheckNeeded = isDependencyCheckNeeded();
659 
660   // We assign a consecutive id to access from different alias sets.
661   // Accesses between different groups doesn't need to be checked.
662   unsigned ASId = 1;
663   for (auto &AS : AST) {
664     int NumReadPtrChecks = 0;
665     int NumWritePtrChecks = 0;
666 
667     // We assign consecutive id to access from different dependence sets.
668     // Accesses within the same set don't need a runtime check.
669     unsigned RunningDepId = 1;
670     DenseMap<Value *, unsigned> DepSetId;
671 
672     for (auto A : AS) {
673       Value *Ptr = A.getValue();
674       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
675       MemAccessInfo Access(Ptr, IsWrite);
676 
677       if (IsWrite)
678         ++NumWritePtrChecks;
679       else
680         ++NumReadPtrChecks;
681 
682       if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
683           // When we run after a failing dependency check we have to make sure
684           // we don't have wrapping pointers.
685           (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) {
686         // The id of the dependence set.
687         unsigned DepId;
688 
689         if (IsDepCheckNeeded) {
690           Value *Leader = DepCands.getLeaderValue(Access).getPointer();
691           unsigned &LeaderId = DepSetId[Leader];
692           if (!LeaderId)
693             LeaderId = RunningDepId++;
694           DepId = LeaderId;
695         } else
696           // Each access has its own dependence set.
697           DepId = RunningDepId++;
698 
699         RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
700 
701         DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
702       } else {
703         DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
704         CanDoRT = false;
705       }
706     }
707 
708     // If we have at least two writes or one write and a read then we need to
709     // check them.  But there is no need to checks if there is only one
710     // dependence set for this alias set.
711     //
712     // Note that this function computes CanDoRT and NeedRTCheck independently.
713     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
714     // for which we couldn't find the bounds but we don't actually need to emit
715     // any checks so it does not matter.
716     if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
717       NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
718                                                  NumWritePtrChecks >= 1));
719 
720     ++ASId;
721   }
722 
723   // If the pointers that we would use for the bounds comparison have different
724   // address spaces, assume the values aren't directly comparable, so we can't
725   // use them for the runtime check. We also have to assume they could
726   // overlap. In the future there should be metadata for whether address spaces
727   // are disjoint.
728   unsigned NumPointers = RtCheck.Pointers.size();
729   for (unsigned i = 0; i < NumPointers; ++i) {
730     for (unsigned j = i + 1; j < NumPointers; ++j) {
731       // Only need to check pointers between two different dependency sets.
732       if (RtCheck.Pointers[i].DependencySetId ==
733           RtCheck.Pointers[j].DependencySetId)
734        continue;
735       // Only need to check pointers in the same alias set.
736       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
737         continue;
738 
739       Value *PtrI = RtCheck.Pointers[i].PointerValue;
740       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
741 
742       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
743       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
744       if (ASi != ASj) {
745         DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
746                        " different address spaces\n");
747         return false;
748       }
749     }
750   }
751 
752   if (NeedRTCheck && CanDoRT)
753     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
754 
755   DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
756                << " pointer comparisons.\n");
757 
758   RtCheck.Need = NeedRTCheck;
759 
760   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
761   if (!CanDoRTIfNeeded)
762     RtCheck.reset();
763   return CanDoRTIfNeeded;
764 }
765 
766 void AccessAnalysis::processMemAccesses() {
767   // We process the set twice: first we process read-write pointers, last we
768   // process read-only pointers. This allows us to skip dependence tests for
769   // read-only pointers.
770 
771   DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
772   DEBUG(dbgs() << "  AST: "; AST.dump());
773   DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
774   DEBUG({
775     for (auto A : Accesses)
776       dbgs() << "\t" << *A.getPointer() << " (" <<
777                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
778                                          "read-only" : "read")) << ")\n";
779   });
780 
781   // The AliasSetTracker has nicely partitioned our pointers by metadata
782   // compatibility and potential for underlying-object overlap. As a result, we
783   // only need to check for potential pointer dependencies within each alias
784   // set.
785   for (auto &AS : AST) {
786     // Note that both the alias-set tracker and the alias sets themselves used
787     // linked lists internally and so the iteration order here is deterministic
788     // (matching the original instruction order within each set).
789 
790     bool SetHasWrite = false;
791 
792     // Map of pointers to last access encountered.
793     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
794     UnderlyingObjToAccessMap ObjToLastAccess;
795 
796     // Set of access to check after all writes have been processed.
797     PtrAccessSet DeferredAccesses;
798 
799     // Iterate over each alias set twice, once to process read/write pointers,
800     // and then to process read-only pointers.
801     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
802       bool UseDeferred = SetIteration > 0;
803       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
804 
805       for (auto AV : AS) {
806         Value *Ptr = AV.getValue();
807 
808         // For a single memory access in AliasSetTracker, Accesses may contain
809         // both read and write, and they both need to be handled for CheckDeps.
810         for (auto AC : S) {
811           if (AC.getPointer() != Ptr)
812             continue;
813 
814           bool IsWrite = AC.getInt();
815 
816           // If we're using the deferred access set, then it contains only
817           // reads.
818           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
819           if (UseDeferred && !IsReadOnlyPtr)
820             continue;
821           // Otherwise, the pointer must be in the PtrAccessSet, either as a
822           // read or a write.
823           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
824                   S.count(MemAccessInfo(Ptr, false))) &&
825                  "Alias-set pointer not in the access set?");
826 
827           MemAccessInfo Access(Ptr, IsWrite);
828           DepCands.insert(Access);
829 
830           // Memorize read-only pointers for later processing and skip them in
831           // the first round (they need to be checked after we have seen all
832           // write pointers). Note: we also mark pointer that are not
833           // consecutive as "read-only" pointers (so that we check
834           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
835           if (!UseDeferred && IsReadOnlyPtr) {
836             DeferredAccesses.insert(Access);
837             continue;
838           }
839 
840           // If this is a write - check other reads and writes for conflicts. If
841           // this is a read only check other writes for conflicts (but only if
842           // there is no other write to the ptr - this is an optimization to
843           // catch "a[i] = a[i] + " without having to do a dependence check).
844           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
845             CheckDeps.insert(Access);
846             IsRTCheckAnalysisNeeded = true;
847           }
848 
849           if (IsWrite)
850             SetHasWrite = true;
851 
852           // Create sets of pointers connected by a shared alias set and
853           // underlying object.
854           typedef SmallVector<Value *, 16> ValueVector;
855           ValueVector TempObjects;
856 
857           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
858           DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
859           for (Value *UnderlyingObj : TempObjects) {
860             // nullptr never alias, don't join sets for pointer that have "null"
861             // in their UnderlyingObjects list.
862             if (isa<ConstantPointerNull>(UnderlyingObj))
863               continue;
864 
865             UnderlyingObjToAccessMap::iterator Prev =
866                 ObjToLastAccess.find(UnderlyingObj);
867             if (Prev != ObjToLastAccess.end())
868               DepCands.unionSets(Access, Prev->second);
869 
870             ObjToLastAccess[UnderlyingObj] = Access;
871             DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
872           }
873         }
874       }
875     }
876   }
877 }
878 
879 static bool isInBoundsGep(Value *Ptr) {
880   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
881     return GEP->isInBounds();
882   return false;
883 }
884 
885 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
886 /// i.e. monotonically increasing/decreasing.
887 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
888                            PredicatedScalarEvolution &PSE, const Loop *L) {
889   // FIXME: This should probably only return true for NUW.
890   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
891     return true;
892 
893   // Scalar evolution does not propagate the non-wrapping flags to values that
894   // are derived from a non-wrapping induction variable because non-wrapping
895   // could be flow-sensitive.
896   //
897   // Look through the potentially overflowing instruction to try to prove
898   // non-wrapping for the *specific* value of Ptr.
899 
900   // The arithmetic implied by an inbounds GEP can't overflow.
901   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
902   if (!GEP || !GEP->isInBounds())
903     return false;
904 
905   // Make sure there is only one non-const index and analyze that.
906   Value *NonConstIndex = nullptr;
907   for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
908     if (!isa<ConstantInt>(Index)) {
909       if (NonConstIndex)
910         return false;
911       NonConstIndex = Index;
912     }
913   if (!NonConstIndex)
914     // The recurrence is on the pointer, ignore for now.
915     return false;
916 
917   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
918   // AddRec using a NSW operation.
919   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
920     if (OBO->hasNoSignedWrap() &&
921         // Assume constant for other the operand so that the AddRec can be
922         // easily found.
923         isa<ConstantInt>(OBO->getOperand(1))) {
924       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
925 
926       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
927         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
928     }
929 
930   return false;
931 }
932 
933 /// \brief Check whether the access through \p Ptr has a constant stride.
934 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
935                            const Loop *Lp, const ValueToValueMap &StridesMap,
936                            bool Assume, bool ShouldCheckWrap) {
937   Type *Ty = Ptr->getType();
938   assert(Ty->isPointerTy() && "Unexpected non-ptr");
939 
940   // Make sure that the pointer does not point to aggregate types.
941   auto *PtrTy = cast<PointerType>(Ty);
942   if (PtrTy->getElementType()->isAggregateType()) {
943     DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
944                  << "\n");
945     return 0;
946   }
947 
948   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
949 
950   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
951   if (Assume && !AR)
952     AR = PSE.getAsAddRec(Ptr);
953 
954   if (!AR) {
955     DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
956                  << " SCEV: " << *PtrScev << "\n");
957     return 0;
958   }
959 
960   // The accesss function must stride over the innermost loop.
961   if (Lp != AR->getLoop()) {
962     DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
963           *Ptr << " SCEV: " << *AR << "\n");
964     return 0;
965   }
966 
967   // The address calculation must not wrap. Otherwise, a dependence could be
968   // inverted.
969   // An inbounds getelementptr that is a AddRec with a unit stride
970   // cannot wrap per definition. The unit stride requirement is checked later.
971   // An getelementptr without an inbounds attribute and unit stride would have
972   // to access the pointer value "0" which is undefined behavior in address
973   // space 0, therefore we can also vectorize this case.
974   bool IsInBoundsGEP = isInBoundsGep(Ptr);
975   bool IsNoWrapAddRec = !ShouldCheckWrap ||
976     PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
977     isNoWrapAddRec(Ptr, AR, PSE, Lp);
978   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
979   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
980     if (Assume) {
981       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
982       IsNoWrapAddRec = true;
983       DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
984                    << "LAA:   Pointer: " << *Ptr << "\n"
985                    << "LAA:   SCEV: " << *AR << "\n"
986                    << "LAA:   Added an overflow assumption\n");
987     } else {
988       DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
989                    << *Ptr << " SCEV: " << *AR << "\n");
990       return 0;
991     }
992   }
993 
994   // Check the step is constant.
995   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
996 
997   // Calculate the pointer stride and check if it is constant.
998   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
999   if (!C) {
1000     DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
1001           " SCEV: " << *AR << "\n");
1002     return 0;
1003   }
1004 
1005   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1006   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
1007   const APInt &APStepVal = C->getAPInt();
1008 
1009   // Huge step value - give up.
1010   if (APStepVal.getBitWidth() > 64)
1011     return 0;
1012 
1013   int64_t StepVal = APStepVal.getSExtValue();
1014 
1015   // Strided access.
1016   int64_t Stride = StepVal / Size;
1017   int64_t Rem = StepVal % Size;
1018   if (Rem)
1019     return 0;
1020 
1021   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1022   // know we can't "wrap around the address space". In case of address space
1023   // zero we know that this won't happen without triggering undefined behavior.
1024   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
1025       Stride != 1 && Stride != -1) {
1026     if (Assume) {
1027       // We can avoid this case by adding a run-time check.
1028       DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1029                    << "inbouds or in address space 0 may wrap:\n"
1030                    << "LAA:   Pointer: " << *Ptr << "\n"
1031                    << "LAA:   SCEV: " << *AR << "\n"
1032                    << "LAA:   Added an overflow assumption\n");
1033       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1034     } else
1035       return 0;
1036   }
1037 
1038   return Stride;
1039 }
1040 
1041 /// Take the pointer operand from the Load/Store instruction.
1042 /// Returns NULL if this is not a valid Load/Store instruction.
1043 static Value *getPointerOperand(Value *I) {
1044   if (auto *LI = dyn_cast<LoadInst>(I))
1045     return LI->getPointerOperand();
1046   if (auto *SI = dyn_cast<StoreInst>(I))
1047     return SI->getPointerOperand();
1048   return nullptr;
1049 }
1050 
1051 /// Take the address space operand from the Load/Store instruction.
1052 /// Returns -1 if this is not a valid Load/Store instruction.
1053 static unsigned getAddressSpaceOperand(Value *I) {
1054   if (LoadInst *L = dyn_cast<LoadInst>(I))
1055     return L->getPointerAddressSpace();
1056   if (StoreInst *S = dyn_cast<StoreInst>(I))
1057     return S->getPointerAddressSpace();
1058   return -1;
1059 }
1060 
1061 bool llvm::sortMemAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
1062                            ScalarEvolution &SE,
1063                            SmallVectorImpl<Value *> &Sorted) {
1064   SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs;
1065   OffValPairs.reserve(VL.size());
1066   Sorted.reserve(VL.size());
1067 
1068   // Walk over the pointers, and map each of them to an offset relative to
1069   // first pointer in the array.
1070   Value *Ptr0 = getPointerOperand(VL[0]);
1071   const SCEV *Scev0 = SE.getSCEV(Ptr0);
1072   Value *Obj0 = GetUnderlyingObject(Ptr0, DL);
1073 
1074   for (auto *Val : VL) {
1075     Value *Ptr = getPointerOperand(Val);
1076 
1077     // If a pointer refers to a different underlying object, bail - the
1078     // pointers are by definition incomparable.
1079     Value *CurrObj = GetUnderlyingObject(Ptr, DL);
1080     if (CurrObj != Obj0)
1081       return false;
1082 
1083     const SCEVConstant *Diff =
1084         dyn_cast<SCEVConstant>(SE.getMinusSCEV(SE.getSCEV(Ptr), Scev0));
1085 
1086     // The pointers may not have a constant offset from each other, or SCEV
1087     // may just not be smart enough to figure out they do. Regardless,
1088     // there's nothing we can do.
1089     if (!Diff)
1090       return false;
1091 
1092     OffValPairs.emplace_back(Diff->getAPInt().getSExtValue(), Val);
1093   }
1094 
1095   std::sort(OffValPairs.begin(), OffValPairs.end(),
1096             [](const std::pair<int64_t, Value *> &Left,
1097                const std::pair<int64_t, Value *> &Right) {
1098               return Left.first < Right.first;
1099             });
1100 
1101   for (auto &it : OffValPairs)
1102     Sorted.push_back(it.second);
1103 
1104   return true;
1105 }
1106 
1107 /// Returns true if the memory operations \p A and \p B are consecutive.
1108 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1109                                ScalarEvolution &SE, bool CheckType) {
1110   Value *PtrA = getPointerOperand(A);
1111   Value *PtrB = getPointerOperand(B);
1112   unsigned ASA = getAddressSpaceOperand(A);
1113   unsigned ASB = getAddressSpaceOperand(B);
1114 
1115   // Check that the address spaces match and that the pointers are valid.
1116   if (!PtrA || !PtrB || (ASA != ASB))
1117     return false;
1118 
1119   // Make sure that A and B are different pointers.
1120   if (PtrA == PtrB)
1121     return false;
1122 
1123   // Make sure that A and B have the same type if required.
1124   if (CheckType && PtrA->getType() != PtrB->getType())
1125     return false;
1126 
1127   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1128   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1129   APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1130 
1131   APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1132   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1133   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1134 
1135   //  OffsetDelta = OffsetB - OffsetA;
1136   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1137   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1138   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1139   const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1140   const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1141   // Check if they are based on the same pointer. That makes the offsets
1142   // sufficient.
1143   if (PtrA == PtrB)
1144     return OffsetDelta == Size;
1145 
1146   // Compute the necessary base pointer delta to have the necessary final delta
1147   // equal to the size.
1148   // BaseDelta = Size - OffsetDelta;
1149   const SCEV *SizeSCEV = SE.getConstant(Size);
1150   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1151 
1152   // Otherwise compute the distance with SCEV between the base pointers.
1153   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1154   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1155   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1156   return X == PtrSCEVB;
1157 }
1158 
1159 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1160   switch (Type) {
1161   case NoDep:
1162   case Forward:
1163   case BackwardVectorizable:
1164     return true;
1165 
1166   case Unknown:
1167   case ForwardButPreventsForwarding:
1168   case Backward:
1169   case BackwardVectorizableButPreventsForwarding:
1170     return false;
1171   }
1172   llvm_unreachable("unexpected DepType!");
1173 }
1174 
1175 bool MemoryDepChecker::Dependence::isBackward() const {
1176   switch (Type) {
1177   case NoDep:
1178   case Forward:
1179   case ForwardButPreventsForwarding:
1180   case Unknown:
1181     return false;
1182 
1183   case BackwardVectorizable:
1184   case Backward:
1185   case BackwardVectorizableButPreventsForwarding:
1186     return true;
1187   }
1188   llvm_unreachable("unexpected DepType!");
1189 }
1190 
1191 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1192   return isBackward() || Type == Unknown;
1193 }
1194 
1195 bool MemoryDepChecker::Dependence::isForward() const {
1196   switch (Type) {
1197   case Forward:
1198   case ForwardButPreventsForwarding:
1199     return true;
1200 
1201   case NoDep:
1202   case Unknown:
1203   case BackwardVectorizable:
1204   case Backward:
1205   case BackwardVectorizableButPreventsForwarding:
1206     return false;
1207   }
1208   llvm_unreachable("unexpected DepType!");
1209 }
1210 
1211 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1212                                                     uint64_t TypeByteSize) {
1213   // If loads occur at a distance that is not a multiple of a feasible vector
1214   // factor store-load forwarding does not take place.
1215   // Positive dependences might cause troubles because vectorizing them might
1216   // prevent store-load forwarding making vectorized code run a lot slower.
1217   //   a[i] = a[i-3] ^ a[i-8];
1218   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1219   //   hence on your typical architecture store-load forwarding does not take
1220   //   place. Vectorizing in such cases does not make sense.
1221   // Store-load forwarding distance.
1222 
1223   // After this many iterations store-to-load forwarding conflicts should not
1224   // cause any slowdowns.
1225   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1226   // Maximum vector factor.
1227   uint64_t MaxVFWithoutSLForwardIssues = std::min(
1228       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1229 
1230   // Compute the smallest VF at which the store and load would be misaligned.
1231   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1232        VF *= 2) {
1233     // If the number of vector iteration between the store and the load are
1234     // small we could incur conflicts.
1235     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1236       MaxVFWithoutSLForwardIssues = (VF >>= 1);
1237       break;
1238     }
1239   }
1240 
1241   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1242     DEBUG(dbgs() << "LAA: Distance " << Distance
1243                  << " that could cause a store-load forwarding conflict\n");
1244     return true;
1245   }
1246 
1247   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1248       MaxVFWithoutSLForwardIssues !=
1249           VectorizerParams::MaxVectorWidth * TypeByteSize)
1250     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1251   return false;
1252 }
1253 
1254 /// \brief Check the dependence for two accesses with the same stride \p Stride.
1255 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1256 /// bytes.
1257 ///
1258 /// \returns true if they are independent.
1259 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1260                                           uint64_t TypeByteSize) {
1261   assert(Stride > 1 && "The stride must be greater than 1");
1262   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1263   assert(Distance > 0 && "The distance must be non-zero");
1264 
1265   // Skip if the distance is not multiple of type byte size.
1266   if (Distance % TypeByteSize)
1267     return false;
1268 
1269   uint64_t ScaledDist = Distance / TypeByteSize;
1270 
1271   // No dependence if the scaled distance is not multiple of the stride.
1272   // E.g.
1273   //      for (i = 0; i < 1024 ; i += 4)
1274   //        A[i+2] = A[i] + 1;
1275   //
1276   // Two accesses in memory (scaled distance is 2, stride is 4):
1277   //     | A[0] |      |      |      | A[4] |      |      |      |
1278   //     |      |      | A[2] |      |      |      | A[6] |      |
1279   //
1280   // E.g.
1281   //      for (i = 0; i < 1024 ; i += 3)
1282   //        A[i+4] = A[i] + 1;
1283   //
1284   // Two accesses in memory (scaled distance is 4, stride is 3):
1285   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1286   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1287   return ScaledDist % Stride;
1288 }
1289 
1290 MemoryDepChecker::Dependence::DepType
1291 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1292                               const MemAccessInfo &B, unsigned BIdx,
1293                               const ValueToValueMap &Strides) {
1294   assert (AIdx < BIdx && "Must pass arguments in program order");
1295 
1296   Value *APtr = A.getPointer();
1297   Value *BPtr = B.getPointer();
1298   bool AIsWrite = A.getInt();
1299   bool BIsWrite = B.getInt();
1300 
1301   // Two reads are independent.
1302   if (!AIsWrite && !BIsWrite)
1303     return Dependence::NoDep;
1304 
1305   // We cannot check pointers in different address spaces.
1306   if (APtr->getType()->getPointerAddressSpace() !=
1307       BPtr->getType()->getPointerAddressSpace())
1308     return Dependence::Unknown;
1309 
1310   int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1311   int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
1312 
1313   const SCEV *Src = PSE.getSCEV(APtr);
1314   const SCEV *Sink = PSE.getSCEV(BPtr);
1315 
1316   // If the induction step is negative we have to invert source and sink of the
1317   // dependence.
1318   if (StrideAPtr < 0) {
1319     std::swap(APtr, BPtr);
1320     std::swap(Src, Sink);
1321     std::swap(AIsWrite, BIsWrite);
1322     std::swap(AIdx, BIdx);
1323     std::swap(StrideAPtr, StrideBPtr);
1324   }
1325 
1326   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1327 
1328   DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1329                << "(Induction step: " << StrideAPtr << ")\n");
1330   DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1331                << *InstMap[BIdx] << ": " << *Dist << "\n");
1332 
1333   // Need accesses with constant stride. We don't want to vectorize
1334   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1335   // the address space.
1336   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1337     DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1338     return Dependence::Unknown;
1339   }
1340 
1341   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1342   if (!C) {
1343     DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1344     ShouldRetryWithRuntimeCheck = true;
1345     return Dependence::Unknown;
1346   }
1347 
1348   Type *ATy = APtr->getType()->getPointerElementType();
1349   Type *BTy = BPtr->getType()->getPointerElementType();
1350   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1351   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1352 
1353   const APInt &Val = C->getAPInt();
1354   int64_t Distance = Val.getSExtValue();
1355   uint64_t Stride = std::abs(StrideAPtr);
1356 
1357   // Attempt to prove strided accesses independent.
1358   if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1359       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1360     DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1361     return Dependence::NoDep;
1362   }
1363 
1364   // Negative distances are not plausible dependencies.
1365   if (Val.isNegative()) {
1366     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1367     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1368         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1369          ATy != BTy)) {
1370       DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1371       return Dependence::ForwardButPreventsForwarding;
1372     }
1373 
1374     DEBUG(dbgs() << "LAA: Dependence is negative\n");
1375     return Dependence::Forward;
1376   }
1377 
1378   // Write to the same location with the same size.
1379   // Could be improved to assert type sizes are the same (i32 == float, etc).
1380   if (Val == 0) {
1381     if (ATy == BTy)
1382       return Dependence::Forward;
1383     DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
1384     return Dependence::Unknown;
1385   }
1386 
1387   assert(Val.isStrictlyPositive() && "Expect a positive value");
1388 
1389   if (ATy != BTy) {
1390     DEBUG(dbgs() <<
1391           "LAA: ReadWrite-Write positive dependency with different types\n");
1392     return Dependence::Unknown;
1393   }
1394 
1395   // Bail out early if passed-in parameters make vectorization not feasible.
1396   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1397                            VectorizerParams::VectorizationFactor : 1);
1398   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1399                            VectorizerParams::VectorizationInterleave : 1);
1400   // The minimum number of iterations for a vectorized/unrolled version.
1401   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1402 
1403   // It's not vectorizable if the distance is smaller than the minimum distance
1404   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1405   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1406   // TypeByteSize (No need to plus the last gap distance).
1407   //
1408   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1409   //      foo(int *A) {
1410   //        int *B = (int *)((char *)A + 14);
1411   //        for (i = 0 ; i < 1024 ; i += 2)
1412   //          B[i] = A[i] + 1;
1413   //      }
1414   //
1415   // Two accesses in memory (stride is 2):
1416   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1417   //                              | B[0] |      | B[2] |      | B[4] |
1418   //
1419   // Distance needs for vectorizing iterations except the last iteration:
1420   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1421   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1422   //
1423   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1424   // 12, which is less than distance.
1425   //
1426   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1427   // the minimum distance needed is 28, which is greater than distance. It is
1428   // not safe to do vectorization.
1429   uint64_t MinDistanceNeeded =
1430       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1431   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1432     DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1433                  << '\n');
1434     return Dependence::Backward;
1435   }
1436 
1437   // Unsafe if the minimum distance needed is greater than max safe distance.
1438   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1439     DEBUG(dbgs() << "LAA: Failure because it needs at least "
1440                  << MinDistanceNeeded << " size in bytes");
1441     return Dependence::Backward;
1442   }
1443 
1444   // Positive distance bigger than max vectorization factor.
1445   // FIXME: Should use max factor instead of max distance in bytes, which could
1446   // not handle different types.
1447   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1448   //      void foo (int *A, char *B) {
1449   //        for (unsigned i = 0; i < 1024; i++) {
1450   //          A[i+2] = A[i] + 1;
1451   //          B[i+2] = B[i] + 1;
1452   //        }
1453   //      }
1454   //
1455   // This case is currently unsafe according to the max safe distance. If we
1456   // analyze the two accesses on array B, the max safe dependence distance
1457   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1458   // is 8, which is less than 2 and forbidden vectorization, But actually
1459   // both A and B could be vectorized by 2 iterations.
1460   MaxSafeDepDistBytes =
1461       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
1462 
1463   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1464   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1465       couldPreventStoreLoadForward(Distance, TypeByteSize))
1466     return Dependence::BackwardVectorizableButPreventsForwarding;
1467 
1468   DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1469                << " with max VF = "
1470                << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
1471 
1472   return Dependence::BackwardVectorizable;
1473 }
1474 
1475 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1476                                    MemAccessInfoSet &CheckDeps,
1477                                    const ValueToValueMap &Strides) {
1478 
1479   MaxSafeDepDistBytes = -1;
1480   while (!CheckDeps.empty()) {
1481     MemAccessInfo CurAccess = *CheckDeps.begin();
1482 
1483     // Get the relevant memory access set.
1484     EquivalenceClasses<MemAccessInfo>::iterator I =
1485       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1486 
1487     // Check accesses within this set.
1488     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1489         AccessSets.member_begin(I);
1490     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1491         AccessSets.member_end();
1492 
1493     // Check every access pair.
1494     while (AI != AE) {
1495       CheckDeps.erase(*AI);
1496       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1497       while (OI != AE) {
1498         // Check every accessing instruction pair in program order.
1499         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1500              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1501           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1502                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
1503             auto A = std::make_pair(&*AI, *I1);
1504             auto B = std::make_pair(&*OI, *I2);
1505 
1506             assert(*I1 != *I2);
1507             if (*I1 > *I2)
1508               std::swap(A, B);
1509 
1510             Dependence::DepType Type =
1511                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1512             SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1513 
1514             // Gather dependences unless we accumulated MaxDependences
1515             // dependences.  In that case return as soon as we find the first
1516             // unsafe dependence.  This puts a limit on this quadratic
1517             // algorithm.
1518             if (RecordDependences) {
1519               if (Type != Dependence::NoDep)
1520                 Dependences.push_back(Dependence(A.second, B.second, Type));
1521 
1522               if (Dependences.size() >= MaxDependences) {
1523                 RecordDependences = false;
1524                 Dependences.clear();
1525                 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1526               }
1527             }
1528             if (!RecordDependences && !SafeForVectorization)
1529               return false;
1530           }
1531         ++OI;
1532       }
1533       AI++;
1534     }
1535   }
1536 
1537   DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1538   return SafeForVectorization;
1539 }
1540 
1541 SmallVector<Instruction *, 4>
1542 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1543   MemAccessInfo Access(Ptr, isWrite);
1544   auto &IndexVector = Accesses.find(Access)->second;
1545 
1546   SmallVector<Instruction *, 4> Insts;
1547   transform(IndexVector,
1548                  std::back_inserter(Insts),
1549                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1550   return Insts;
1551 }
1552 
1553 const char *MemoryDepChecker::Dependence::DepName[] = {
1554     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1555     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1556 
1557 void MemoryDepChecker::Dependence::print(
1558     raw_ostream &OS, unsigned Depth,
1559     const SmallVectorImpl<Instruction *> &Instrs) const {
1560   OS.indent(Depth) << DepName[Type] << ":\n";
1561   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1562   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1563 }
1564 
1565 bool LoopAccessInfo::canAnalyzeLoop() {
1566   // We need to have a loop header.
1567   DEBUG(dbgs() << "LAA: Found a loop in "
1568                << TheLoop->getHeader()->getParent()->getName() << ": "
1569                << TheLoop->getHeader()->getName() << '\n');
1570 
1571   // We can only analyze innermost loops.
1572   if (!TheLoop->empty()) {
1573     DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1574     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
1575     return false;
1576   }
1577 
1578   // We must have a single backedge.
1579   if (TheLoop->getNumBackEdges() != 1) {
1580     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1581     recordAnalysis("CFGNotUnderstood")
1582         << "loop control flow is not understood by analyzer";
1583     return false;
1584   }
1585 
1586   // We must have a single exiting block.
1587   if (!TheLoop->getExitingBlock()) {
1588     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1589     recordAnalysis("CFGNotUnderstood")
1590         << "loop control flow is not understood by analyzer";
1591     return false;
1592   }
1593 
1594   // We only handle bottom-tested loops, i.e. loop in which the condition is
1595   // checked at the end of each iteration. With that we can assume that all
1596   // instructions in the loop are executed the same number of times.
1597   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1598     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1599     recordAnalysis("CFGNotUnderstood")
1600         << "loop control flow is not understood by analyzer";
1601     return false;
1602   }
1603 
1604   // ScalarEvolution needs to be able to find the exit count.
1605   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1606   if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
1607     recordAnalysis("CantComputeNumberOfIterations")
1608         << "could not determine number of loop iterations";
1609     DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1610     return false;
1611   }
1612 
1613   return true;
1614 }
1615 
1616 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
1617                                  const TargetLibraryInfo *TLI,
1618                                  DominatorTree *DT) {
1619   typedef SmallPtrSet<Value*, 16> ValueSet;
1620 
1621   // Holds the Load and Store instructions.
1622   SmallVector<LoadInst *, 16> Loads;
1623   SmallVector<StoreInst *, 16> Stores;
1624 
1625   // Holds all the different accesses in the loop.
1626   unsigned NumReads = 0;
1627   unsigned NumReadWrites = 0;
1628 
1629   PtrRtChecking->Pointers.clear();
1630   PtrRtChecking->Need = false;
1631 
1632   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1633 
1634   // For each block.
1635   for (BasicBlock *BB : TheLoop->blocks()) {
1636     // Scan the BB and collect legal loads and stores.
1637     for (Instruction &I : *BB) {
1638       // If this is a load, save it. If this instruction can read from memory
1639       // but is not a load, then we quit. Notice that we don't handle function
1640       // calls that read or write.
1641       if (I.mayReadFromMemory()) {
1642         // Many math library functions read the rounding mode. We will only
1643         // vectorize a loop if it contains known function calls that don't set
1644         // the flag. Therefore, it is safe to ignore this read from memory.
1645         auto *Call = dyn_cast<CallInst>(&I);
1646         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
1647           continue;
1648 
1649         // If the function has an explicit vectorized counterpart, we can safely
1650         // assume that it can be vectorized.
1651         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1652             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1653           continue;
1654 
1655         auto *Ld = dyn_cast<LoadInst>(&I);
1656         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
1657           recordAnalysis("NonSimpleLoad", Ld)
1658               << "read with atomic ordering or volatile read";
1659           DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1660           CanVecMem = false;
1661           return;
1662         }
1663         NumLoads++;
1664         Loads.push_back(Ld);
1665         DepChecker->addAccess(Ld);
1666         if (EnableMemAccessVersioning)
1667           collectStridedAccess(Ld);
1668         continue;
1669       }
1670 
1671       // Save 'store' instructions. Abort if other instructions write to memory.
1672       if (I.mayWriteToMemory()) {
1673         auto *St = dyn_cast<StoreInst>(&I);
1674         if (!St) {
1675           recordAnalysis("CantVectorizeInstruction", St)
1676               << "instruction cannot be vectorized";
1677           CanVecMem = false;
1678           return;
1679         }
1680         if (!St->isSimple() && !IsAnnotatedParallel) {
1681           recordAnalysis("NonSimpleStore", St)
1682               << "write with atomic ordering or volatile write";
1683           DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1684           CanVecMem = false;
1685           return;
1686         }
1687         NumStores++;
1688         Stores.push_back(St);
1689         DepChecker->addAccess(St);
1690         if (EnableMemAccessVersioning)
1691           collectStridedAccess(St);
1692       }
1693     } // Next instr.
1694   } // Next block.
1695 
1696   // Now we have two lists that hold the loads and the stores.
1697   // Next, we find the pointers that they use.
1698 
1699   // Check if we see any stores. If there are no stores, then we don't
1700   // care if the pointers are *restrict*.
1701   if (!Stores.size()) {
1702     DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1703     CanVecMem = true;
1704     return;
1705   }
1706 
1707   MemoryDepChecker::DepCandidates DependentAccesses;
1708   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1709                           AA, LI, DependentAccesses, *PSE);
1710 
1711   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1712   // multiple times on the same object. If the ptr is accessed twice, once
1713   // for read and once for write, it will only appear once (on the write
1714   // list). This is okay, since we are going to check for conflicts between
1715   // writes and between reads and writes, but not between reads and reads.
1716   ValueSet Seen;
1717 
1718   for (StoreInst *ST : Stores) {
1719     Value *Ptr = ST->getPointerOperand();
1720     // Check for store to loop invariant address.
1721     StoreToLoopInvariantAddress |= isUniform(Ptr);
1722     // If we did *not* see this pointer before, insert it to  the read-write
1723     // list. At this phase it is only a 'write' list.
1724     if (Seen.insert(Ptr).second) {
1725       ++NumReadWrites;
1726 
1727       MemoryLocation Loc = MemoryLocation::get(ST);
1728       // The TBAA metadata could have a control dependency on the predication
1729       // condition, so we cannot rely on it when determining whether or not we
1730       // need runtime pointer checks.
1731       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1732         Loc.AATags.TBAA = nullptr;
1733 
1734       Accesses.addStore(Loc);
1735     }
1736   }
1737 
1738   if (IsAnnotatedParallel) {
1739     DEBUG(dbgs()
1740           << "LAA: A loop annotated parallel, ignore memory dependency "
1741           << "checks.\n");
1742     CanVecMem = true;
1743     return;
1744   }
1745 
1746   for (LoadInst *LD : Loads) {
1747     Value *Ptr = LD->getPointerOperand();
1748     // If we did *not* see this pointer before, insert it to the
1749     // read list. If we *did* see it before, then it is already in
1750     // the read-write list. This allows us to vectorize expressions
1751     // such as A[i] += x;  Because the address of A[i] is a read-write
1752     // pointer. This only works if the index of A[i] is consecutive.
1753     // If the address of i is unknown (for example A[B[i]]) then we may
1754     // read a few words, modify, and write a few words, and some of the
1755     // words may be written to the same address.
1756     bool IsReadOnlyPtr = false;
1757     if (Seen.insert(Ptr).second ||
1758         !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
1759       ++NumReads;
1760       IsReadOnlyPtr = true;
1761     }
1762 
1763     MemoryLocation Loc = MemoryLocation::get(LD);
1764     // The TBAA metadata could have a control dependency on the predication
1765     // condition, so we cannot rely on it when determining whether or not we
1766     // need runtime pointer checks.
1767     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1768       Loc.AATags.TBAA = nullptr;
1769 
1770     Accesses.addLoad(Loc, IsReadOnlyPtr);
1771   }
1772 
1773   // If we write (or read-write) to a single destination and there are no
1774   // other reads in this loop then is it safe to vectorize.
1775   if (NumReadWrites == 1 && NumReads == 0) {
1776     DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1777     CanVecMem = true;
1778     return;
1779   }
1780 
1781   // Build dependence sets and check whether we need a runtime pointer bounds
1782   // check.
1783   Accesses.buildDependenceSets();
1784 
1785   // Find pointers with computable bounds. We are going to use this information
1786   // to place a runtime bound check.
1787   bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
1788                                                   TheLoop, SymbolicStrides);
1789   if (!CanDoRTIfNeeded) {
1790     recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
1791     DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1792                  << "the array bounds.\n");
1793     CanVecMem = false;
1794     return;
1795   }
1796 
1797   DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
1798 
1799   CanVecMem = true;
1800   if (Accesses.isDependencyCheckNeeded()) {
1801     DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1802     CanVecMem = DepChecker->areDepsSafe(
1803         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
1804     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
1805 
1806     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
1807       DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
1808 
1809       // Clear the dependency checks. We assume they are not needed.
1810       Accesses.resetDepChecks(*DepChecker);
1811 
1812       PtrRtChecking->reset();
1813       PtrRtChecking->Need = true;
1814 
1815       auto *SE = PSE->getSE();
1816       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
1817                                                  SymbolicStrides, true);
1818 
1819       // Check that we found the bounds for the pointer.
1820       if (!CanDoRTIfNeeded) {
1821         recordAnalysis("CantCheckMemDepsAtRunTime")
1822             << "cannot check memory dependencies at runtime";
1823         DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1824         CanVecMem = false;
1825         return;
1826       }
1827 
1828       CanVecMem = true;
1829     }
1830   }
1831 
1832   if (CanVecMem)
1833     DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
1834                  << (PtrRtChecking->Need ? "" : " don't")
1835                  << " need runtime memory checks.\n");
1836   else {
1837     recordAnalysis("UnsafeMemDep")
1838         << "unsafe dependent memory operations in loop. Use "
1839            "#pragma loop distribute(enable) to allow loop distribution "
1840            "to attempt to isolate the offending operations into a separate "
1841            "loop";
1842     DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1843   }
1844 }
1845 
1846 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1847                                            DominatorTree *DT)  {
1848   assert(TheLoop->contains(BB) && "Unknown block used");
1849 
1850   // Blocks that do not dominate the latch need predication.
1851   BasicBlock* Latch = TheLoop->getLoopLatch();
1852   return !DT->dominates(BB, Latch);
1853 }
1854 
1855 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
1856                                                            Instruction *I) {
1857   assert(!Report && "Multiple reports generated");
1858 
1859   Value *CodeRegion = TheLoop->getHeader();
1860   DebugLoc DL = TheLoop->getStartLoc();
1861 
1862   if (I) {
1863     CodeRegion = I->getParent();
1864     // If there is no debug location attached to the instruction, revert back to
1865     // using the loop's.
1866     if (I->getDebugLoc())
1867       DL = I->getDebugLoc();
1868   }
1869 
1870   Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
1871                                                    CodeRegion);
1872   return *Report;
1873 }
1874 
1875 bool LoopAccessInfo::isUniform(Value *V) const {
1876   auto *SE = PSE->getSE();
1877   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
1878   // never considered uniform.
1879   // TODO: Is this really what we want? Even without FP SCEV, we may want some
1880   // trivially loop-invariant FP values to be considered uniform.
1881   if (!SE->isSCEVable(V->getType()))
1882     return false;
1883   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1884 }
1885 
1886 // FIXME: this function is currently a duplicate of the one in
1887 // LoopVectorize.cpp.
1888 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1889                                  Instruction *Loc) {
1890   if (FirstInst)
1891     return FirstInst;
1892   if (Instruction *I = dyn_cast<Instruction>(V))
1893     return I->getParent() == Loc->getParent() ? I : nullptr;
1894   return nullptr;
1895 }
1896 
1897 namespace {
1898 
1899 /// \brief IR Values for the lower and upper bounds of a pointer evolution.  We
1900 /// need to use value-handles because SCEV expansion can invalidate previously
1901 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1902 /// a previous one.
1903 struct PointerBounds {
1904   TrackingVH<Value> Start;
1905   TrackingVH<Value> End;
1906 };
1907 
1908 } // end anonymous namespace
1909 
1910 /// \brief Expand code for the lower and upper bound of the pointer group \p CG
1911 /// in \p TheLoop.  \return the values for the bounds.
1912 static PointerBounds
1913 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1914              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1915              const RuntimePointerChecking &PtrRtChecking) {
1916   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1917   const SCEV *Sc = SE->getSCEV(Ptr);
1918 
1919   unsigned AS = Ptr->getType()->getPointerAddressSpace();
1920   LLVMContext &Ctx = Loc->getContext();
1921 
1922   // Use this type for pointer arithmetic.
1923   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1924 
1925   if (SE->isLoopInvariant(Sc, TheLoop)) {
1926     DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1927                  << "\n");
1928     // Ptr could be in the loop body. If so, expand a new one at the correct
1929     // location.
1930     Instruction *Inst = dyn_cast<Instruction>(Ptr);
1931     Value *NewPtr = (Inst && TheLoop->contains(Inst))
1932                         ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
1933                         : Ptr;
1934     return {NewPtr, NewPtr};
1935   } else {
1936     Value *Start = nullptr, *End = nullptr;
1937     DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1938     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1939     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1940     DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1941     return {Start, End};
1942   }
1943 }
1944 
1945 /// \brief Turns a collection of checks into a collection of expanded upper and
1946 /// lower bounds for both pointers in the check.
1947 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1948     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1949     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1950     const RuntimePointerChecking &PtrRtChecking) {
1951   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1952 
1953   // Here we're relying on the SCEV Expander's cache to only emit code for the
1954   // same bounds once.
1955   transform(
1956       PointerChecks, std::back_inserter(ChecksWithBounds),
1957       [&](const RuntimePointerChecking::PointerCheck &Check) {
1958         PointerBounds
1959           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1960           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1961         return std::make_pair(First, Second);
1962       });
1963 
1964   return ChecksWithBounds;
1965 }
1966 
1967 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
1968     Instruction *Loc,
1969     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1970     const {
1971   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1972   auto *SE = PSE->getSE();
1973   SCEVExpander Exp(*SE, DL, "induction");
1974   auto ExpandedChecks =
1975       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
1976 
1977   LLVMContext &Ctx = Loc->getContext();
1978   Instruction *FirstInst = nullptr;
1979   IRBuilder<> ChkBuilder(Loc);
1980   // Our instructions might fold to a constant.
1981   Value *MemoryRuntimeCheck = nullptr;
1982 
1983   for (const auto &Check : ExpandedChecks) {
1984     const PointerBounds &A = Check.first, &B = Check.second;
1985     // Check if two pointers (A and B) conflict where conflict is computed as:
1986     // start(A) <= end(B) && start(B) <= end(A)
1987     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1988     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1989 
1990     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1991            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1992            "Trying to bounds check pointers with different address spaces");
1993 
1994     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1995     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1996 
1997     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1998     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1999     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
2000     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
2001 
2002     // [A|B].Start points to the first accessed byte under base [A|B].
2003     // [A|B].End points to the last accessed byte, plus one.
2004     // There is no conflict when the intervals are disjoint:
2005     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
2006     //
2007     // bound0 = (B.Start < A.End)
2008     // bound1 = (A.Start < B.End)
2009     //  IsConflict = bound0 & bound1
2010     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
2011     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
2012     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
2013     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
2014     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2015     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2016     if (MemoryRuntimeCheck) {
2017       IsConflict =
2018           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
2019       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2020     }
2021     MemoryRuntimeCheck = IsConflict;
2022   }
2023 
2024   if (!MemoryRuntimeCheck)
2025     return std::make_pair(nullptr, nullptr);
2026 
2027   // We have to do this trickery because the IRBuilder might fold the check to a
2028   // constant expression in which case there is no Instruction anchored in a
2029   // the block.
2030   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
2031                                                  ConstantInt::getTrue(Ctx));
2032   ChkBuilder.Insert(Check, "memcheck.conflict");
2033   FirstInst = getFirstInst(FirstInst, Check, Loc);
2034   return std::make_pair(FirstInst, Check);
2035 }
2036 
2037 std::pair<Instruction *, Instruction *>
2038 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
2039   if (!PtrRtChecking->Need)
2040     return std::make_pair(nullptr, nullptr);
2041 
2042   return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
2043 }
2044 
2045 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2046   Value *Ptr = nullptr;
2047   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
2048     Ptr = LI->getPointerOperand();
2049   else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
2050     Ptr = SI->getPointerOperand();
2051   else
2052     return;
2053 
2054   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2055   if (!Stride)
2056     return;
2057 
2058   DEBUG(dbgs() << "LAA: Found a strided access that we can version");
2059   DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2060   SymbolicStrides[Ptr] = Stride;
2061   StrideSet.insert(Stride);
2062 }
2063 
2064 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2065                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
2066                                DominatorTree *DT, LoopInfo *LI)
2067     : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2068       PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
2069       DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
2070       NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
2071       StoreToLoopInvariantAddress(false) {
2072   if (canAnalyzeLoop())
2073     analyzeLoop(AA, LI, TLI, DT);
2074 }
2075 
2076 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2077   if (CanVecMem) {
2078     OS.indent(Depth) << "Memory dependences are safe";
2079     if (MaxSafeDepDistBytes != -1ULL)
2080       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2081          << " bytes";
2082     if (PtrRtChecking->Need)
2083       OS << " with run-time checks";
2084     OS << "\n";
2085   }
2086 
2087   if (Report)
2088     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2089 
2090   if (auto *Dependences = DepChecker->getDependences()) {
2091     OS.indent(Depth) << "Dependences:\n";
2092     for (auto &Dep : *Dependences) {
2093       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
2094       OS << "\n";
2095     }
2096   } else
2097     OS.indent(Depth) << "Too many dependences, not recorded\n";
2098 
2099   // List the pair of accesses need run-time checks to prove independence.
2100   PtrRtChecking->print(OS, Depth);
2101   OS << "\n";
2102 
2103   OS.indent(Depth) << "Store to invariant address was "
2104                    << (StoreToLoopInvariantAddress ? "" : "not ")
2105                    << "found in loop.\n";
2106 
2107   OS.indent(Depth) << "SCEV assumptions:\n";
2108   PSE->getUnionPredicate().print(OS, Depth);
2109 
2110   OS << "\n";
2111 
2112   OS.indent(Depth) << "Expressions re-written:\n";
2113   PSE->print(OS, Depth);
2114 }
2115 
2116 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
2117   auto &LAI = LoopAccessInfoMap[L];
2118 
2119   if (!LAI)
2120     LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2121 
2122   return *LAI.get();
2123 }
2124 
2125 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2126   LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
2127 
2128   for (Loop *TopLevelLoop : *LI)
2129     for (Loop *L : depth_first(TopLevelLoop)) {
2130       OS.indent(2) << L->getHeader()->getName() << ":\n";
2131       auto &LAI = LAA.getInfo(L);
2132       LAI.print(OS, 4);
2133     }
2134 }
2135 
2136 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2137   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2138   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2139   TLI = TLIP ? &TLIP->getTLI() : nullptr;
2140   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2141   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2142   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2143 
2144   return false;
2145 }
2146 
2147 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
2148     AU.addRequired<ScalarEvolutionWrapperPass>();
2149     AU.addRequired<AAResultsWrapperPass>();
2150     AU.addRequired<DominatorTreeWrapperPass>();
2151     AU.addRequired<LoopInfoWrapperPass>();
2152 
2153     AU.setPreservesAll();
2154 }
2155 
2156 char LoopAccessLegacyAnalysis::ID = 0;
2157 static const char laa_name[] = "Loop Access Analysis";
2158 #define LAA_NAME "loop-accesses"
2159 
2160 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2161 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2162 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2163 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2164 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2165 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2166 
2167 AnalysisKey LoopAccessAnalysis::Key;
2168 
2169 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2170                                        LoopStandardAnalysisResults &AR) {
2171   return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
2172 }
2173 
2174 namespace llvm {
2175 
2176   Pass *createLAAPass() {
2177     return new LoopAccessLegacyAnalysis();
2178   }
2179 
2180 } // end namespace llvm
2181