1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/EquivalenceClasses.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AliasSetTracker.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/PatternMatch.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/IR/ValueHandle.h"
54 #include "llvm/InitializePasses.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <utility>
66 #include <vector>
67 
68 using namespace llvm;
69 using namespace llvm::PatternMatch;
70 
71 #define DEBUG_TYPE "loop-accesses"
72 
73 static cl::opt<unsigned, true>
74 VectorizationFactor("force-vector-width", cl::Hidden,
75                     cl::desc("Sets the SIMD width. Zero is autoselect."),
76                     cl::location(VectorizerParams::VectorizationFactor));
77 unsigned VectorizerParams::VectorizationFactor;
78 
79 static cl::opt<unsigned, true>
80 VectorizationInterleave("force-vector-interleave", cl::Hidden,
81                         cl::desc("Sets the vectorization interleave count. "
82                                  "Zero is autoselect."),
83                         cl::location(
84                             VectorizerParams::VectorizationInterleave));
85 unsigned VectorizerParams::VectorizationInterleave;
86 
87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
88     "runtime-memory-check-threshold", cl::Hidden,
89     cl::desc("When performing memory disambiguation checks at runtime do not "
90              "generate more than this number of comparisons (default = 8)."),
91     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
93 
94 /// The maximum iterations used to merge memory checks
95 static cl::opt<unsigned> MemoryCheckMergeThreshold(
96     "memory-check-merge-threshold", cl::Hidden,
97     cl::desc("Maximum number of comparisons done when trying to merge "
98              "runtime memory checks. (default = 100)"),
99     cl::init(100));
100 
101 /// Maximum SIMD width.
102 const unsigned VectorizerParams::MaxVectorWidth = 64;
103 
104 /// We collect dependences up to this threshold.
105 static cl::opt<unsigned>
106     MaxDependences("max-dependences", cl::Hidden,
107                    cl::desc("Maximum number of dependences collected by "
108                             "loop-access analysis (default = 100)"),
109                    cl::init(100));
110 
111 /// This enables versioning on the strides of symbolically striding memory
112 /// accesses in code like the following.
113 ///   for (i = 0; i < N; ++i)
114 ///     A[i * Stride1] += B[i * Stride2] ...
115 ///
116 /// Will be roughly translated to
117 ///    if (Stride1 == 1 && Stride2 == 1) {
118 ///      for (i = 0; i < N; i+=4)
119 ///       A[i:i+3] += ...
120 ///    } else
121 ///      ...
122 static cl::opt<bool> EnableMemAccessVersioning(
123     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
124     cl::desc("Enable symbolic stride memory access versioning"));
125 
126 /// Enable store-to-load forwarding conflict detection. This option can
127 /// be disabled for correctness testing.
128 static cl::opt<bool> EnableForwardingConflictDetection(
129     "store-to-load-forwarding-conflict-detection", cl::Hidden,
130     cl::desc("Enable conflict detection in loop-access analysis"),
131     cl::init(true));
132 
133 static cl::opt<unsigned> MaxForkedSCEVDepth(
134     "max-forked-scev-depth", cl::Hidden,
135     cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
136     cl::init(5));
137 
138 bool VectorizerParams::isInterleaveForced() {
139   return ::VectorizationInterleave.getNumOccurrences() > 0;
140 }
141 
142 Value *llvm::stripIntegerCast(Value *V) {
143   if (auto *CI = dyn_cast<CastInst>(V))
144     if (CI->getOperand(0)->getType()->isIntegerTy())
145       return CI->getOperand(0);
146   return V;
147 }
148 
149 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
150                                             const ValueToValueMap &PtrToStride,
151                                             Value *Ptr) {
152   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
153 
154   // If there is an entry in the map return the SCEV of the pointer with the
155   // symbolic stride replaced by one.
156   ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr);
157   if (SI == PtrToStride.end())
158     // For a non-symbolic stride, just return the original expression.
159     return OrigSCEV;
160 
161   Value *StrideVal = stripIntegerCast(SI->second);
162 
163   ScalarEvolution *SE = PSE.getSE();
164   const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
165   const auto *CT =
166     static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
167 
168   PSE.addPredicate(*SE->getEqualPredicate(U, CT));
169   auto *Expr = PSE.getSCEV(Ptr);
170 
171   LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
172 	     << " by: " << *Expr << "\n");
173   return Expr;
174 }
175 
176 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
177     unsigned Index, RuntimePointerChecking &RtCheck)
178     : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
179       AddressSpace(RtCheck.Pointers[Index]
180                        .PointerValue->getType()
181                        ->getPointerAddressSpace()),
182       NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
183   Members.push_back(Index);
184 }
185 
186 /// Calculate Start and End points of memory access.
187 /// Let's assume A is the first access and B is a memory access on N-th loop
188 /// iteration. Then B is calculated as:
189 ///   B = A + Step*N .
190 /// Step value may be positive or negative.
191 /// N is a calculated back-edge taken count:
192 ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
193 /// Start and End points are calculated in the following way:
194 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
195 /// where SizeOfElt is the size of single memory access in bytes.
196 ///
197 /// There is no conflict when the intervals are disjoint:
198 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
199 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr,
200                                     Type *AccessTy, bool WritePtr,
201                                     unsigned DepSetId, unsigned ASId,
202                                     PredicatedScalarEvolution &PSE,
203                                     bool NeedsFreeze) {
204   ScalarEvolution *SE = PSE.getSE();
205 
206   const SCEV *ScStart;
207   const SCEV *ScEnd;
208 
209   if (SE->isLoopInvariant(PtrExpr, Lp)) {
210     ScStart = ScEnd = PtrExpr;
211   } else {
212     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr);
213     assert(AR && "Invalid addrec expression");
214     const SCEV *Ex = PSE.getBackedgeTakenCount();
215 
216     ScStart = AR->getStart();
217     ScEnd = AR->evaluateAtIteration(Ex, *SE);
218     const SCEV *Step = AR->getStepRecurrence(*SE);
219 
220     // For expressions with negative step, the upper bound is ScStart and the
221     // lower bound is ScEnd.
222     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
223       if (CStep->getValue()->isNegative())
224         std::swap(ScStart, ScEnd);
225     } else {
226       // Fallback case: the step is not constant, but we can still
227       // get the upper and lower bounds of the interval by using min/max
228       // expressions.
229       ScStart = SE->getUMinExpr(ScStart, ScEnd);
230       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
231     }
232   }
233   // Add the size of the pointed element to ScEnd.
234   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
235   Type *IdxTy = DL.getIndexType(Ptr->getType());
236   const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
237   ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
238 
239   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
240                         NeedsFreeze);
241 }
242 
243 void RuntimePointerChecking::tryToCreateDiffCheck(
244     const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) {
245   if (!CanUseDiffCheck)
246     return;
247 
248   // If either group contains multiple different pointers, bail out.
249   // TODO: Support multiple pointers by using the minimum or maximum pointer,
250   // depending on src & sink.
251   if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) {
252     CanUseDiffCheck = false;
253     return;
254   }
255 
256   PointerInfo *Src = &Pointers[CGI.Members[0]];
257   PointerInfo *Sink = &Pointers[CGJ.Members[0]];
258 
259   // If either pointer is read and written, multiple checks may be needed. Bail
260   // out.
261   if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() ||
262       !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) {
263     CanUseDiffCheck = false;
264     return;
265   }
266 
267   ArrayRef<unsigned> AccSrc =
268       DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr);
269   ArrayRef<unsigned> AccSink =
270       DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr);
271   // If either pointer is accessed multiple times, there may not be a clear
272   // src/sink relation. Bail out for now.
273   if (AccSrc.size() != 1 || AccSink.size() != 1) {
274     CanUseDiffCheck = false;
275     return;
276   }
277   // If the sink is accessed before src, swap src/sink.
278   if (AccSink[0] < AccSrc[0])
279     std::swap(Src, Sink);
280 
281   auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr);
282   auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr);
283   if (!SrcAR || !SinkAR) {
284     CanUseDiffCheck = false;
285     return;
286   }
287 
288   const DataLayout &DL =
289       SinkAR->getLoop()->getHeader()->getModule()->getDataLayout();
290   SmallVector<Instruction *, 4> SrcInsts =
291       DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr);
292   SmallVector<Instruction *, 4> SinkInsts =
293       DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr);
294   Type *SrcTy = getLoadStoreType(SrcInsts[0]);
295   Type *DstTy = getLoadStoreType(SinkInsts[0]);
296   if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy))
297     return;
298   unsigned AllocSize =
299       std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy));
300   IntegerType *IntTy =
301       IntegerType::get(Src->PointerValue->getContext(),
302                        DL.getPointerSizeInBits(CGI.AddressSpace));
303 
304   // Only matching constant steps matching the AllocSize are supported at the
305   // moment. This simplifies the difference computation. Can be extended in the
306   // future.
307   auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE));
308   if (!Step || Step != SrcAR->getStepRecurrence(*SE) ||
309       Step->getAPInt().abs() != AllocSize) {
310     CanUseDiffCheck = false;
311     return;
312   }
313 
314   // When counting down, the dependence distance needs to be swapped.
315   if (Step->getValue()->isNegative())
316     std::swap(SinkAR, SrcAR);
317 
318   const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy);
319   const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy);
320   if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
321       isa<SCEVCouldNotCompute>(SrcStartInt)) {
322     CanUseDiffCheck = false;
323     return;
324   }
325   DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
326                           Src->NeedsFreeze || Sink->NeedsFreeze);
327 }
328 
329 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() {
330   SmallVector<RuntimePointerCheck, 4> Checks;
331 
332   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
333     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
334       const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
335       const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
336 
337       if (needsChecking(CGI, CGJ)) {
338         tryToCreateDiffCheck(CGI, CGJ);
339         Checks.push_back(std::make_pair(&CGI, &CGJ));
340       }
341     }
342   }
343   return Checks;
344 }
345 
346 void RuntimePointerChecking::generateChecks(
347     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
348   assert(Checks.empty() && "Checks is not empty");
349   groupChecks(DepCands, UseDependencies);
350   Checks = generateChecks();
351 }
352 
353 bool RuntimePointerChecking::needsChecking(
354     const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
355   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
356     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
357       if (needsChecking(M.Members[I], N.Members[J]))
358         return true;
359   return false;
360 }
361 
362 /// Compare \p I and \p J and return the minimum.
363 /// Return nullptr in case we couldn't find an answer.
364 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
365                                    ScalarEvolution *SE) {
366   const SCEV *Diff = SE->getMinusSCEV(J, I);
367   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
368 
369   if (!C)
370     return nullptr;
371   if (C->getValue()->isNegative())
372     return J;
373   return I;
374 }
375 
376 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index,
377                                          RuntimePointerChecking &RtCheck) {
378   return addPointer(
379       Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
380       RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
381       RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE);
382 }
383 
384 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
385                                          const SCEV *End, unsigned AS,
386                                          bool NeedsFreeze,
387                                          ScalarEvolution &SE) {
388   assert(AddressSpace == AS &&
389          "all pointers in a checking group must be in the same address space");
390 
391   // Compare the starts and ends with the known minimum and maximum
392   // of this set. We need to know how we compare against the min/max
393   // of the set in order to be able to emit memchecks.
394   const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
395   if (!Min0)
396     return false;
397 
398   const SCEV *Min1 = getMinFromExprs(End, High, &SE);
399   if (!Min1)
400     return false;
401 
402   // Update the low bound  expression if we've found a new min value.
403   if (Min0 == Start)
404     Low = Start;
405 
406   // Update the high bound expression if we've found a new max value.
407   if (Min1 != End)
408     High = End;
409 
410   Members.push_back(Index);
411   this->NeedsFreeze |= NeedsFreeze;
412   return true;
413 }
414 
415 void RuntimePointerChecking::groupChecks(
416     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
417   // We build the groups from dependency candidates equivalence classes
418   // because:
419   //    - We know that pointers in the same equivalence class share
420   //      the same underlying object and therefore there is a chance
421   //      that we can compare pointers
422   //    - We wouldn't be able to merge two pointers for which we need
423   //      to emit a memcheck. The classes in DepCands are already
424   //      conveniently built such that no two pointers in the same
425   //      class need checking against each other.
426 
427   // We use the following (greedy) algorithm to construct the groups
428   // For every pointer in the equivalence class:
429   //   For each existing group:
430   //   - if the difference between this pointer and the min/max bounds
431   //     of the group is a constant, then make the pointer part of the
432   //     group and update the min/max bounds of that group as required.
433 
434   CheckingGroups.clear();
435 
436   // If we need to check two pointers to the same underlying object
437   // with a non-constant difference, we shouldn't perform any pointer
438   // grouping with those pointers. This is because we can easily get
439   // into cases where the resulting check would return false, even when
440   // the accesses are safe.
441   //
442   // The following example shows this:
443   // for (i = 0; i < 1000; ++i)
444   //   a[5000 + i * m] = a[i] + a[i + 9000]
445   //
446   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
447   // (0, 10000) which is always false. However, if m is 1, there is no
448   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
449   // us to perform an accurate check in this case.
450   //
451   // The above case requires that we have an UnknownDependence between
452   // accesses to the same underlying object. This cannot happen unless
453   // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
454   // is also false. In this case we will use the fallback path and create
455   // separate checking groups for all pointers.
456 
457   // If we don't have the dependency partitions, construct a new
458   // checking pointer group for each pointer. This is also required
459   // for correctness, because in this case we can have checking between
460   // pointers to the same underlying object.
461   if (!UseDependencies) {
462     for (unsigned I = 0; I < Pointers.size(); ++I)
463       CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
464     return;
465   }
466 
467   unsigned TotalComparisons = 0;
468 
469   DenseMap<Value *, SmallVector<unsigned>> PositionMap;
470   for (unsigned Index = 0; Index < Pointers.size(); ++Index) {
471     auto Iter = PositionMap.insert({Pointers[Index].PointerValue, {}});
472     Iter.first->second.push_back(Index);
473   }
474 
475   // We need to keep track of what pointers we've already seen so we
476   // don't process them twice.
477   SmallSet<unsigned, 2> Seen;
478 
479   // Go through all equivalence classes, get the "pointer check groups"
480   // and add them to the overall solution. We use the order in which accesses
481   // appear in 'Pointers' to enforce determinism.
482   for (unsigned I = 0; I < Pointers.size(); ++I) {
483     // We've seen this pointer before, and therefore already processed
484     // its equivalence class.
485     if (Seen.count(I))
486       continue;
487 
488     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
489                                            Pointers[I].IsWritePtr);
490 
491     SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
492     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
493 
494     // Because DepCands is constructed by visiting accesses in the order in
495     // which they appear in alias sets (which is deterministic) and the
496     // iteration order within an equivalence class member is only dependent on
497     // the order in which unions and insertions are performed on the
498     // equivalence class, the iteration order is deterministic.
499     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
500          MI != ME; ++MI) {
501       auto PointerI = PositionMap.find(MI->getPointer());
502       assert(PointerI != PositionMap.end() &&
503              "pointer in equivalence class not found in PositionMap");
504       for (unsigned Pointer : PointerI->second) {
505         bool Merged = false;
506         // Mark this pointer as seen.
507         Seen.insert(Pointer);
508 
509         // Go through all the existing sets and see if we can find one
510         // which can include this pointer.
511         for (RuntimeCheckingPtrGroup &Group : Groups) {
512           // Don't perform more than a certain amount of comparisons.
513           // This should limit the cost of grouping the pointers to something
514           // reasonable.  If we do end up hitting this threshold, the algorithm
515           // will create separate groups for all remaining pointers.
516           if (TotalComparisons > MemoryCheckMergeThreshold)
517             break;
518 
519           TotalComparisons++;
520 
521           if (Group.addPointer(Pointer, *this)) {
522             Merged = true;
523             break;
524           }
525         }
526 
527         if (!Merged)
528           // We couldn't add this pointer to any existing set or the threshold
529           // for the number of comparisons has been reached. Create a new group
530           // to hold the current pointer.
531           Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
532       }
533     }
534 
535     // We've computed the grouped checks for this partition.
536     // Save the results and continue with the next one.
537     llvm::copy(Groups, std::back_inserter(CheckingGroups));
538   }
539 }
540 
541 bool RuntimePointerChecking::arePointersInSamePartition(
542     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
543     unsigned PtrIdx2) {
544   return (PtrToPartition[PtrIdx1] != -1 &&
545           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
546 }
547 
548 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
549   const PointerInfo &PointerI = Pointers[I];
550   const PointerInfo &PointerJ = Pointers[J];
551 
552   // No need to check if two readonly pointers intersect.
553   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
554     return false;
555 
556   // Only need to check pointers between two different dependency sets.
557   if (PointerI.DependencySetId == PointerJ.DependencySetId)
558     return false;
559 
560   // Only need to check pointers in the same alias set.
561   if (PointerI.AliasSetId != PointerJ.AliasSetId)
562     return false;
563 
564   return true;
565 }
566 
567 void RuntimePointerChecking::printChecks(
568     raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
569     unsigned Depth) const {
570   unsigned N = 0;
571   for (const auto &Check : Checks) {
572     const auto &First = Check.first->Members, &Second = Check.second->Members;
573 
574     OS.indent(Depth) << "Check " << N++ << ":\n";
575 
576     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
577     for (unsigned K = 0; K < First.size(); ++K)
578       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
579 
580     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
581     for (unsigned K = 0; K < Second.size(); ++K)
582       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
583   }
584 }
585 
586 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
587 
588   OS.indent(Depth) << "Run-time memory checks:\n";
589   printChecks(OS, Checks, Depth);
590 
591   OS.indent(Depth) << "Grouped accesses:\n";
592   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
593     const auto &CG = CheckingGroups[I];
594 
595     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
596     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
597                          << ")\n";
598     for (unsigned J = 0; J < CG.Members.size(); ++J) {
599       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
600                            << "\n";
601     }
602   }
603 }
604 
605 namespace {
606 
607 /// Analyses memory accesses in a loop.
608 ///
609 /// Checks whether run time pointer checks are needed and builds sets for data
610 /// dependence checking.
611 class AccessAnalysis {
612 public:
613   /// Read or write access location.
614   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
615   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
616 
617   AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI,
618                  MemoryDepChecker::DepCandidates &DA,
619                  PredicatedScalarEvolution &PSE)
620       : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), PSE(PSE) {}
621 
622   /// Register a load  and whether it is only read from.
623   void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) {
624     Value *Ptr = const_cast<Value*>(Loc.Ptr);
625     AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
626     Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy);
627     if (IsReadOnly)
628       ReadOnlyPtr.insert(Ptr);
629   }
630 
631   /// Register a store.
632   void addStore(MemoryLocation &Loc, Type *AccessTy) {
633     Value *Ptr = const_cast<Value*>(Loc.Ptr);
634     AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
635     Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy);
636   }
637 
638   /// Check if we can emit a run-time no-alias check for \p Access.
639   ///
640   /// Returns true if we can emit a run-time no alias check for \p Access.
641   /// If we can check this access, this also adds it to a dependence set and
642   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
643   /// we will attempt to use additional run-time checks in order to get
644   /// the bounds of the pointer.
645   bool createCheckForAccess(RuntimePointerChecking &RtCheck,
646                             MemAccessInfo Access, Type *AccessTy,
647                             const ValueToValueMap &Strides,
648                             DenseMap<Value *, unsigned> &DepSetId,
649                             Loop *TheLoop, unsigned &RunningDepId,
650                             unsigned ASId, bool ShouldCheckStride, bool Assume);
651 
652   /// Check whether we can check the pointers at runtime for
653   /// non-intersection.
654   ///
655   /// Returns true if we need no check or if we do and we can generate them
656   /// (i.e. the pointers have computable bounds).
657   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
658                        Loop *TheLoop, const ValueToValueMap &Strides,
659                        Value *&UncomputablePtr, bool ShouldCheckWrap = false);
660 
661   /// Goes over all memory accesses, checks whether a RT check is needed
662   /// and builds sets of dependent accesses.
663   void buildDependenceSets() {
664     processMemAccesses();
665   }
666 
667   /// Initial processing of memory accesses determined that we need to
668   /// perform dependency checking.
669   ///
670   /// Note that this can later be cleared if we retry memcheck analysis without
671   /// dependency checking (i.e. FoundNonConstantDistanceDependence).
672   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
673 
674   /// We decided that no dependence analysis would be used.  Reset the state.
675   void resetDepChecks(MemoryDepChecker &DepChecker) {
676     CheckDeps.clear();
677     DepChecker.clearDependences();
678   }
679 
680   MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
681 
682 private:
683   typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
684 
685   /// Go over all memory access and check whether runtime pointer checks
686   /// are needed and build sets of dependency check candidates.
687   void processMemAccesses();
688 
689   /// Map of all accesses. Values are the types used to access memory pointed to
690   /// by the pointer.
691   PtrAccessMap Accesses;
692 
693   /// The loop being checked.
694   const Loop *TheLoop;
695 
696   /// List of accesses that need a further dependence check.
697   MemAccessInfoList CheckDeps;
698 
699   /// Set of pointers that are read only.
700   SmallPtrSet<Value*, 16> ReadOnlyPtr;
701 
702   /// An alias set tracker to partition the access set by underlying object and
703   //intrinsic property (such as TBAA metadata).
704   AliasSetTracker AST;
705 
706   LoopInfo *LI;
707 
708   /// Sets of potentially dependent accesses - members of one set share an
709   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
710   /// dependence check.
711   MemoryDepChecker::DepCandidates &DepCands;
712 
713   /// Initial processing of memory accesses determined that we may need
714   /// to add memchecks.  Perform the analysis to determine the necessary checks.
715   ///
716   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
717   /// memcheck analysis without dependency checking
718   /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
719   /// cleared while this remains set if we have potentially dependent accesses.
720   bool IsRTCheckAnalysisNeeded = false;
721 
722   /// The SCEV predicate containing all the SCEV-related assumptions.
723   PredicatedScalarEvolution &PSE;
724 };
725 
726 } // end anonymous namespace
727 
728 /// Check whether a pointer can participate in a runtime bounds check.
729 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
730 /// by adding run-time checks (overflow checks) if necessary.
731 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr,
732                                 const SCEV *PtrScev, Loop *L, bool Assume) {
733   // The bounds for loop-invariant pointer is trivial.
734   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
735     return true;
736 
737   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
738 
739   if (!AR && Assume)
740     AR = PSE.getAsAddRec(Ptr);
741 
742   if (!AR)
743     return false;
744 
745   return AR->isAffine();
746 }
747 
748 /// Check whether a pointer address cannot wrap.
749 static bool isNoWrap(PredicatedScalarEvolution &PSE,
750                      const ValueToValueMap &Strides, Value *Ptr, Type *AccessTy,
751                      Loop *L) {
752   const SCEV *PtrScev = PSE.getSCEV(Ptr);
753   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
754     return true;
755 
756   int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides);
757   if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
758     return true;
759 
760   return false;
761 }
762 
763 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
764                           function_ref<void(Value *)> AddPointer) {
765   SmallPtrSet<Value *, 8> Visited;
766   SmallVector<Value *> WorkList;
767   WorkList.push_back(StartPtr);
768 
769   while (!WorkList.empty()) {
770     Value *Ptr = WorkList.pop_back_val();
771     if (!Visited.insert(Ptr).second)
772       continue;
773     auto *PN = dyn_cast<PHINode>(Ptr);
774     // SCEV does not look through non-header PHIs inside the loop. Such phis
775     // can be analyzed by adding separate accesses for each incoming pointer
776     // value.
777     if (PN && InnermostLoop.contains(PN->getParent()) &&
778         PN->getParent() != InnermostLoop.getHeader()) {
779       for (const Use &Inc : PN->incoming_values())
780         WorkList.push_back(Inc);
781     } else
782       AddPointer(Ptr);
783   }
784 }
785 
786 // Walk back through the IR for a pointer, looking for a select like the
787 // following:
788 //
789 //  %offset = select i1 %cmp, i64 %a, i64 %b
790 //  %addr = getelementptr double, double* %base, i64 %offset
791 //  %ld = load double, double* %addr, align 8
792 //
793 // We won't be able to form a single SCEVAddRecExpr from this since the
794 // address for each loop iteration depends on %cmp. We could potentially
795 // produce multiple valid SCEVAddRecExprs, though, and check all of them for
796 // memory safety/aliasing if needed.
797 //
798 // If we encounter some IR we don't yet handle, or something obviously fine
799 // like a constant, then we just add the SCEV for that term to the list passed
800 // in by the caller. If we have a node that may potentially yield a valid
801 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
802 // ourselves before adding to the list.
803 static void
804 findForkedSCEVs(ScalarEvolution *SE, const Loop *L, Value *Ptr,
805                 SmallVectorImpl<std::pair<const SCEV *, bool>> &ScevList,
806                 unsigned Depth) {
807   // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
808   // we've exceeded our limit on recursion, just return whatever we have
809   // regardless of whether it can be used for a forked pointer or not, along
810   // with an indication of whether it might be a poison or undef value.
811   const SCEV *Scev = SE->getSCEV(Ptr);
812   if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) ||
813       !isa<Instruction>(Ptr) || Depth == 0) {
814     ScevList.push_back(
815         std::make_pair(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)));
816     return;
817   }
818 
819   Depth--;
820 
821   auto UndefPoisonCheck = [](std::pair<const SCEV *, bool> S) -> bool {
822     return S.second;
823   };
824 
825   Instruction *I = cast<Instruction>(Ptr);
826   unsigned Opcode = I->getOpcode();
827   switch (Opcode) {
828   case Instruction::GetElementPtr: {
829     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
830     Type *SourceTy = GEP->getSourceElementType();
831     // We only handle base + single offset GEPs here for now.
832     // Not dealing with preexisting gathers yet, so no vectors.
833     if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) {
834       ScevList.push_back(
835           std::make_pair(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP)));
836       break;
837     }
838     SmallVector<std::pair<const SCEV *, bool>, 2> BaseScevs;
839     SmallVector<std::pair<const SCEV *, bool>, 2> OffsetScevs;
840     findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth);
841     findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth);
842 
843     // See if we need to freeze our fork...
844     bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) ||
845                        any_of(OffsetScevs, UndefPoisonCheck);
846 
847     // Check that we only have a single fork, on either the base or the offset.
848     // Copy the SCEV across for the one without a fork in order to generate
849     // the full SCEV for both sides of the GEP.
850     if (OffsetScevs.size() == 2 && BaseScevs.size() == 1)
851       BaseScevs.push_back(BaseScevs[0]);
852     else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1)
853       OffsetScevs.push_back(OffsetScevs[0]);
854     else {
855       ScevList.push_back(std::make_pair(Scev, NeedsFreeze));
856       break;
857     }
858 
859     // Find the pointer type we need to extend to.
860     Type *IntPtrTy = SE->getEffectiveSCEVType(
861         SE->getSCEV(GEP->getPointerOperand())->getType());
862 
863     // Find the size of the type being pointed to. We only have a single
864     // index term (guarded above) so we don't need to index into arrays or
865     // structures, just get the size of the scalar value.
866     const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy);
867 
868     // Scale up the offsets by the size of the type, then add to the bases.
869     const SCEV *Scaled1 = SE->getMulExpr(
870         Size, SE->getTruncateOrSignExtend(OffsetScevs[0].first, IntPtrTy));
871     const SCEV *Scaled2 = SE->getMulExpr(
872         Size, SE->getTruncateOrSignExtend(OffsetScevs[1].first, IntPtrTy));
873     ScevList.push_back(std::make_pair(
874         SE->getAddExpr(BaseScevs[0].first, Scaled1), NeedsFreeze));
875     ScevList.push_back(std::make_pair(
876         SE->getAddExpr(BaseScevs[1].first, Scaled2), NeedsFreeze));
877     break;
878   }
879   case Instruction::Select: {
880     SmallVector<std::pair<const SCEV *, bool>, 2> ChildScevs;
881     // A select means we've found a forked pointer, but we currently only
882     // support a single select per pointer so if there's another behind this
883     // then we just bail out and return the generic SCEV.
884     findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
885     findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth);
886     if (ChildScevs.size() == 2) {
887       ScevList.push_back(ChildScevs[0]);
888       ScevList.push_back(ChildScevs[1]);
889     } else
890       ScevList.push_back(
891           std::make_pair(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)));
892     break;
893   }
894   default:
895     // Just return the current SCEV if we haven't handled the instruction yet.
896     LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n");
897     ScevList.push_back(
898         std::make_pair(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)));
899     break;
900   }
901 
902   return;
903 }
904 
905 static SmallVector<std::pair<const SCEV *, bool>>
906 findForkedPointer(PredicatedScalarEvolution &PSE,
907                   const ValueToValueMap &StridesMap, Value *Ptr,
908                   const Loop *L) {
909   ScalarEvolution *SE = PSE.getSE();
910   assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!");
911   SmallVector<std::pair<const SCEV *, bool>> Scevs;
912   findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth);
913 
914   // For now, we will only accept a forked pointer with two possible SCEVs.
915   if (Scevs.size() == 2)
916     return Scevs;
917 
918   return {
919       std::make_pair(replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false)};
920 }
921 
922 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
923                                           MemAccessInfo Access, Type *AccessTy,
924                                           const ValueToValueMap &StridesMap,
925                                           DenseMap<Value *, unsigned> &DepSetId,
926                                           Loop *TheLoop, unsigned &RunningDepId,
927                                           unsigned ASId, bool ShouldCheckWrap,
928                                           bool Assume) {
929   Value *Ptr = Access.getPointer();
930 
931   SmallVector<std::pair<const SCEV *, bool>> TranslatedPtrs =
932       findForkedPointer(PSE, StridesMap, Ptr, TheLoop);
933 
934   for (auto &P : TranslatedPtrs) {
935     const SCEV *PtrExpr = P.first;
936     if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume))
937       return false;
938 
939     // When we run after a failing dependency check we have to make sure
940     // we don't have wrapping pointers.
941     if (ShouldCheckWrap) {
942       // Skip wrap checking when translating pointers.
943       if (TranslatedPtrs.size() > 1)
944         return false;
945 
946       if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) {
947         auto *Expr = PSE.getSCEV(Ptr);
948         if (!Assume || !isa<SCEVAddRecExpr>(Expr))
949           return false;
950         PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
951       }
952     }
953     // If there's only one option for Ptr, look it up after bounds and wrap
954     // checking, because assumptions might have been added to PSE.
955     if (TranslatedPtrs.size() == 1)
956       TranslatedPtrs[0] = std::make_pair(
957           replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false);
958   }
959 
960   for (auto &P : TranslatedPtrs) {
961     const SCEV *PtrExpr = P.first;
962 
963     // The id of the dependence set.
964     unsigned DepId;
965 
966     if (isDependencyCheckNeeded()) {
967       Value *Leader = DepCands.getLeaderValue(Access).getPointer();
968       unsigned &LeaderId = DepSetId[Leader];
969       if (!LeaderId)
970         LeaderId = RunningDepId++;
971       DepId = LeaderId;
972     } else
973       // Each access has its own dependence set.
974       DepId = RunningDepId++;
975 
976     bool IsWrite = Access.getInt();
977     RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
978                    P.second);
979     LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
980   }
981 
982   return true;
983 }
984 
985 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
986                                      ScalarEvolution *SE, Loop *TheLoop,
987                                      const ValueToValueMap &StridesMap,
988                                      Value *&UncomputablePtr, bool ShouldCheckWrap) {
989   // Find pointers with computable bounds. We are going to use this information
990   // to place a runtime bound check.
991   bool CanDoRT = true;
992 
993   bool MayNeedRTCheck = false;
994   if (!IsRTCheckAnalysisNeeded) return true;
995 
996   bool IsDepCheckNeeded = isDependencyCheckNeeded();
997 
998   // We assign a consecutive id to access from different alias sets.
999   // Accesses between different groups doesn't need to be checked.
1000   unsigned ASId = 0;
1001   for (auto &AS : AST) {
1002     int NumReadPtrChecks = 0;
1003     int NumWritePtrChecks = 0;
1004     bool CanDoAliasSetRT = true;
1005     ++ASId;
1006 
1007     // We assign consecutive id to access from different dependence sets.
1008     // Accesses within the same set don't need a runtime check.
1009     unsigned RunningDepId = 1;
1010     DenseMap<Value *, unsigned> DepSetId;
1011 
1012     SmallVector<MemAccessInfo, 4> Retries;
1013 
1014     // First, count how many write and read accesses are in the alias set. Also
1015     // collect MemAccessInfos for later.
1016     SmallVector<MemAccessInfo, 4> AccessInfos;
1017     for (const auto &A : AS) {
1018       Value *Ptr = A.getValue();
1019       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
1020 
1021       if (IsWrite)
1022         ++NumWritePtrChecks;
1023       else
1024         ++NumReadPtrChecks;
1025       AccessInfos.emplace_back(Ptr, IsWrite);
1026     }
1027 
1028     // We do not need runtime checks for this alias set, if there are no writes
1029     // or a single write and no reads.
1030     if (NumWritePtrChecks == 0 ||
1031         (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1032       assert((AS.size() <= 1 ||
1033               all_of(AS,
1034                      [this](auto AC) {
1035                        MemAccessInfo AccessWrite(AC.getValue(), true);
1036                        return DepCands.findValue(AccessWrite) == DepCands.end();
1037                      })) &&
1038              "Can only skip updating CanDoRT below, if all entries in AS "
1039              "are reads or there is at most 1 entry");
1040       continue;
1041     }
1042 
1043     for (auto &Access : AccessInfos) {
1044       for (const auto &AccessTy : Accesses[Access]) {
1045         if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1046                                   DepSetId, TheLoop, RunningDepId, ASId,
1047                                   ShouldCheckWrap, false)) {
1048           LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
1049                             << *Access.getPointer() << '\n');
1050           Retries.push_back(Access);
1051           CanDoAliasSetRT = false;
1052         }
1053       }
1054     }
1055 
1056     // Note that this function computes CanDoRT and MayNeedRTCheck
1057     // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
1058     // we have a pointer for which we couldn't find the bounds but we don't
1059     // actually need to emit any checks so it does not matter.
1060     //
1061     // We need runtime checks for this alias set, if there are at least 2
1062     // dependence sets (in which case RunningDepId > 2) or if we need to re-try
1063     // any bound checks (because in that case the number of dependence sets is
1064     // incomplete).
1065     bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
1066 
1067     // We need to perform run-time alias checks, but some pointers had bounds
1068     // that couldn't be checked.
1069     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1070       // Reset the CanDoSetRt flag and retry all accesses that have failed.
1071       // We know that we need these checks, so we can now be more aggressive
1072       // and add further checks if required (overflow checks).
1073       CanDoAliasSetRT = true;
1074       for (auto Access : Retries) {
1075         for (const auto &AccessTy : Accesses[Access]) {
1076           if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1077                                     DepSetId, TheLoop, RunningDepId, ASId,
1078                                     ShouldCheckWrap, /*Assume=*/true)) {
1079             CanDoAliasSetRT = false;
1080             UncomputablePtr = Access.getPointer();
1081             break;
1082           }
1083         }
1084       }
1085     }
1086 
1087     CanDoRT &= CanDoAliasSetRT;
1088     MayNeedRTCheck |= NeedsAliasSetRTCheck;
1089     ++ASId;
1090   }
1091 
1092   // If the pointers that we would use for the bounds comparison have different
1093   // address spaces, assume the values aren't directly comparable, so we can't
1094   // use them for the runtime check. We also have to assume they could
1095   // overlap. In the future there should be metadata for whether address spaces
1096   // are disjoint.
1097   unsigned NumPointers = RtCheck.Pointers.size();
1098   for (unsigned i = 0; i < NumPointers; ++i) {
1099     for (unsigned j = i + 1; j < NumPointers; ++j) {
1100       // Only need to check pointers between two different dependency sets.
1101       if (RtCheck.Pointers[i].DependencySetId ==
1102           RtCheck.Pointers[j].DependencySetId)
1103        continue;
1104       // Only need to check pointers in the same alias set.
1105       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
1106         continue;
1107 
1108       Value *PtrI = RtCheck.Pointers[i].PointerValue;
1109       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
1110 
1111       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
1112       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
1113       if (ASi != ASj) {
1114         LLVM_DEBUG(
1115             dbgs() << "LAA: Runtime check would require comparison between"
1116                       " different address spaces\n");
1117         return false;
1118       }
1119     }
1120   }
1121 
1122   if (MayNeedRTCheck && CanDoRT)
1123     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
1124 
1125   LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
1126                     << " pointer comparisons.\n");
1127 
1128   // If we can do run-time checks, but there are no checks, no runtime checks
1129   // are needed. This can happen when all pointers point to the same underlying
1130   // object for example.
1131   RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
1132 
1133   bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
1134   if (!CanDoRTIfNeeded)
1135     RtCheck.reset();
1136   return CanDoRTIfNeeded;
1137 }
1138 
1139 void AccessAnalysis::processMemAccesses() {
1140   // We process the set twice: first we process read-write pointers, last we
1141   // process read-only pointers. This allows us to skip dependence tests for
1142   // read-only pointers.
1143 
1144   LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
1145   LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
1146   LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
1147   LLVM_DEBUG({
1148     for (auto A : Accesses)
1149       dbgs() << "\t" << *A.first.getPointer() << " ("
1150              << (A.first.getInt()
1151                      ? "write"
1152                      : (ReadOnlyPtr.count(A.first.getPointer()) ? "read-only"
1153                                                                 : "read"))
1154              << ")\n";
1155   });
1156 
1157   // The AliasSetTracker has nicely partitioned our pointers by metadata
1158   // compatibility and potential for underlying-object overlap. As a result, we
1159   // only need to check for potential pointer dependencies within each alias
1160   // set.
1161   for (const auto &AS : AST) {
1162     // Note that both the alias-set tracker and the alias sets themselves used
1163     // linked lists internally and so the iteration order here is deterministic
1164     // (matching the original instruction order within each set).
1165 
1166     bool SetHasWrite = false;
1167 
1168     // Map of pointers to last access encountered.
1169     typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
1170     UnderlyingObjToAccessMap ObjToLastAccess;
1171 
1172     // Set of access to check after all writes have been processed.
1173     PtrAccessMap DeferredAccesses;
1174 
1175     // Iterate over each alias set twice, once to process read/write pointers,
1176     // and then to process read-only pointers.
1177     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1178       bool UseDeferred = SetIteration > 0;
1179       PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;
1180 
1181       for (const auto &AV : AS) {
1182         Value *Ptr = AV.getValue();
1183 
1184         // For a single memory access in AliasSetTracker, Accesses may contain
1185         // both read and write, and they both need to be handled for CheckDeps.
1186         for (const auto &AC : S) {
1187           if (AC.first.getPointer() != Ptr)
1188             continue;
1189 
1190           bool IsWrite = AC.first.getInt();
1191 
1192           // If we're using the deferred access set, then it contains only
1193           // reads.
1194           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
1195           if (UseDeferred && !IsReadOnlyPtr)
1196             continue;
1197           // Otherwise, the pointer must be in the PtrAccessSet, either as a
1198           // read or a write.
1199           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1200                   S.count(MemAccessInfo(Ptr, false))) &&
1201                  "Alias-set pointer not in the access set?");
1202 
1203           MemAccessInfo Access(Ptr, IsWrite);
1204           DepCands.insert(Access);
1205 
1206           // Memorize read-only pointers for later processing and skip them in
1207           // the first round (they need to be checked after we have seen all
1208           // write pointers). Note: we also mark pointer that are not
1209           // consecutive as "read-only" pointers (so that we check
1210           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
1211           if (!UseDeferred && IsReadOnlyPtr) {
1212             // We only use the pointer keys, the types vector values don't
1213             // matter.
1214             DeferredAccesses.insert({Access, {}});
1215             continue;
1216           }
1217 
1218           // If this is a write - check other reads and writes for conflicts. If
1219           // this is a read only check other writes for conflicts (but only if
1220           // there is no other write to the ptr - this is an optimization to
1221           // catch "a[i] = a[i] + " without having to do a dependence check).
1222           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1223             CheckDeps.push_back(Access);
1224             IsRTCheckAnalysisNeeded = true;
1225           }
1226 
1227           if (IsWrite)
1228             SetHasWrite = true;
1229 
1230           // Create sets of pointers connected by a shared alias set and
1231           // underlying object.
1232           typedef SmallVector<const Value *, 16> ValueVector;
1233           ValueVector TempObjects;
1234 
1235           getUnderlyingObjects(Ptr, TempObjects, LI);
1236           LLVM_DEBUG(dbgs()
1237                      << "Underlying objects for pointer " << *Ptr << "\n");
1238           for (const Value *UnderlyingObj : TempObjects) {
1239             // nullptr never alias, don't join sets for pointer that have "null"
1240             // in their UnderlyingObjects list.
1241             if (isa<ConstantPointerNull>(UnderlyingObj) &&
1242                 !NullPointerIsDefined(
1243                     TheLoop->getHeader()->getParent(),
1244                     UnderlyingObj->getType()->getPointerAddressSpace()))
1245               continue;
1246 
1247             UnderlyingObjToAccessMap::iterator Prev =
1248                 ObjToLastAccess.find(UnderlyingObj);
1249             if (Prev != ObjToLastAccess.end())
1250               DepCands.unionSets(Access, Prev->second);
1251 
1252             ObjToLastAccess[UnderlyingObj] = Access;
1253             LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
1254           }
1255         }
1256       }
1257     }
1258   }
1259 }
1260 
1261 static bool isInBoundsGep(Value *Ptr) {
1262   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
1263     return GEP->isInBounds();
1264   return false;
1265 }
1266 
1267 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
1268 /// i.e. monotonically increasing/decreasing.
1269 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
1270                            PredicatedScalarEvolution &PSE, const Loop *L) {
1271   // FIXME: This should probably only return true for NUW.
1272   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
1273     return true;
1274 
1275   // Scalar evolution does not propagate the non-wrapping flags to values that
1276   // are derived from a non-wrapping induction variable because non-wrapping
1277   // could be flow-sensitive.
1278   //
1279   // Look through the potentially overflowing instruction to try to prove
1280   // non-wrapping for the *specific* value of Ptr.
1281 
1282   // The arithmetic implied by an inbounds GEP can't overflow.
1283   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1284   if (!GEP || !GEP->isInBounds())
1285     return false;
1286 
1287   // Make sure there is only one non-const index and analyze that.
1288   Value *NonConstIndex = nullptr;
1289   for (Value *Index : GEP->indices())
1290     if (!isa<ConstantInt>(Index)) {
1291       if (NonConstIndex)
1292         return false;
1293       NonConstIndex = Index;
1294     }
1295   if (!NonConstIndex)
1296     // The recurrence is on the pointer, ignore for now.
1297     return false;
1298 
1299   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
1300   // AddRec using a NSW operation.
1301   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1302     if (OBO->hasNoSignedWrap() &&
1303         // Assume constant for other the operand so that the AddRec can be
1304         // easily found.
1305         isa<ConstantInt>(OBO->getOperand(1))) {
1306       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
1307 
1308       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1309         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
1310     }
1311 
1312   return false;
1313 }
1314 
1315 /// Check whether the access through \p Ptr has a constant stride.
1316 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy,
1317                            Value *Ptr, const Loop *Lp,
1318                            const ValueToValueMap &StridesMap, bool Assume,
1319                            bool ShouldCheckWrap) {
1320   Type *Ty = Ptr->getType();
1321   assert(Ty->isPointerTy() && "Unexpected non-ptr");
1322 
1323   if (isa<ScalableVectorType>(AccessTy)) {
1324     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
1325                       << "\n");
1326     return 0;
1327   }
1328 
1329   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1330 
1331   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1332   if (Assume && !AR)
1333     AR = PSE.getAsAddRec(Ptr);
1334 
1335   if (!AR) {
1336     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1337                       << " SCEV: " << *PtrScev << "\n");
1338     return 0;
1339   }
1340 
1341   // The access function must stride over the innermost loop.
1342   if (Lp != AR->getLoop()) {
1343     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1344                       << *Ptr << " SCEV: " << *AR << "\n");
1345     return 0;
1346   }
1347 
1348   // The address calculation must not wrap. Otherwise, a dependence could be
1349   // inverted.
1350   // An inbounds getelementptr that is a AddRec with a unit stride
1351   // cannot wrap per definition. The unit stride requirement is checked later.
1352   // An getelementptr without an inbounds attribute and unit stride would have
1353   // to access the pointer value "0" which is undefined behavior in address
1354   // space 0, therefore we can also vectorize this case.
1355   unsigned AddrSpace = Ty->getPointerAddressSpace();
1356   bool IsInBoundsGEP = isInBoundsGep(Ptr);
1357   bool IsNoWrapAddRec = !ShouldCheckWrap ||
1358     PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
1359     isNoWrapAddRec(Ptr, AR, PSE, Lp);
1360   if (!IsNoWrapAddRec && !IsInBoundsGEP &&
1361       NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace)) {
1362     if (Assume) {
1363       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1364       IsNoWrapAddRec = true;
1365       LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
1366                         << "LAA:   Pointer: " << *Ptr << "\n"
1367                         << "LAA:   SCEV: " << *AR << "\n"
1368                         << "LAA:   Added an overflow assumption\n");
1369     } else {
1370       LLVM_DEBUG(
1371           dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1372                  << *Ptr << " SCEV: " << *AR << "\n");
1373       return 0;
1374     }
1375   }
1376 
1377   // Check the step is constant.
1378   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1379 
1380   // Calculate the pointer stride and check if it is constant.
1381   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1382   if (!C) {
1383     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1384                       << " SCEV: " << *AR << "\n");
1385     return 0;
1386   }
1387 
1388   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1389   TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
1390   int64_t Size = AllocSize.getFixedSize();
1391   const APInt &APStepVal = C->getAPInt();
1392 
1393   // Huge step value - give up.
1394   if (APStepVal.getBitWidth() > 64)
1395     return 0;
1396 
1397   int64_t StepVal = APStepVal.getSExtValue();
1398 
1399   // Strided access.
1400   int64_t Stride = StepVal / Size;
1401   int64_t Rem = StepVal % Size;
1402   if (Rem)
1403     return 0;
1404 
1405   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1406   // know we can't "wrap around the address space". In case of address space
1407   // zero we know that this won't happen without triggering undefined behavior.
1408   if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
1409       (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
1410                                               AddrSpace))) {
1411     if (Assume) {
1412       // We can avoid this case by adding a run-time check.
1413       LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1414                         << "inbounds or in address space 0 may wrap:\n"
1415                         << "LAA:   Pointer: " << *Ptr << "\n"
1416                         << "LAA:   SCEV: " << *AR << "\n"
1417                         << "LAA:   Added an overflow assumption\n");
1418       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1419     } else
1420       return 0;
1421   }
1422 
1423   return Stride;
1424 }
1425 
1426 Optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB,
1427                                     Value *PtrB, const DataLayout &DL,
1428                                     ScalarEvolution &SE, bool StrictCheck,
1429                                     bool CheckType) {
1430   assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1431   assert(cast<PointerType>(PtrA->getType())
1432              ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type");
1433   assert(cast<PointerType>(PtrB->getType())
1434              ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type");
1435 
1436   // Make sure that A and B are different pointers.
1437   if (PtrA == PtrB)
1438     return 0;
1439 
1440   // Make sure that the element types are the same if required.
1441   if (CheckType && ElemTyA != ElemTyB)
1442     return None;
1443 
1444   unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1445   unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1446 
1447   // Check that the address spaces match.
1448   if (ASA != ASB)
1449     return None;
1450   unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1451 
1452   APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1453   Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1454   Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1455 
1456   int Val;
1457   if (PtrA1 == PtrB1) {
1458     // Retrieve the address space again as pointer stripping now tracks through
1459     // `addrspacecast`.
1460     ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1461     ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1462     // Check that the address spaces match and that the pointers are valid.
1463     if (ASA != ASB)
1464       return None;
1465 
1466     IdxWidth = DL.getIndexSizeInBits(ASA);
1467     OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1468     OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1469 
1470     OffsetB -= OffsetA;
1471     Val = OffsetB.getSExtValue();
1472   } else {
1473     // Otherwise compute the distance with SCEV between the base pointers.
1474     const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1475     const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1476     const auto *Diff =
1477         dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA));
1478     if (!Diff)
1479       return None;
1480     Val = Diff->getAPInt().getSExtValue();
1481   }
1482   int Size = DL.getTypeStoreSize(ElemTyA);
1483   int Dist = Val / Size;
1484 
1485   // Ensure that the calculated distance matches the type-based one after all
1486   // the bitcasts removal in the provided pointers.
1487   if (!StrictCheck || Dist * Size == Val)
1488     return Dist;
1489   return None;
1490 }
1491 
1492 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
1493                            const DataLayout &DL, ScalarEvolution &SE,
1494                            SmallVectorImpl<unsigned> &SortedIndices) {
1495   assert(llvm::all_of(
1496              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1497          "Expected list of pointer operands.");
1498   // Walk over the pointers, and map each of them to an offset relative to
1499   // first pointer in the array.
1500   Value *Ptr0 = VL[0];
1501 
1502   using DistOrdPair = std::pair<int64_t, int>;
1503   auto Compare = [](const DistOrdPair &L, const DistOrdPair &R) {
1504     return L.first < R.first;
1505   };
1506   std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1507   Offsets.emplace(0, 0);
1508   int Cnt = 1;
1509   bool IsConsecutive = true;
1510   for (auto *Ptr : VL.drop_front()) {
1511     Optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1512                                          /*StrictCheck=*/true);
1513     if (!Diff)
1514       return false;
1515 
1516     // Check if the pointer with the same offset is found.
1517     int64_t Offset = *Diff;
1518     auto Res = Offsets.emplace(Offset, Cnt);
1519     if (!Res.second)
1520       return false;
1521     // Consecutive order if the inserted element is the last one.
1522     IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end();
1523     ++Cnt;
1524   }
1525   SortedIndices.clear();
1526   if (!IsConsecutive) {
1527     // Fill SortedIndices array only if it is non-consecutive.
1528     SortedIndices.resize(VL.size());
1529     Cnt = 0;
1530     for (const std::pair<int64_t, int> &Pair : Offsets) {
1531       SortedIndices[Cnt] = Pair.second;
1532       ++Cnt;
1533     }
1534   }
1535   return true;
1536 }
1537 
1538 /// Returns true if the memory operations \p A and \p B are consecutive.
1539 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1540                                ScalarEvolution &SE, bool CheckType) {
1541   Value *PtrA = getLoadStorePointerOperand(A);
1542   Value *PtrB = getLoadStorePointerOperand(B);
1543   if (!PtrA || !PtrB)
1544     return false;
1545   Type *ElemTyA = getLoadStoreType(A);
1546   Type *ElemTyB = getLoadStoreType(B);
1547   Optional<int> Diff = getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1548                                        /*StrictCheck=*/true, CheckType);
1549   return Diff && *Diff == 1;
1550 }
1551 
1552 void MemoryDepChecker::addAccess(StoreInst *SI) {
1553   visitPointers(SI->getPointerOperand(), *InnermostLoop,
1554                 [this, SI](Value *Ptr) {
1555                   Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1556                   InstMap.push_back(SI);
1557                   ++AccessIdx;
1558                 });
1559 }
1560 
1561 void MemoryDepChecker::addAccess(LoadInst *LI) {
1562   visitPointers(LI->getPointerOperand(), *InnermostLoop,
1563                 [this, LI](Value *Ptr) {
1564                   Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1565                   InstMap.push_back(LI);
1566                   ++AccessIdx;
1567                 });
1568 }
1569 
1570 MemoryDepChecker::VectorizationSafetyStatus
1571 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1572   switch (Type) {
1573   case NoDep:
1574   case Forward:
1575   case BackwardVectorizable:
1576     return VectorizationSafetyStatus::Safe;
1577 
1578   case Unknown:
1579     return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1580   case ForwardButPreventsForwarding:
1581   case Backward:
1582   case BackwardVectorizableButPreventsForwarding:
1583     return VectorizationSafetyStatus::Unsafe;
1584   }
1585   llvm_unreachable("unexpected DepType!");
1586 }
1587 
1588 bool MemoryDepChecker::Dependence::isBackward() const {
1589   switch (Type) {
1590   case NoDep:
1591   case Forward:
1592   case ForwardButPreventsForwarding:
1593   case Unknown:
1594     return false;
1595 
1596   case BackwardVectorizable:
1597   case Backward:
1598   case BackwardVectorizableButPreventsForwarding:
1599     return true;
1600   }
1601   llvm_unreachable("unexpected DepType!");
1602 }
1603 
1604 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1605   return isBackward() || Type == Unknown;
1606 }
1607 
1608 bool MemoryDepChecker::Dependence::isForward() const {
1609   switch (Type) {
1610   case Forward:
1611   case ForwardButPreventsForwarding:
1612     return true;
1613 
1614   case NoDep:
1615   case Unknown:
1616   case BackwardVectorizable:
1617   case Backward:
1618   case BackwardVectorizableButPreventsForwarding:
1619     return false;
1620   }
1621   llvm_unreachable("unexpected DepType!");
1622 }
1623 
1624 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1625                                                     uint64_t TypeByteSize) {
1626   // If loads occur at a distance that is not a multiple of a feasible vector
1627   // factor store-load forwarding does not take place.
1628   // Positive dependences might cause troubles because vectorizing them might
1629   // prevent store-load forwarding making vectorized code run a lot slower.
1630   //   a[i] = a[i-3] ^ a[i-8];
1631   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1632   //   hence on your typical architecture store-load forwarding does not take
1633   //   place. Vectorizing in such cases does not make sense.
1634   // Store-load forwarding distance.
1635 
1636   // After this many iterations store-to-load forwarding conflicts should not
1637   // cause any slowdowns.
1638   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1639   // Maximum vector factor.
1640   uint64_t MaxVFWithoutSLForwardIssues = std::min(
1641       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1642 
1643   // Compute the smallest VF at which the store and load would be misaligned.
1644   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1645        VF *= 2) {
1646     // If the number of vector iteration between the store and the load are
1647     // small we could incur conflicts.
1648     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1649       MaxVFWithoutSLForwardIssues = (VF >> 1);
1650       break;
1651     }
1652   }
1653 
1654   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1655     LLVM_DEBUG(
1656         dbgs() << "LAA: Distance " << Distance
1657                << " that could cause a store-load forwarding conflict\n");
1658     return true;
1659   }
1660 
1661   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1662       MaxVFWithoutSLForwardIssues !=
1663           VectorizerParams::MaxVectorWidth * TypeByteSize)
1664     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1665   return false;
1666 }
1667 
1668 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1669   if (Status < S)
1670     Status = S;
1671 }
1672 
1673 /// Given a non-constant (unknown) dependence-distance \p Dist between two
1674 /// memory accesses, that have the same stride whose absolute value is given
1675 /// in \p Stride, and that have the same type size \p TypeByteSize,
1676 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1677 /// possible to prove statically that the dependence distance is larger
1678 /// than the range that the accesses will travel through the execution of
1679 /// the loop. If so, return true; false otherwise. This is useful for
1680 /// example in loops such as the following (PR31098):
1681 ///     for (i = 0; i < D; ++i) {
1682 ///                = out[i];
1683 ///       out[i+D] =
1684 ///     }
1685 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1686                                      const SCEV &BackedgeTakenCount,
1687                                      const SCEV &Dist, uint64_t Stride,
1688                                      uint64_t TypeByteSize) {
1689 
1690   // If we can prove that
1691   //      (**) |Dist| > BackedgeTakenCount * Step
1692   // where Step is the absolute stride of the memory accesses in bytes,
1693   // then there is no dependence.
1694   //
1695   // Rationale:
1696   // We basically want to check if the absolute distance (|Dist/Step|)
1697   // is >= the loop iteration count (or > BackedgeTakenCount).
1698   // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1699   // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1700   // that the dependence distance is >= VF; This is checked elsewhere.
1701   // But in some cases we can prune unknown dependence distances early, and
1702   // even before selecting the VF, and without a runtime test, by comparing
1703   // the distance against the loop iteration count. Since the vectorized code
1704   // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1705   // also guarantees that distance >= VF.
1706   //
1707   const uint64_t ByteStride = Stride * TypeByteSize;
1708   const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1709   const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1710 
1711   const SCEV *CastedDist = &Dist;
1712   const SCEV *CastedProduct = Product;
1713   uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType());
1714   uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType());
1715 
1716   // The dependence distance can be positive/negative, so we sign extend Dist;
1717   // The multiplication of the absolute stride in bytes and the
1718   // backedgeTakenCount is non-negative, so we zero extend Product.
1719   if (DistTypeSizeBits > ProductTypeSizeBits)
1720     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1721   else
1722     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1723 
1724   // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
1725   // (If so, then we have proven (**) because |Dist| >= Dist)
1726   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1727   if (SE.isKnownPositive(Minus))
1728     return true;
1729 
1730   // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
1731   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1732   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1733   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1734   if (SE.isKnownPositive(Minus))
1735     return true;
1736 
1737   return false;
1738 }
1739 
1740 /// Check the dependence for two accesses with the same stride \p Stride.
1741 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1742 /// bytes.
1743 ///
1744 /// \returns true if they are independent.
1745 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1746                                           uint64_t TypeByteSize) {
1747   assert(Stride > 1 && "The stride must be greater than 1");
1748   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1749   assert(Distance > 0 && "The distance must be non-zero");
1750 
1751   // Skip if the distance is not multiple of type byte size.
1752   if (Distance % TypeByteSize)
1753     return false;
1754 
1755   uint64_t ScaledDist = Distance / TypeByteSize;
1756 
1757   // No dependence if the scaled distance is not multiple of the stride.
1758   // E.g.
1759   //      for (i = 0; i < 1024 ; i += 4)
1760   //        A[i+2] = A[i] + 1;
1761   //
1762   // Two accesses in memory (scaled distance is 2, stride is 4):
1763   //     | A[0] |      |      |      | A[4] |      |      |      |
1764   //     |      |      | A[2] |      |      |      | A[6] |      |
1765   //
1766   // E.g.
1767   //      for (i = 0; i < 1024 ; i += 3)
1768   //        A[i+4] = A[i] + 1;
1769   //
1770   // Two accesses in memory (scaled distance is 4, stride is 3):
1771   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1772   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1773   return ScaledDist % Stride;
1774 }
1775 
1776 MemoryDepChecker::Dependence::DepType
1777 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1778                               const MemAccessInfo &B, unsigned BIdx,
1779                               const ValueToValueMap &Strides) {
1780   assert (AIdx < BIdx && "Must pass arguments in program order");
1781 
1782   Value *APtr = A.getPointer();
1783   Value *BPtr = B.getPointer();
1784   bool AIsWrite = A.getInt();
1785   bool BIsWrite = B.getInt();
1786   Type *ATy = getLoadStoreType(InstMap[AIdx]);
1787   Type *BTy = getLoadStoreType(InstMap[BIdx]);
1788 
1789   // Two reads are independent.
1790   if (!AIsWrite && !BIsWrite)
1791     return Dependence::NoDep;
1792 
1793   // We cannot check pointers in different address spaces.
1794   if (APtr->getType()->getPointerAddressSpace() !=
1795       BPtr->getType()->getPointerAddressSpace())
1796     return Dependence::Unknown;
1797 
1798   int64_t StrideAPtr =
1799       getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true);
1800   int64_t StrideBPtr =
1801       getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true);
1802 
1803   const SCEV *Src = PSE.getSCEV(APtr);
1804   const SCEV *Sink = PSE.getSCEV(BPtr);
1805 
1806   // If the induction step is negative we have to invert source and sink of the
1807   // dependence.
1808   if (StrideAPtr < 0) {
1809     std::swap(APtr, BPtr);
1810     std::swap(ATy, BTy);
1811     std::swap(Src, Sink);
1812     std::swap(AIsWrite, BIsWrite);
1813     std::swap(AIdx, BIdx);
1814     std::swap(StrideAPtr, StrideBPtr);
1815   }
1816 
1817   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1818 
1819   LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1820                     << "(Induction step: " << StrideAPtr << ")\n");
1821   LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1822                     << *InstMap[BIdx] << ": " << *Dist << "\n");
1823 
1824   // Need accesses with constant stride. We don't want to vectorize
1825   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1826   // the address space.
1827   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1828     LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1829     return Dependence::Unknown;
1830   }
1831 
1832   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1833   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1834   bool HasSameSize =
1835       DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy);
1836   uint64_t Stride = std::abs(StrideAPtr);
1837   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1838   if (!C) {
1839     if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize &&
1840         isSafeDependenceDistance(DL, *(PSE.getSE()),
1841                                  *(PSE.getBackedgeTakenCount()), *Dist, Stride,
1842                                  TypeByteSize))
1843       return Dependence::NoDep;
1844 
1845     LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1846     FoundNonConstantDistanceDependence = true;
1847     return Dependence::Unknown;
1848   }
1849 
1850   const APInt &Val = C->getAPInt();
1851   int64_t Distance = Val.getSExtValue();
1852 
1853   // Attempt to prove strided accesses independent.
1854   if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize &&
1855       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1856     LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1857     return Dependence::NoDep;
1858   }
1859 
1860   // Negative distances are not plausible dependencies.
1861   if (Val.isNegative()) {
1862     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1863     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1864         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1865          !HasSameSize)) {
1866       LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1867       return Dependence::ForwardButPreventsForwarding;
1868     }
1869 
1870     LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
1871     return Dependence::Forward;
1872   }
1873 
1874   // Write to the same location with the same size.
1875   if (Val == 0) {
1876     if (HasSameSize)
1877       return Dependence::Forward;
1878     LLVM_DEBUG(
1879         dbgs() << "LAA: Zero dependence difference but different type sizes\n");
1880     return Dependence::Unknown;
1881   }
1882 
1883   assert(Val.isStrictlyPositive() && "Expect a positive value");
1884 
1885   if (!HasSameSize) {
1886     LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
1887                          "different type sizes\n");
1888     return Dependence::Unknown;
1889   }
1890 
1891   // Bail out early if passed-in parameters make vectorization not feasible.
1892   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1893                            VectorizerParams::VectorizationFactor : 1);
1894   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1895                            VectorizerParams::VectorizationInterleave : 1);
1896   // The minimum number of iterations for a vectorized/unrolled version.
1897   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1898 
1899   // It's not vectorizable if the distance is smaller than the minimum distance
1900   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1901   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1902   // TypeByteSize (No need to plus the last gap distance).
1903   //
1904   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1905   //      foo(int *A) {
1906   //        int *B = (int *)((char *)A + 14);
1907   //        for (i = 0 ; i < 1024 ; i += 2)
1908   //          B[i] = A[i] + 1;
1909   //      }
1910   //
1911   // Two accesses in memory (stride is 2):
1912   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1913   //                              | B[0] |      | B[2] |      | B[4] |
1914   //
1915   // Distance needs for vectorizing iterations except the last iteration:
1916   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1917   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1918   //
1919   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1920   // 12, which is less than distance.
1921   //
1922   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1923   // the minimum distance needed is 28, which is greater than distance. It is
1924   // not safe to do vectorization.
1925   uint64_t MinDistanceNeeded =
1926       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1927   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1928     LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
1929                       << Distance << '\n');
1930     return Dependence::Backward;
1931   }
1932 
1933   // Unsafe if the minimum distance needed is greater than max safe distance.
1934   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1935     LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
1936                       << MinDistanceNeeded << " size in bytes");
1937     return Dependence::Backward;
1938   }
1939 
1940   // Positive distance bigger than max vectorization factor.
1941   // FIXME: Should use max factor instead of max distance in bytes, which could
1942   // not handle different types.
1943   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1944   //      void foo (int *A, char *B) {
1945   //        for (unsigned i = 0; i < 1024; i++) {
1946   //          A[i+2] = A[i] + 1;
1947   //          B[i+2] = B[i] + 1;
1948   //        }
1949   //      }
1950   //
1951   // This case is currently unsafe according to the max safe distance. If we
1952   // analyze the two accesses on array B, the max safe dependence distance
1953   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1954   // is 8, which is less than 2 and forbidden vectorization, But actually
1955   // both A and B could be vectorized by 2 iterations.
1956   MaxSafeDepDistBytes =
1957       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
1958 
1959   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1960   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1961       couldPreventStoreLoadForward(Distance, TypeByteSize))
1962     return Dependence::BackwardVectorizableButPreventsForwarding;
1963 
1964   uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
1965   LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1966                     << " with max VF = " << MaxVF << '\n');
1967   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1968   MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
1969   return Dependence::BackwardVectorizable;
1970 }
1971 
1972 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1973                                    MemAccessInfoList &CheckDeps,
1974                                    const ValueToValueMap &Strides) {
1975 
1976   MaxSafeDepDistBytes = -1;
1977   SmallPtrSet<MemAccessInfo, 8> Visited;
1978   for (MemAccessInfo CurAccess : CheckDeps) {
1979     if (Visited.count(CurAccess))
1980       continue;
1981 
1982     // Get the relevant memory access set.
1983     EquivalenceClasses<MemAccessInfo>::iterator I =
1984       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1985 
1986     // Check accesses within this set.
1987     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1988         AccessSets.member_begin(I);
1989     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1990         AccessSets.member_end();
1991 
1992     // Check every access pair.
1993     while (AI != AE) {
1994       Visited.insert(*AI);
1995       bool AIIsWrite = AI->getInt();
1996       // Check loads only against next equivalent class, but stores also against
1997       // other stores in the same equivalence class - to the same address.
1998       EquivalenceClasses<MemAccessInfo>::member_iterator OI =
1999           (AIIsWrite ? AI : std::next(AI));
2000       while (OI != AE) {
2001         // Check every accessing instruction pair in program order.
2002         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
2003              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
2004           // Scan all accesses of another equivalence class, but only the next
2005           // accesses of the same equivalent class.
2006           for (std::vector<unsigned>::iterator
2007                    I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2008                    I2E = (OI == AI ? I1E : Accesses[*OI].end());
2009                I2 != I2E; ++I2) {
2010             auto A = std::make_pair(&*AI, *I1);
2011             auto B = std::make_pair(&*OI, *I2);
2012 
2013             assert(*I1 != *I2);
2014             if (*I1 > *I2)
2015               std::swap(A, B);
2016 
2017             Dependence::DepType Type =
2018                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
2019             mergeInStatus(Dependence::isSafeForVectorization(Type));
2020 
2021             // Gather dependences unless we accumulated MaxDependences
2022             // dependences.  In that case return as soon as we find the first
2023             // unsafe dependence.  This puts a limit on this quadratic
2024             // algorithm.
2025             if (RecordDependences) {
2026               if (Type != Dependence::NoDep)
2027                 Dependences.push_back(Dependence(A.second, B.second, Type));
2028 
2029               if (Dependences.size() >= MaxDependences) {
2030                 RecordDependences = false;
2031                 Dependences.clear();
2032                 LLVM_DEBUG(dbgs()
2033                            << "Too many dependences, stopped recording\n");
2034               }
2035             }
2036             if (!RecordDependences && !isSafeForVectorization())
2037               return false;
2038           }
2039         ++OI;
2040       }
2041       AI++;
2042     }
2043   }
2044 
2045   LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
2046   return isSafeForVectorization();
2047 }
2048 
2049 SmallVector<Instruction *, 4>
2050 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
2051   MemAccessInfo Access(Ptr, isWrite);
2052   auto &IndexVector = Accesses.find(Access)->second;
2053 
2054   SmallVector<Instruction *, 4> Insts;
2055   transform(IndexVector,
2056                  std::back_inserter(Insts),
2057                  [&](unsigned Idx) { return this->InstMap[Idx]; });
2058   return Insts;
2059 }
2060 
2061 const char *MemoryDepChecker::Dependence::DepName[] = {
2062     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
2063     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
2064 
2065 void MemoryDepChecker::Dependence::print(
2066     raw_ostream &OS, unsigned Depth,
2067     const SmallVectorImpl<Instruction *> &Instrs) const {
2068   OS.indent(Depth) << DepName[Type] << ":\n";
2069   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
2070   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
2071 }
2072 
2073 bool LoopAccessInfo::canAnalyzeLoop() {
2074   // We need to have a loop header.
2075   LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
2076                     << TheLoop->getHeader()->getParent()->getName() << ": "
2077                     << TheLoop->getHeader()->getName() << '\n');
2078 
2079   // We can only analyze innermost loops.
2080   if (!TheLoop->isInnermost()) {
2081     LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
2082     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
2083     return false;
2084   }
2085 
2086   // We must have a single backedge.
2087   if (TheLoop->getNumBackEdges() != 1) {
2088     LLVM_DEBUG(
2089         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
2090     recordAnalysis("CFGNotUnderstood")
2091         << "loop control flow is not understood by analyzer";
2092     return false;
2093   }
2094 
2095   // ScalarEvolution needs to be able to find the exit count.
2096   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
2097   if (isa<SCEVCouldNotCompute>(ExitCount)) {
2098     recordAnalysis("CantComputeNumberOfIterations")
2099         << "could not determine number of loop iterations";
2100     LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
2101     return false;
2102   }
2103 
2104   return true;
2105 }
2106 
2107 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI,
2108                                  const TargetLibraryInfo *TLI,
2109                                  DominatorTree *DT) {
2110   // Holds the Load and Store instructions.
2111   SmallVector<LoadInst *, 16> Loads;
2112   SmallVector<StoreInst *, 16> Stores;
2113 
2114   // Holds all the different accesses in the loop.
2115   unsigned NumReads = 0;
2116   unsigned NumReadWrites = 0;
2117 
2118   bool HasComplexMemInst = false;
2119 
2120   // A runtime check is only legal to insert if there are no convergent calls.
2121   HasConvergentOp = false;
2122 
2123   PtrRtChecking->Pointers.clear();
2124   PtrRtChecking->Need = false;
2125 
2126   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
2127 
2128   const bool EnableMemAccessVersioningOfLoop =
2129       EnableMemAccessVersioning &&
2130       !TheLoop->getHeader()->getParent()->hasOptSize();
2131 
2132   // For each block.
2133   for (BasicBlock *BB : TheLoop->blocks()) {
2134     // Scan the BB and collect legal loads and stores. Also detect any
2135     // convergent instructions.
2136     for (Instruction &I : *BB) {
2137       if (auto *Call = dyn_cast<CallBase>(&I)) {
2138         if (Call->isConvergent())
2139           HasConvergentOp = true;
2140       }
2141 
2142       // With both a non-vectorizable memory instruction and a convergent
2143       // operation, found in this loop, no reason to continue the search.
2144       if (HasComplexMemInst && HasConvergentOp) {
2145         CanVecMem = false;
2146         return;
2147       }
2148 
2149       // Avoid hitting recordAnalysis multiple times.
2150       if (HasComplexMemInst)
2151         continue;
2152 
2153       // If this is a load, save it. If this instruction can read from memory
2154       // but is not a load, then we quit. Notice that we don't handle function
2155       // calls that read or write.
2156       if (I.mayReadFromMemory()) {
2157         // Many math library functions read the rounding mode. We will only
2158         // vectorize a loop if it contains known function calls that don't set
2159         // the flag. Therefore, it is safe to ignore this read from memory.
2160         auto *Call = dyn_cast<CallInst>(&I);
2161         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
2162           continue;
2163 
2164         // If the function has an explicit vectorized counterpart, we can safely
2165         // assume that it can be vectorized.
2166         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
2167             !VFDatabase::getMappings(*Call).empty())
2168           continue;
2169 
2170         auto *Ld = dyn_cast<LoadInst>(&I);
2171         if (!Ld) {
2172           recordAnalysis("CantVectorizeInstruction", Ld)
2173             << "instruction cannot be vectorized";
2174           HasComplexMemInst = true;
2175           continue;
2176         }
2177         if (!Ld->isSimple() && !IsAnnotatedParallel) {
2178           recordAnalysis("NonSimpleLoad", Ld)
2179               << "read with atomic ordering or volatile read";
2180           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
2181           HasComplexMemInst = true;
2182           continue;
2183         }
2184         NumLoads++;
2185         Loads.push_back(Ld);
2186         DepChecker->addAccess(Ld);
2187         if (EnableMemAccessVersioningOfLoop)
2188           collectStridedAccess(Ld);
2189         continue;
2190       }
2191 
2192       // Save 'store' instructions. Abort if other instructions write to memory.
2193       if (I.mayWriteToMemory()) {
2194         auto *St = dyn_cast<StoreInst>(&I);
2195         if (!St) {
2196           recordAnalysis("CantVectorizeInstruction", St)
2197               << "instruction cannot be vectorized";
2198           HasComplexMemInst = true;
2199           continue;
2200         }
2201         if (!St->isSimple() && !IsAnnotatedParallel) {
2202           recordAnalysis("NonSimpleStore", St)
2203               << "write with atomic ordering or volatile write";
2204           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
2205           HasComplexMemInst = true;
2206           continue;
2207         }
2208         NumStores++;
2209         Stores.push_back(St);
2210         DepChecker->addAccess(St);
2211         if (EnableMemAccessVersioningOfLoop)
2212           collectStridedAccess(St);
2213       }
2214     } // Next instr.
2215   } // Next block.
2216 
2217   if (HasComplexMemInst) {
2218     CanVecMem = false;
2219     return;
2220   }
2221 
2222   // Now we have two lists that hold the loads and the stores.
2223   // Next, we find the pointers that they use.
2224 
2225   // Check if we see any stores. If there are no stores, then we don't
2226   // care if the pointers are *restrict*.
2227   if (!Stores.size()) {
2228     LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
2229     CanVecMem = true;
2230     return;
2231   }
2232 
2233   MemoryDepChecker::DepCandidates DependentAccesses;
2234   AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE);
2235 
2236   // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
2237   // multiple times on the same object. If the ptr is accessed twice, once
2238   // for read and once for write, it will only appear once (on the write
2239   // list). This is okay, since we are going to check for conflicts between
2240   // writes and between reads and writes, but not between reads and reads.
2241   SmallSet<std::pair<Value *, Type *>, 16> Seen;
2242 
2243   // Record uniform store addresses to identify if we have multiple stores
2244   // to the same address.
2245   SmallPtrSet<Value *, 16> UniformStores;
2246 
2247   for (StoreInst *ST : Stores) {
2248     Value *Ptr = ST->getPointerOperand();
2249 
2250     if (isUniform(Ptr)) {
2251       // Record store instructions to loop invariant addresses
2252       StoresToInvariantAddresses.push_back(ST);
2253       HasDependenceInvolvingLoopInvariantAddress |=
2254           !UniformStores.insert(Ptr).second;
2255     }
2256 
2257     // If we did *not* see this pointer before, insert it to  the read-write
2258     // list. At this phase it is only a 'write' list.
2259     Type *AccessTy = getLoadStoreType(ST);
2260     if (Seen.insert({Ptr, AccessTy}).second) {
2261       ++NumReadWrites;
2262 
2263       MemoryLocation Loc = MemoryLocation::get(ST);
2264       // The TBAA metadata could have a control dependency on the predication
2265       // condition, so we cannot rely on it when determining whether or not we
2266       // need runtime pointer checks.
2267       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
2268         Loc.AATags.TBAA = nullptr;
2269 
2270       visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2271                     [&Accesses, AccessTy, Loc](Value *Ptr) {
2272                       MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2273                       Accesses.addStore(NewLoc, AccessTy);
2274                     });
2275     }
2276   }
2277 
2278   if (IsAnnotatedParallel) {
2279     LLVM_DEBUG(
2280         dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2281                << "checks.\n");
2282     CanVecMem = true;
2283     return;
2284   }
2285 
2286   for (LoadInst *LD : Loads) {
2287     Value *Ptr = LD->getPointerOperand();
2288     // If we did *not* see this pointer before, insert it to the
2289     // read list. If we *did* see it before, then it is already in
2290     // the read-write list. This allows us to vectorize expressions
2291     // such as A[i] += x;  Because the address of A[i] is a read-write
2292     // pointer. This only works if the index of A[i] is consecutive.
2293     // If the address of i is unknown (for example A[B[i]]) then we may
2294     // read a few words, modify, and write a few words, and some of the
2295     // words may be written to the same address.
2296     bool IsReadOnlyPtr = false;
2297     Type *AccessTy = getLoadStoreType(LD);
2298     if (Seen.insert({Ptr, AccessTy}).second ||
2299         !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides)) {
2300       ++NumReads;
2301       IsReadOnlyPtr = true;
2302     }
2303 
2304     // See if there is an unsafe dependency between a load to a uniform address and
2305     // store to the same uniform address.
2306     if (UniformStores.count(Ptr)) {
2307       LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2308                            "load and uniform store to the same address!\n");
2309       HasDependenceInvolvingLoopInvariantAddress = true;
2310     }
2311 
2312     MemoryLocation Loc = MemoryLocation::get(LD);
2313     // The TBAA metadata could have a control dependency on the predication
2314     // condition, so we cannot rely on it when determining whether or not we
2315     // need runtime pointer checks.
2316     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
2317       Loc.AATags.TBAA = nullptr;
2318 
2319     visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2320                   [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) {
2321                     MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2322                     Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2323                   });
2324   }
2325 
2326   // If we write (or read-write) to a single destination and there are no
2327   // other reads in this loop then is it safe to vectorize.
2328   if (NumReadWrites == 1 && NumReads == 0) {
2329     LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2330     CanVecMem = true;
2331     return;
2332   }
2333 
2334   // Build dependence sets and check whether we need a runtime pointer bounds
2335   // check.
2336   Accesses.buildDependenceSets();
2337 
2338   // Find pointers with computable bounds. We are going to use this information
2339   // to place a runtime bound check.
2340   Value *UncomputablePtr = nullptr;
2341   bool CanDoRTIfNeeded =
2342       Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop,
2343                                SymbolicStrides, UncomputablePtr, false);
2344   if (!CanDoRTIfNeeded) {
2345     auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2346     recordAnalysis("CantIdentifyArrayBounds", I)
2347         << "cannot identify array bounds";
2348     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2349                       << "the array bounds.\n");
2350     CanVecMem = false;
2351     return;
2352   }
2353 
2354   LLVM_DEBUG(
2355     dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2356 
2357   CanVecMem = true;
2358   if (Accesses.isDependencyCheckNeeded()) {
2359     LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2360     CanVecMem = DepChecker->areDepsSafe(
2361         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
2362     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
2363 
2364     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
2365       LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2366 
2367       // Clear the dependency checks. We assume they are not needed.
2368       Accesses.resetDepChecks(*DepChecker);
2369 
2370       PtrRtChecking->reset();
2371       PtrRtChecking->Need = true;
2372 
2373       auto *SE = PSE->getSE();
2374       UncomputablePtr = nullptr;
2375       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(
2376           *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true);
2377 
2378       // Check that we found the bounds for the pointer.
2379       if (!CanDoRTIfNeeded) {
2380         auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2381         recordAnalysis("CantCheckMemDepsAtRunTime", I)
2382             << "cannot check memory dependencies at runtime";
2383         LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2384         CanVecMem = false;
2385         return;
2386       }
2387 
2388       CanVecMem = true;
2389     }
2390   }
2391 
2392   if (HasConvergentOp) {
2393     recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2394       << "cannot add control dependency to convergent operation";
2395     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2396                          "would be needed with a convergent operation\n");
2397     CanVecMem = false;
2398     return;
2399   }
2400 
2401   if (CanVecMem)
2402     LLVM_DEBUG(
2403         dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
2404                << (PtrRtChecking->Need ? "" : " don't")
2405                << " need runtime memory checks.\n");
2406   else
2407     emitUnsafeDependenceRemark();
2408 }
2409 
2410 void LoopAccessInfo::emitUnsafeDependenceRemark() {
2411   auto Deps = getDepChecker().getDependences();
2412   if (!Deps)
2413     return;
2414   auto Found = std::find_if(
2415       Deps->begin(), Deps->end(), [](const MemoryDepChecker::Dependence &D) {
2416         return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) !=
2417                MemoryDepChecker::VectorizationSafetyStatus::Safe;
2418       });
2419   if (Found == Deps->end())
2420     return;
2421   MemoryDepChecker::Dependence Dep = *Found;
2422 
2423   LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2424 
2425   // Emit remark for first unsafe dependence
2426   OptimizationRemarkAnalysis &R =
2427       recordAnalysis("UnsafeDep", Dep.getDestination(*this))
2428       << "unsafe dependent memory operations in loop. Use "
2429          "#pragma loop distribute(enable) to allow loop distribution "
2430          "to attempt to isolate the offending operations into a separate "
2431          "loop";
2432 
2433   switch (Dep.Type) {
2434   case MemoryDepChecker::Dependence::NoDep:
2435   case MemoryDepChecker::Dependence::Forward:
2436   case MemoryDepChecker::Dependence::BackwardVectorizable:
2437     llvm_unreachable("Unexpected dependence");
2438   case MemoryDepChecker::Dependence::Backward:
2439     R << "\nBackward loop carried data dependence.";
2440     break;
2441   case MemoryDepChecker::Dependence::ForwardButPreventsForwarding:
2442     R << "\nForward loop carried data dependence that prevents "
2443          "store-to-load forwarding.";
2444     break;
2445   case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding:
2446     R << "\nBackward loop carried data dependence that prevents "
2447          "store-to-load forwarding.";
2448     break;
2449   case MemoryDepChecker::Dependence::Unknown:
2450     R << "\nUnknown data dependence.";
2451     break;
2452   }
2453 
2454   if (Instruction *I = Dep.getSource(*this)) {
2455     DebugLoc SourceLoc = I->getDebugLoc();
2456     if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I)))
2457       SourceLoc = DD->getDebugLoc();
2458     if (SourceLoc)
2459       R << " Memory location is the same as accessed at "
2460         << ore::NV("Location", SourceLoc);
2461   }
2462 }
2463 
2464 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2465                                            DominatorTree *DT)  {
2466   assert(TheLoop->contains(BB) && "Unknown block used");
2467 
2468   // Blocks that do not dominate the latch need predication.
2469   BasicBlock* Latch = TheLoop->getLoopLatch();
2470   return !DT->dominates(BB, Latch);
2471 }
2472 
2473 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2474                                                            Instruction *I) {
2475   assert(!Report && "Multiple reports generated");
2476 
2477   Value *CodeRegion = TheLoop->getHeader();
2478   DebugLoc DL = TheLoop->getStartLoc();
2479 
2480   if (I) {
2481     CodeRegion = I->getParent();
2482     // If there is no debug location attached to the instruction, revert back to
2483     // using the loop's.
2484     if (I->getDebugLoc())
2485       DL = I->getDebugLoc();
2486   }
2487 
2488   Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2489                                                    CodeRegion);
2490   return *Report;
2491 }
2492 
2493 bool LoopAccessInfo::isUniform(Value *V) const {
2494   auto *SE = PSE->getSE();
2495   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
2496   // never considered uniform.
2497   // TODO: Is this really what we want? Even without FP SCEV, we may want some
2498   // trivially loop-invariant FP values to be considered uniform.
2499   if (!SE->isSCEVable(V->getType()))
2500     return false;
2501   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
2502 }
2503 
2504 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2505   Value *Ptr = getLoadStorePointerOperand(MemAccess);
2506   if (!Ptr)
2507     return;
2508 
2509   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2510   if (!Stride)
2511     return;
2512 
2513   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2514                        "versioning:");
2515   LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2516 
2517   // Avoid adding the "Stride == 1" predicate when we know that
2518   // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2519   // or zero iteration loop, as Trip-Count <= Stride == 1.
2520   //
2521   // TODO: We are currently not making a very informed decision on when it is
2522   // beneficial to apply stride versioning. It might make more sense that the
2523   // users of this analysis (such as the vectorizer) will trigger it, based on
2524   // their specific cost considerations; For example, in cases where stride
2525   // versioning does  not help resolving memory accesses/dependences, the
2526   // vectorizer should evaluate the cost of the runtime test, and the benefit
2527   // of various possible stride specializations, considering the alternatives
2528   // of using gather/scatters (if available).
2529 
2530   const SCEV *StrideExpr = PSE->getSCEV(Stride);
2531   const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
2532 
2533   // Match the types so we can compare the stride and the BETakenCount.
2534   // The Stride can be positive/negative, so we sign extend Stride;
2535   // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
2536   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2537   uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType());
2538   uint64_t BETypeSizeBits = DL.getTypeSizeInBits(BETakenCount->getType());
2539   const SCEV *CastedStride = StrideExpr;
2540   const SCEV *CastedBECount = BETakenCount;
2541   ScalarEvolution *SE = PSE->getSE();
2542   if (BETypeSizeBits >= StrideTypeSizeBits)
2543     CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2544   else
2545     CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2546   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2547   // Since TripCount == BackEdgeTakenCount + 1, checking:
2548   // "Stride >= TripCount" is equivalent to checking:
2549   // Stride - BETakenCount > 0
2550   if (SE->isKnownPositive(StrideMinusBETaken)) {
2551     LLVM_DEBUG(
2552         dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2553                   "Stride==1 predicate will imply that the loop executes "
2554                   "at most once.\n");
2555     return;
2556   }
2557   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
2558 
2559   SymbolicStrides[Ptr] = Stride;
2560   StrideSet.insert(Stride);
2561 }
2562 
2563 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2564                                const TargetLibraryInfo *TLI, AAResults *AA,
2565                                DominatorTree *DT, LoopInfo *LI)
2566     : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2567       PtrRtChecking(nullptr),
2568       DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) {
2569   PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
2570   if (canAnalyzeLoop()) {
2571     analyzeLoop(AA, LI, TLI, DT);
2572   }
2573 }
2574 
2575 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2576   if (CanVecMem) {
2577     OS.indent(Depth) << "Memory dependences are safe";
2578     if (MaxSafeDepDistBytes != -1ULL)
2579       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2580          << " bytes";
2581     if (PtrRtChecking->Need)
2582       OS << " with run-time checks";
2583     OS << "\n";
2584   }
2585 
2586   if (HasConvergentOp)
2587     OS.indent(Depth) << "Has convergent operation in loop\n";
2588 
2589   if (Report)
2590     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2591 
2592   if (auto *Dependences = DepChecker->getDependences()) {
2593     OS.indent(Depth) << "Dependences:\n";
2594     for (const auto &Dep : *Dependences) {
2595       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
2596       OS << "\n";
2597     }
2598   } else
2599     OS.indent(Depth) << "Too many dependences, not recorded\n";
2600 
2601   // List the pair of accesses need run-time checks to prove independence.
2602   PtrRtChecking->print(OS, Depth);
2603   OS << "\n";
2604 
2605   OS.indent(Depth) << "Non vectorizable stores to invariant address were "
2606                    << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
2607                    << "found in loop.\n";
2608 
2609   OS.indent(Depth) << "SCEV assumptions:\n";
2610   PSE->getPredicate().print(OS, Depth);
2611 
2612   OS << "\n";
2613 
2614   OS.indent(Depth) << "Expressions re-written:\n";
2615   PSE->print(OS, Depth);
2616 }
2617 
2618 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) {
2619   initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
2620 }
2621 
2622 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
2623   auto &LAI = LoopAccessInfoMap[L];
2624 
2625   if (!LAI)
2626     LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2627 
2628   return *LAI;
2629 }
2630 
2631 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2632   LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
2633 
2634   for (Loop *TopLevelLoop : *LI)
2635     for (Loop *L : depth_first(TopLevelLoop)) {
2636       OS.indent(2) << L->getHeader()->getName() << ":\n";
2637       auto &LAI = LAA.getInfo(L);
2638       LAI.print(OS, 4);
2639     }
2640 }
2641 
2642 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2643   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2644   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2645   TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2646   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2647   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2648   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2649 
2650   return false;
2651 }
2652 
2653 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
2654   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
2655   AU.addRequiredTransitive<AAResultsWrapperPass>();
2656   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2657   AU.addRequiredTransitive<LoopInfoWrapperPass>();
2658 
2659   AU.setPreservesAll();
2660 }
2661 
2662 char LoopAccessLegacyAnalysis::ID = 0;
2663 static const char laa_name[] = "Loop Access Analysis";
2664 #define LAA_NAME "loop-accesses"
2665 
2666 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2667 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2668 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2669 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2670 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2671 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2672 
2673 AnalysisKey LoopAccessAnalysis::Key;
2674 
2675 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2676                                        LoopStandardAnalysisResults &AR) {
2677   return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
2678 }
2679 
2680 namespace llvm {
2681 
2682   Pass *createLAAPass() {
2683     return new LoopAccessLegacyAnalysis();
2684   }
2685 
2686 } // end namespace llvm
2687