1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/EquivalenceClasses.h" 20 #include "llvm/ADT/PointerIntPair.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/AliasSetTracker.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/MemoryLocation.h" 32 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 33 #include "llvm/Analysis/ScalarEvolution.h" 34 #include "llvm/Analysis/ScalarEvolutionExpander.h" 35 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/DiagnosticInfo.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Operator.h" 52 #include "llvm/IR/PassManager.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueHandle.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <cstdlib> 66 #include <iterator> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "loop-accesses" 73 74 static cl::opt<unsigned, true> 75 VectorizationFactor("force-vector-width", cl::Hidden, 76 cl::desc("Sets the SIMD width. Zero is autoselect."), 77 cl::location(VectorizerParams::VectorizationFactor)); 78 unsigned VectorizerParams::VectorizationFactor; 79 80 static cl::opt<unsigned, true> 81 VectorizationInterleave("force-vector-interleave", cl::Hidden, 82 cl::desc("Sets the vectorization interleave count. " 83 "Zero is autoselect."), 84 cl::location( 85 VectorizerParams::VectorizationInterleave)); 86 unsigned VectorizerParams::VectorizationInterleave; 87 88 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 89 "runtime-memory-check-threshold", cl::Hidden, 90 cl::desc("When performing memory disambiguation checks at runtime do not " 91 "generate more than this number of comparisons (default = 8)."), 92 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 93 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 94 95 /// \brief The maximum iterations used to merge memory checks 96 static cl::opt<unsigned> MemoryCheckMergeThreshold( 97 "memory-check-merge-threshold", cl::Hidden, 98 cl::desc("Maximum number of comparisons done when trying to merge " 99 "runtime memory checks. (default = 100)"), 100 cl::init(100)); 101 102 /// Maximum SIMD width. 103 const unsigned VectorizerParams::MaxVectorWidth = 64; 104 105 /// \brief We collect dependences up to this threshold. 106 static cl::opt<unsigned> 107 MaxDependences("max-dependences", cl::Hidden, 108 cl::desc("Maximum number of dependences collected by " 109 "loop-access analysis (default = 100)"), 110 cl::init(100)); 111 112 /// This enables versioning on the strides of symbolically striding memory 113 /// accesses in code like the following. 114 /// for (i = 0; i < N; ++i) 115 /// A[i * Stride1] += B[i * Stride2] ... 116 /// 117 /// Will be roughly translated to 118 /// if (Stride1 == 1 && Stride2 == 1) { 119 /// for (i = 0; i < N; i+=4) 120 /// A[i:i+3] += ... 121 /// } else 122 /// ... 123 static cl::opt<bool> EnableMemAccessVersioning( 124 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 125 cl::desc("Enable symbolic stride memory access versioning")); 126 127 /// \brief Enable store-to-load forwarding conflict detection. This option can 128 /// be disabled for correctness testing. 129 static cl::opt<bool> EnableForwardingConflictDetection( 130 "store-to-load-forwarding-conflict-detection", cl::Hidden, 131 cl::desc("Enable conflict detection in loop-access analysis"), 132 cl::init(true)); 133 134 bool VectorizerParams::isInterleaveForced() { 135 return ::VectorizationInterleave.getNumOccurrences() > 0; 136 } 137 138 Value *llvm::stripIntegerCast(Value *V) { 139 if (auto *CI = dyn_cast<CastInst>(V)) 140 if (CI->getOperand(0)->getType()->isIntegerTy()) 141 return CI->getOperand(0); 142 return V; 143 } 144 145 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 146 const ValueToValueMap &PtrToStride, 147 Value *Ptr, Value *OrigPtr) { 148 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 149 150 // If there is an entry in the map return the SCEV of the pointer with the 151 // symbolic stride replaced by one. 152 ValueToValueMap::const_iterator SI = 153 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 154 if (SI != PtrToStride.end()) { 155 Value *StrideVal = SI->second; 156 157 // Strip casts. 158 StrideVal = stripIntegerCast(StrideVal); 159 160 ScalarEvolution *SE = PSE.getSE(); 161 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 162 const auto *CT = 163 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 164 165 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 166 auto *Expr = PSE.getSCEV(Ptr); 167 168 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr 169 << "\n"); 170 return Expr; 171 } 172 173 // Otherwise, just return the SCEV of the original pointer. 174 return OrigSCEV; 175 } 176 177 /// Calculate Start and End points of memory access. 178 /// Let's assume A is the first access and B is a memory access on N-th loop 179 /// iteration. Then B is calculated as: 180 /// B = A + Step*N . 181 /// Step value may be positive or negative. 182 /// N is a calculated back-edge taken count: 183 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 184 /// Start and End points are calculated in the following way: 185 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 186 /// where SizeOfElt is the size of single memory access in bytes. 187 /// 188 /// There is no conflict when the intervals are disjoint: 189 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 190 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 191 unsigned DepSetId, unsigned ASId, 192 const ValueToValueMap &Strides, 193 PredicatedScalarEvolution &PSE) { 194 // Get the stride replaced scev. 195 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 196 ScalarEvolution *SE = PSE.getSE(); 197 198 const SCEV *ScStart; 199 const SCEV *ScEnd; 200 201 if (SE->isLoopInvariant(Sc, Lp)) 202 ScStart = ScEnd = Sc; 203 else { 204 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 205 assert(AR && "Invalid addrec expression"); 206 const SCEV *Ex = PSE.getBackedgeTakenCount(); 207 208 ScStart = AR->getStart(); 209 ScEnd = AR->evaluateAtIteration(Ex, *SE); 210 const SCEV *Step = AR->getStepRecurrence(*SE); 211 212 // For expressions with negative step, the upper bound is ScStart and the 213 // lower bound is ScEnd. 214 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 215 if (CStep->getValue()->isNegative()) 216 std::swap(ScStart, ScEnd); 217 } else { 218 // Fallback case: the step is not constant, but we can still 219 // get the upper and lower bounds of the interval by using min/max 220 // expressions. 221 ScStart = SE->getUMinExpr(ScStart, ScEnd); 222 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 223 } 224 // Add the size of the pointed element to ScEnd. 225 unsigned EltSize = 226 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; 227 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); 228 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 229 } 230 231 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 232 } 233 234 SmallVector<RuntimePointerChecking::PointerCheck, 4> 235 RuntimePointerChecking::generateChecks() const { 236 SmallVector<PointerCheck, 4> Checks; 237 238 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 239 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 240 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 241 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 242 243 if (needsChecking(CGI, CGJ)) 244 Checks.push_back(std::make_pair(&CGI, &CGJ)); 245 } 246 } 247 return Checks; 248 } 249 250 void RuntimePointerChecking::generateChecks( 251 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 252 assert(Checks.empty() && "Checks is not empty"); 253 groupChecks(DepCands, UseDependencies); 254 Checks = generateChecks(); 255 } 256 257 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 258 const CheckingPtrGroup &N) const { 259 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 260 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 261 if (needsChecking(M.Members[I], N.Members[J])) 262 return true; 263 return false; 264 } 265 266 /// Compare \p I and \p J and return the minimum. 267 /// Return nullptr in case we couldn't find an answer. 268 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 269 ScalarEvolution *SE) { 270 const SCEV *Diff = SE->getMinusSCEV(J, I); 271 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 272 273 if (!C) 274 return nullptr; 275 if (C->getValue()->isNegative()) 276 return J; 277 return I; 278 } 279 280 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 281 const SCEV *Start = RtCheck.Pointers[Index].Start; 282 const SCEV *End = RtCheck.Pointers[Index].End; 283 284 // Compare the starts and ends with the known minimum and maximum 285 // of this set. We need to know how we compare against the min/max 286 // of the set in order to be able to emit memchecks. 287 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 288 if (!Min0) 289 return false; 290 291 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 292 if (!Min1) 293 return false; 294 295 // Update the low bound expression if we've found a new min value. 296 if (Min0 == Start) 297 Low = Start; 298 299 // Update the high bound expression if we've found a new max value. 300 if (Min1 != End) 301 High = End; 302 303 Members.push_back(Index); 304 return true; 305 } 306 307 void RuntimePointerChecking::groupChecks( 308 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 309 // We build the groups from dependency candidates equivalence classes 310 // because: 311 // - We know that pointers in the same equivalence class share 312 // the same underlying object and therefore there is a chance 313 // that we can compare pointers 314 // - We wouldn't be able to merge two pointers for which we need 315 // to emit a memcheck. The classes in DepCands are already 316 // conveniently built such that no two pointers in the same 317 // class need checking against each other. 318 319 // We use the following (greedy) algorithm to construct the groups 320 // For every pointer in the equivalence class: 321 // For each existing group: 322 // - if the difference between this pointer and the min/max bounds 323 // of the group is a constant, then make the pointer part of the 324 // group and update the min/max bounds of that group as required. 325 326 CheckingGroups.clear(); 327 328 // If we need to check two pointers to the same underlying object 329 // with a non-constant difference, we shouldn't perform any pointer 330 // grouping with those pointers. This is because we can easily get 331 // into cases where the resulting check would return false, even when 332 // the accesses are safe. 333 // 334 // The following example shows this: 335 // for (i = 0; i < 1000; ++i) 336 // a[5000 + i * m] = a[i] + a[i + 9000] 337 // 338 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 339 // (0, 10000) which is always false. However, if m is 1, there is no 340 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 341 // us to perform an accurate check in this case. 342 // 343 // The above case requires that we have an UnknownDependence between 344 // accesses to the same underlying object. This cannot happen unless 345 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies 346 // is also false. In this case we will use the fallback path and create 347 // separate checking groups for all pointers. 348 349 // If we don't have the dependency partitions, construct a new 350 // checking pointer group for each pointer. This is also required 351 // for correctness, because in this case we can have checking between 352 // pointers to the same underlying object. 353 if (!UseDependencies) { 354 for (unsigned I = 0; I < Pointers.size(); ++I) 355 CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 356 return; 357 } 358 359 unsigned TotalComparisons = 0; 360 361 DenseMap<Value *, unsigned> PositionMap; 362 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 363 PositionMap[Pointers[Index].PointerValue] = Index; 364 365 // We need to keep track of what pointers we've already seen so we 366 // don't process them twice. 367 SmallSet<unsigned, 2> Seen; 368 369 // Go through all equivalence classes, get the "pointer check groups" 370 // and add them to the overall solution. We use the order in which accesses 371 // appear in 'Pointers' to enforce determinism. 372 for (unsigned I = 0; I < Pointers.size(); ++I) { 373 // We've seen this pointer before, and therefore already processed 374 // its equivalence class. 375 if (Seen.count(I)) 376 continue; 377 378 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 379 Pointers[I].IsWritePtr); 380 381 SmallVector<CheckingPtrGroup, 2> Groups; 382 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 383 384 // Because DepCands is constructed by visiting accesses in the order in 385 // which they appear in alias sets (which is deterministic) and the 386 // iteration order within an equivalence class member is only dependent on 387 // the order in which unions and insertions are performed on the 388 // equivalence class, the iteration order is deterministic. 389 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 390 MI != ME; ++MI) { 391 unsigned Pointer = PositionMap[MI->getPointer()]; 392 bool Merged = false; 393 // Mark this pointer as seen. 394 Seen.insert(Pointer); 395 396 // Go through all the existing sets and see if we can find one 397 // which can include this pointer. 398 for (CheckingPtrGroup &Group : Groups) { 399 // Don't perform more than a certain amount of comparisons. 400 // This should limit the cost of grouping the pointers to something 401 // reasonable. If we do end up hitting this threshold, the algorithm 402 // will create separate groups for all remaining pointers. 403 if (TotalComparisons > MemoryCheckMergeThreshold) 404 break; 405 406 TotalComparisons++; 407 408 if (Group.addPointer(Pointer)) { 409 Merged = true; 410 break; 411 } 412 } 413 414 if (!Merged) 415 // We couldn't add this pointer to any existing set or the threshold 416 // for the number of comparisons has been reached. Create a new group 417 // to hold the current pointer. 418 Groups.push_back(CheckingPtrGroup(Pointer, *this)); 419 } 420 421 // We've computed the grouped checks for this partition. 422 // Save the results and continue with the next one. 423 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 424 } 425 } 426 427 bool RuntimePointerChecking::arePointersInSamePartition( 428 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 429 unsigned PtrIdx2) { 430 return (PtrToPartition[PtrIdx1] != -1 && 431 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 432 } 433 434 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 435 const PointerInfo &PointerI = Pointers[I]; 436 const PointerInfo &PointerJ = Pointers[J]; 437 438 // No need to check if two readonly pointers intersect. 439 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 440 return false; 441 442 // Only need to check pointers between two different dependency sets. 443 if (PointerI.DependencySetId == PointerJ.DependencySetId) 444 return false; 445 446 // Only need to check pointers in the same alias set. 447 if (PointerI.AliasSetId != PointerJ.AliasSetId) 448 return false; 449 450 return true; 451 } 452 453 void RuntimePointerChecking::printChecks( 454 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 455 unsigned Depth) const { 456 unsigned N = 0; 457 for (const auto &Check : Checks) { 458 const auto &First = Check.first->Members, &Second = Check.second->Members; 459 460 OS.indent(Depth) << "Check " << N++ << ":\n"; 461 462 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 463 for (unsigned K = 0; K < First.size(); ++K) 464 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 465 466 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 467 for (unsigned K = 0; K < Second.size(); ++K) 468 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 469 } 470 } 471 472 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 473 474 OS.indent(Depth) << "Run-time memory checks:\n"; 475 printChecks(OS, Checks, Depth); 476 477 OS.indent(Depth) << "Grouped accesses:\n"; 478 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 479 const auto &CG = CheckingGroups[I]; 480 481 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 482 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 483 << ")\n"; 484 for (unsigned J = 0; J < CG.Members.size(); ++J) { 485 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 486 << "\n"; 487 } 488 } 489 } 490 491 namespace { 492 493 /// \brief Analyses memory accesses in a loop. 494 /// 495 /// Checks whether run time pointer checks are needed and builds sets for data 496 /// dependence checking. 497 class AccessAnalysis { 498 public: 499 /// \brief Read or write access location. 500 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 501 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 502 503 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 504 MemoryDepChecker::DepCandidates &DA, 505 PredicatedScalarEvolution &PSE) 506 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false), 507 PSE(PSE) {} 508 509 /// \brief Register a load and whether it is only read from. 510 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 511 Value *Ptr = const_cast<Value*>(Loc.Ptr); 512 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 513 Accesses.insert(MemAccessInfo(Ptr, false)); 514 if (IsReadOnly) 515 ReadOnlyPtr.insert(Ptr); 516 } 517 518 /// \brief Register a store. 519 void addStore(MemoryLocation &Loc) { 520 Value *Ptr = const_cast<Value*>(Loc.Ptr); 521 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 522 Accesses.insert(MemAccessInfo(Ptr, true)); 523 } 524 525 /// \brief Check if we can emit a run-time no-alias check for \p Access. 526 /// 527 /// Returns true if we can emit a run-time no alias check for \p Access. 528 /// If we can check this access, this also adds it to a dependence set and 529 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 530 /// we will attempt to use additional run-time checks in order to get 531 /// the bounds of the pointer. 532 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 533 MemAccessInfo Access, 534 const ValueToValueMap &Strides, 535 DenseMap<Value *, unsigned> &DepSetId, 536 Loop *TheLoop, unsigned &RunningDepId, 537 unsigned ASId, bool ShouldCheckStride, 538 bool Assume); 539 540 /// \brief Check whether we can check the pointers at runtime for 541 /// non-intersection. 542 /// 543 /// Returns true if we need no check or if we do and we can generate them 544 /// (i.e. the pointers have computable bounds). 545 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 546 Loop *TheLoop, const ValueToValueMap &Strides, 547 bool ShouldCheckWrap = false); 548 549 /// \brief Goes over all memory accesses, checks whether a RT check is needed 550 /// and builds sets of dependent accesses. 551 void buildDependenceSets() { 552 processMemAccesses(); 553 } 554 555 /// \brief Initial processing of memory accesses determined that we need to 556 /// perform dependency checking. 557 /// 558 /// Note that this can later be cleared if we retry memcheck analysis without 559 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 560 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 561 562 /// We decided that no dependence analysis would be used. Reset the state. 563 void resetDepChecks(MemoryDepChecker &DepChecker) { 564 CheckDeps.clear(); 565 DepChecker.clearDependences(); 566 } 567 568 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 569 570 private: 571 typedef SetVector<MemAccessInfo> PtrAccessSet; 572 573 /// \brief Go over all memory access and check whether runtime pointer checks 574 /// are needed and build sets of dependency check candidates. 575 void processMemAccesses(); 576 577 /// Set of all accesses. 578 PtrAccessSet Accesses; 579 580 const DataLayout &DL; 581 582 /// List of accesses that need a further dependence check. 583 MemAccessInfoList CheckDeps; 584 585 /// Set of pointers that are read only. 586 SmallPtrSet<Value*, 16> ReadOnlyPtr; 587 588 /// An alias set tracker to partition the access set by underlying object and 589 //intrinsic property (such as TBAA metadata). 590 AliasSetTracker AST; 591 592 LoopInfo *LI; 593 594 /// Sets of potentially dependent accesses - members of one set share an 595 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 596 /// dependence check. 597 MemoryDepChecker::DepCandidates &DepCands; 598 599 /// \brief Initial processing of memory accesses determined that we may need 600 /// to add memchecks. Perform the analysis to determine the necessary checks. 601 /// 602 /// Note that, this is different from isDependencyCheckNeeded. When we retry 603 /// memcheck analysis without dependency checking 604 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 605 /// while this remains set if we have potentially dependent accesses. 606 bool IsRTCheckAnalysisNeeded; 607 608 /// The SCEV predicate containing all the SCEV-related assumptions. 609 PredicatedScalarEvolution &PSE; 610 }; 611 612 } // end anonymous namespace 613 614 /// \brief Check whether a pointer can participate in a runtime bounds check. 615 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 616 /// by adding run-time checks (overflow checks) if necessary. 617 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 618 const ValueToValueMap &Strides, Value *Ptr, 619 Loop *L, bool Assume) { 620 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 621 622 // The bounds for loop-invariant pointer is trivial. 623 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 624 return true; 625 626 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 627 628 if (!AR && Assume) 629 AR = PSE.getAsAddRec(Ptr); 630 631 if (!AR) 632 return false; 633 634 return AR->isAffine(); 635 } 636 637 /// \brief Check whether a pointer address cannot wrap. 638 static bool isNoWrap(PredicatedScalarEvolution &PSE, 639 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 640 const SCEV *PtrScev = PSE.getSCEV(Ptr); 641 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 642 return true; 643 644 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 645 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 646 return true; 647 648 return false; 649 } 650 651 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 652 MemAccessInfo Access, 653 const ValueToValueMap &StridesMap, 654 DenseMap<Value *, unsigned> &DepSetId, 655 Loop *TheLoop, unsigned &RunningDepId, 656 unsigned ASId, bool ShouldCheckWrap, 657 bool Assume) { 658 Value *Ptr = Access.getPointer(); 659 660 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 661 return false; 662 663 // When we run after a failing dependency check we have to make sure 664 // we don't have wrapping pointers. 665 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { 666 auto *Expr = PSE.getSCEV(Ptr); 667 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 668 return false; 669 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 670 } 671 672 // The id of the dependence set. 673 unsigned DepId; 674 675 if (isDependencyCheckNeeded()) { 676 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 677 unsigned &LeaderId = DepSetId[Leader]; 678 if (!LeaderId) 679 LeaderId = RunningDepId++; 680 DepId = LeaderId; 681 } else 682 // Each access has its own dependence set. 683 DepId = RunningDepId++; 684 685 bool IsWrite = Access.getInt(); 686 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 687 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 688 689 return true; 690 } 691 692 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 693 ScalarEvolution *SE, Loop *TheLoop, 694 const ValueToValueMap &StridesMap, 695 bool ShouldCheckWrap) { 696 // Find pointers with computable bounds. We are going to use this information 697 // to place a runtime bound check. 698 bool CanDoRT = true; 699 700 bool NeedRTCheck = false; 701 if (!IsRTCheckAnalysisNeeded) return true; 702 703 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 704 705 // We assign a consecutive id to access from different alias sets. 706 // Accesses between different groups doesn't need to be checked. 707 unsigned ASId = 1; 708 for (auto &AS : AST) { 709 int NumReadPtrChecks = 0; 710 int NumWritePtrChecks = 0; 711 bool CanDoAliasSetRT = true; 712 713 // We assign consecutive id to access from different dependence sets. 714 // Accesses within the same set don't need a runtime check. 715 unsigned RunningDepId = 1; 716 DenseMap<Value *, unsigned> DepSetId; 717 718 SmallVector<MemAccessInfo, 4> Retries; 719 720 for (auto A : AS) { 721 Value *Ptr = A.getValue(); 722 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 723 MemAccessInfo Access(Ptr, IsWrite); 724 725 if (IsWrite) 726 ++NumWritePtrChecks; 727 else 728 ++NumReadPtrChecks; 729 730 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, 731 RunningDepId, ASId, ShouldCheckWrap, false)) { 732 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 733 Retries.push_back(Access); 734 CanDoAliasSetRT = false; 735 } 736 } 737 738 // If we have at least two writes or one write and a read then we need to 739 // check them. But there is no need to checks if there is only one 740 // dependence set for this alias set. 741 // 742 // Note that this function computes CanDoRT and NeedRTCheck independently. 743 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 744 // for which we couldn't find the bounds but we don't actually need to emit 745 // any checks so it does not matter. 746 bool NeedsAliasSetRTCheck = false; 747 if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2)) 748 NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 || 749 (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1)); 750 751 // We need to perform run-time alias checks, but some pointers had bounds 752 // that couldn't be checked. 753 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 754 // Reset the CanDoSetRt flag and retry all accesses that have failed. 755 // We know that we need these checks, so we can now be more aggressive 756 // and add further checks if required (overflow checks). 757 CanDoAliasSetRT = true; 758 for (auto Access : Retries) 759 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, 760 TheLoop, RunningDepId, ASId, 761 ShouldCheckWrap, /*Assume=*/true)) { 762 CanDoAliasSetRT = false; 763 break; 764 } 765 } 766 767 CanDoRT &= CanDoAliasSetRT; 768 NeedRTCheck |= NeedsAliasSetRTCheck; 769 ++ASId; 770 } 771 772 // If the pointers that we would use for the bounds comparison have different 773 // address spaces, assume the values aren't directly comparable, so we can't 774 // use them for the runtime check. We also have to assume they could 775 // overlap. In the future there should be metadata for whether address spaces 776 // are disjoint. 777 unsigned NumPointers = RtCheck.Pointers.size(); 778 for (unsigned i = 0; i < NumPointers; ++i) { 779 for (unsigned j = i + 1; j < NumPointers; ++j) { 780 // Only need to check pointers between two different dependency sets. 781 if (RtCheck.Pointers[i].DependencySetId == 782 RtCheck.Pointers[j].DependencySetId) 783 continue; 784 // Only need to check pointers in the same alias set. 785 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 786 continue; 787 788 Value *PtrI = RtCheck.Pointers[i].PointerValue; 789 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 790 791 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 792 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 793 if (ASi != ASj) { 794 DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 795 " different address spaces\n"); 796 return false; 797 } 798 } 799 } 800 801 if (NeedRTCheck && CanDoRT) 802 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 803 804 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 805 << " pointer comparisons.\n"); 806 807 RtCheck.Need = NeedRTCheck; 808 809 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 810 if (!CanDoRTIfNeeded) 811 RtCheck.reset(); 812 return CanDoRTIfNeeded; 813 } 814 815 void AccessAnalysis::processMemAccesses() { 816 // We process the set twice: first we process read-write pointers, last we 817 // process read-only pointers. This allows us to skip dependence tests for 818 // read-only pointers. 819 820 DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 821 DEBUG(dbgs() << " AST: "; AST.dump()); 822 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 823 DEBUG({ 824 for (auto A : Accesses) 825 dbgs() << "\t" << *A.getPointer() << " (" << 826 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 827 "read-only" : "read")) << ")\n"; 828 }); 829 830 // The AliasSetTracker has nicely partitioned our pointers by metadata 831 // compatibility and potential for underlying-object overlap. As a result, we 832 // only need to check for potential pointer dependencies within each alias 833 // set. 834 for (auto &AS : AST) { 835 // Note that both the alias-set tracker and the alias sets themselves used 836 // linked lists internally and so the iteration order here is deterministic 837 // (matching the original instruction order within each set). 838 839 bool SetHasWrite = false; 840 841 // Map of pointers to last access encountered. 842 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 843 UnderlyingObjToAccessMap ObjToLastAccess; 844 845 // Set of access to check after all writes have been processed. 846 PtrAccessSet DeferredAccesses; 847 848 // Iterate over each alias set twice, once to process read/write pointers, 849 // and then to process read-only pointers. 850 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 851 bool UseDeferred = SetIteration > 0; 852 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 853 854 for (auto AV : AS) { 855 Value *Ptr = AV.getValue(); 856 857 // For a single memory access in AliasSetTracker, Accesses may contain 858 // both read and write, and they both need to be handled for CheckDeps. 859 for (auto AC : S) { 860 if (AC.getPointer() != Ptr) 861 continue; 862 863 bool IsWrite = AC.getInt(); 864 865 // If we're using the deferred access set, then it contains only 866 // reads. 867 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 868 if (UseDeferred && !IsReadOnlyPtr) 869 continue; 870 // Otherwise, the pointer must be in the PtrAccessSet, either as a 871 // read or a write. 872 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 873 S.count(MemAccessInfo(Ptr, false))) && 874 "Alias-set pointer not in the access set?"); 875 876 MemAccessInfo Access(Ptr, IsWrite); 877 DepCands.insert(Access); 878 879 // Memorize read-only pointers for later processing and skip them in 880 // the first round (they need to be checked after we have seen all 881 // write pointers). Note: we also mark pointer that are not 882 // consecutive as "read-only" pointers (so that we check 883 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 884 if (!UseDeferred && IsReadOnlyPtr) { 885 DeferredAccesses.insert(Access); 886 continue; 887 } 888 889 // If this is a write - check other reads and writes for conflicts. If 890 // this is a read only check other writes for conflicts (but only if 891 // there is no other write to the ptr - this is an optimization to 892 // catch "a[i] = a[i] + " without having to do a dependence check). 893 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 894 CheckDeps.push_back(Access); 895 IsRTCheckAnalysisNeeded = true; 896 } 897 898 if (IsWrite) 899 SetHasWrite = true; 900 901 // Create sets of pointers connected by a shared alias set and 902 // underlying object. 903 typedef SmallVector<Value *, 16> ValueVector; 904 ValueVector TempObjects; 905 906 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 907 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 908 for (Value *UnderlyingObj : TempObjects) { 909 // nullptr never alias, don't join sets for pointer that have "null" 910 // in their UnderlyingObjects list. 911 if (isa<ConstantPointerNull>(UnderlyingObj)) 912 continue; 913 914 UnderlyingObjToAccessMap::iterator Prev = 915 ObjToLastAccess.find(UnderlyingObj); 916 if (Prev != ObjToLastAccess.end()) 917 DepCands.unionSets(Access, Prev->second); 918 919 ObjToLastAccess[UnderlyingObj] = Access; 920 DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 921 } 922 } 923 } 924 } 925 } 926 } 927 928 static bool isInBoundsGep(Value *Ptr) { 929 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 930 return GEP->isInBounds(); 931 return false; 932 } 933 934 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 935 /// i.e. monotonically increasing/decreasing. 936 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 937 PredicatedScalarEvolution &PSE, const Loop *L) { 938 // FIXME: This should probably only return true for NUW. 939 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 940 return true; 941 942 // Scalar evolution does not propagate the non-wrapping flags to values that 943 // are derived from a non-wrapping induction variable because non-wrapping 944 // could be flow-sensitive. 945 // 946 // Look through the potentially overflowing instruction to try to prove 947 // non-wrapping for the *specific* value of Ptr. 948 949 // The arithmetic implied by an inbounds GEP can't overflow. 950 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 951 if (!GEP || !GEP->isInBounds()) 952 return false; 953 954 // Make sure there is only one non-const index and analyze that. 955 Value *NonConstIndex = nullptr; 956 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 957 if (!isa<ConstantInt>(Index)) { 958 if (NonConstIndex) 959 return false; 960 NonConstIndex = Index; 961 } 962 if (!NonConstIndex) 963 // The recurrence is on the pointer, ignore for now. 964 return false; 965 966 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 967 // AddRec using a NSW operation. 968 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 969 if (OBO->hasNoSignedWrap() && 970 // Assume constant for other the operand so that the AddRec can be 971 // easily found. 972 isa<ConstantInt>(OBO->getOperand(1))) { 973 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 974 975 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 976 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 977 } 978 979 return false; 980 } 981 982 /// \brief Check whether the access through \p Ptr has a constant stride. 983 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 984 const Loop *Lp, const ValueToValueMap &StridesMap, 985 bool Assume, bool ShouldCheckWrap) { 986 Type *Ty = Ptr->getType(); 987 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 988 989 // Make sure that the pointer does not point to aggregate types. 990 auto *PtrTy = cast<PointerType>(Ty); 991 if (PtrTy->getElementType()->isAggregateType()) { 992 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr 993 << "\n"); 994 return 0; 995 } 996 997 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 998 999 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1000 if (Assume && !AR) 1001 AR = PSE.getAsAddRec(Ptr); 1002 1003 if (!AR) { 1004 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1005 << " SCEV: " << *PtrScev << "\n"); 1006 return 0; 1007 } 1008 1009 // The accesss function must stride over the innermost loop. 1010 if (Lp != AR->getLoop()) { 1011 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 1012 *Ptr << " SCEV: " << *AR << "\n"); 1013 return 0; 1014 } 1015 1016 // The address calculation must not wrap. Otherwise, a dependence could be 1017 // inverted. 1018 // An inbounds getelementptr that is a AddRec with a unit stride 1019 // cannot wrap per definition. The unit stride requirement is checked later. 1020 // An getelementptr without an inbounds attribute and unit stride would have 1021 // to access the pointer value "0" which is undefined behavior in address 1022 // space 0, therefore we can also vectorize this case. 1023 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1024 bool IsNoWrapAddRec = !ShouldCheckWrap || 1025 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1026 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1027 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 1028 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 1029 if (Assume) { 1030 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1031 IsNoWrapAddRec = true; 1032 DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1033 << "LAA: Pointer: " << *Ptr << "\n" 1034 << "LAA: SCEV: " << *AR << "\n" 1035 << "LAA: Added an overflow assumption\n"); 1036 } else { 1037 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1038 << *Ptr << " SCEV: " << *AR << "\n"); 1039 return 0; 1040 } 1041 } 1042 1043 // Check the step is constant. 1044 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1045 1046 // Calculate the pointer stride and check if it is constant. 1047 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1048 if (!C) { 1049 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 1050 " SCEV: " << *AR << "\n"); 1051 return 0; 1052 } 1053 1054 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1055 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 1056 const APInt &APStepVal = C->getAPInt(); 1057 1058 // Huge step value - give up. 1059 if (APStepVal.getBitWidth() > 64) 1060 return 0; 1061 1062 int64_t StepVal = APStepVal.getSExtValue(); 1063 1064 // Strided access. 1065 int64_t Stride = StepVal / Size; 1066 int64_t Rem = StepVal % Size; 1067 if (Rem) 1068 return 0; 1069 1070 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1071 // know we can't "wrap around the address space". In case of address space 1072 // zero we know that this won't happen without triggering undefined behavior. 1073 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 1074 Stride != 1 && Stride != -1) { 1075 if (Assume) { 1076 // We can avoid this case by adding a run-time check. 1077 DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1078 << "inbouds or in address space 0 may wrap:\n" 1079 << "LAA: Pointer: " << *Ptr << "\n" 1080 << "LAA: SCEV: " << *AR << "\n" 1081 << "LAA: Added an overflow assumption\n"); 1082 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1083 } else 1084 return 0; 1085 } 1086 1087 return Stride; 1088 } 1089 1090 /// Take the pointer operand from the Load/Store instruction. 1091 /// Returns NULL if this is not a valid Load/Store instruction. 1092 static Value *getPointerOperand(Value *I) { 1093 if (auto *LI = dyn_cast<LoadInst>(I)) 1094 return LI->getPointerOperand(); 1095 if (auto *SI = dyn_cast<StoreInst>(I)) 1096 return SI->getPointerOperand(); 1097 return nullptr; 1098 } 1099 1100 /// Take the address space operand from the Load/Store instruction. 1101 /// Returns -1 if this is not a valid Load/Store instruction. 1102 static unsigned getAddressSpaceOperand(Value *I) { 1103 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1104 return L->getPointerAddressSpace(); 1105 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1106 return S->getPointerAddressSpace(); 1107 return -1; 1108 } 1109 1110 /// Returns true if the memory operations \p A and \p B are consecutive. 1111 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1112 ScalarEvolution &SE, bool CheckType) { 1113 Value *PtrA = getPointerOperand(A); 1114 Value *PtrB = getPointerOperand(B); 1115 unsigned ASA = getAddressSpaceOperand(A); 1116 unsigned ASB = getAddressSpaceOperand(B); 1117 1118 // Check that the address spaces match and that the pointers are valid. 1119 if (!PtrA || !PtrB || (ASA != ASB)) 1120 return false; 1121 1122 // Make sure that A and B are different pointers. 1123 if (PtrA == PtrB) 1124 return false; 1125 1126 // Make sure that A and B have the same type if required. 1127 if (CheckType && PtrA->getType() != PtrB->getType()) 1128 return false; 1129 1130 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 1131 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1132 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); 1133 1134 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1135 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1136 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1137 1138 // OffsetDelta = OffsetB - OffsetA; 1139 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1140 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1141 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1142 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); 1143 const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); 1144 // Check if they are based on the same pointer. That makes the offsets 1145 // sufficient. 1146 if (PtrA == PtrB) 1147 return OffsetDelta == Size; 1148 1149 // Compute the necessary base pointer delta to have the necessary final delta 1150 // equal to the size. 1151 // BaseDelta = Size - OffsetDelta; 1152 const SCEV *SizeSCEV = SE.getConstant(Size); 1153 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1154 1155 // Otherwise compute the distance with SCEV between the base pointers. 1156 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1157 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1158 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1159 return X == PtrSCEVB; 1160 } 1161 1162 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1163 switch (Type) { 1164 case NoDep: 1165 case Forward: 1166 case BackwardVectorizable: 1167 return true; 1168 1169 case Unknown: 1170 case ForwardButPreventsForwarding: 1171 case Backward: 1172 case BackwardVectorizableButPreventsForwarding: 1173 return false; 1174 } 1175 llvm_unreachable("unexpected DepType!"); 1176 } 1177 1178 bool MemoryDepChecker::Dependence::isBackward() const { 1179 switch (Type) { 1180 case NoDep: 1181 case Forward: 1182 case ForwardButPreventsForwarding: 1183 case Unknown: 1184 return false; 1185 1186 case BackwardVectorizable: 1187 case Backward: 1188 case BackwardVectorizableButPreventsForwarding: 1189 return true; 1190 } 1191 llvm_unreachable("unexpected DepType!"); 1192 } 1193 1194 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1195 return isBackward() || Type == Unknown; 1196 } 1197 1198 bool MemoryDepChecker::Dependence::isForward() const { 1199 switch (Type) { 1200 case Forward: 1201 case ForwardButPreventsForwarding: 1202 return true; 1203 1204 case NoDep: 1205 case Unknown: 1206 case BackwardVectorizable: 1207 case Backward: 1208 case BackwardVectorizableButPreventsForwarding: 1209 return false; 1210 } 1211 llvm_unreachable("unexpected DepType!"); 1212 } 1213 1214 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1215 uint64_t TypeByteSize) { 1216 // If loads occur at a distance that is not a multiple of a feasible vector 1217 // factor store-load forwarding does not take place. 1218 // Positive dependences might cause troubles because vectorizing them might 1219 // prevent store-load forwarding making vectorized code run a lot slower. 1220 // a[i] = a[i-3] ^ a[i-8]; 1221 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1222 // hence on your typical architecture store-load forwarding does not take 1223 // place. Vectorizing in such cases does not make sense. 1224 // Store-load forwarding distance. 1225 1226 // After this many iterations store-to-load forwarding conflicts should not 1227 // cause any slowdowns. 1228 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1229 // Maximum vector factor. 1230 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1231 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1232 1233 // Compute the smallest VF at which the store and load would be misaligned. 1234 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1235 VF *= 2) { 1236 // If the number of vector iteration between the store and the load are 1237 // small we could incur conflicts. 1238 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1239 MaxVFWithoutSLForwardIssues = (VF >>= 1); 1240 break; 1241 } 1242 } 1243 1244 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1245 DEBUG(dbgs() << "LAA: Distance " << Distance 1246 << " that could cause a store-load forwarding conflict\n"); 1247 return true; 1248 } 1249 1250 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1251 MaxVFWithoutSLForwardIssues != 1252 VectorizerParams::MaxVectorWidth * TypeByteSize) 1253 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1254 return false; 1255 } 1256 1257 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1258 /// memory accesses, that have the same stride whose absolute value is given 1259 /// in \p Stride, and that have the same type size \p TypeByteSize, 1260 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1261 /// possible to prove statically that the dependence distance is larger 1262 /// than the range that the accesses will travel through the execution of 1263 /// the loop. If so, return true; false otherwise. This is useful for 1264 /// example in loops such as the following (PR31098): 1265 /// for (i = 0; i < D; ++i) { 1266 /// = out[i]; 1267 /// out[i+D] = 1268 /// } 1269 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1270 const SCEV &BackedgeTakenCount, 1271 const SCEV &Dist, uint64_t Stride, 1272 uint64_t TypeByteSize) { 1273 1274 // If we can prove that 1275 // (**) |Dist| > BackedgeTakenCount * Step 1276 // where Step is the absolute stride of the memory accesses in bytes, 1277 // then there is no dependence. 1278 // 1279 // Ratioanle: 1280 // We basically want to check if the absolute distance (|Dist/Step|) 1281 // is >= the loop iteration count (or > BackedgeTakenCount). 1282 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1283 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1284 // that the dependence distance is >= VF; This is checked elsewhere. 1285 // But in some cases we can prune unknown dependence distances early, and 1286 // even before selecting the VF, and without a runtime test, by comparing 1287 // the distance against the loop iteration count. Since the vectorized code 1288 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1289 // also guarantees that distance >= VF. 1290 // 1291 const uint64_t ByteStride = Stride * TypeByteSize; 1292 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1293 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1294 1295 const SCEV *CastedDist = &Dist; 1296 const SCEV *CastedProduct = Product; 1297 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1298 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1299 1300 // The dependence distance can be positive/negative, so we sign extend Dist; 1301 // The multiplication of the absolute stride in bytes and the 1302 // backdgeTakenCount is non-negative, so we zero extend Product. 1303 if (DistTypeSize > ProductTypeSize) 1304 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1305 else 1306 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1307 1308 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1309 // (If so, then we have proven (**) because |Dist| >= Dist) 1310 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1311 if (SE.isKnownPositive(Minus)) 1312 return true; 1313 1314 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1315 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1316 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1317 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1318 if (SE.isKnownPositive(Minus)) 1319 return true; 1320 1321 return false; 1322 } 1323 1324 /// \brief Check the dependence for two accesses with the same stride \p Stride. 1325 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1326 /// bytes. 1327 /// 1328 /// \returns true if they are independent. 1329 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1330 uint64_t TypeByteSize) { 1331 assert(Stride > 1 && "The stride must be greater than 1"); 1332 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1333 assert(Distance > 0 && "The distance must be non-zero"); 1334 1335 // Skip if the distance is not multiple of type byte size. 1336 if (Distance % TypeByteSize) 1337 return false; 1338 1339 uint64_t ScaledDist = Distance / TypeByteSize; 1340 1341 // No dependence if the scaled distance is not multiple of the stride. 1342 // E.g. 1343 // for (i = 0; i < 1024 ; i += 4) 1344 // A[i+2] = A[i] + 1; 1345 // 1346 // Two accesses in memory (scaled distance is 2, stride is 4): 1347 // | A[0] | | | | A[4] | | | | 1348 // | | | A[2] | | | | A[6] | | 1349 // 1350 // E.g. 1351 // for (i = 0; i < 1024 ; i += 3) 1352 // A[i+4] = A[i] + 1; 1353 // 1354 // Two accesses in memory (scaled distance is 4, stride is 3): 1355 // | A[0] | | | A[3] | | | A[6] | | | 1356 // | | | | | A[4] | | | A[7] | | 1357 return ScaledDist % Stride; 1358 } 1359 1360 MemoryDepChecker::Dependence::DepType 1361 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1362 const MemAccessInfo &B, unsigned BIdx, 1363 const ValueToValueMap &Strides) { 1364 assert (AIdx < BIdx && "Must pass arguments in program order"); 1365 1366 Value *APtr = A.getPointer(); 1367 Value *BPtr = B.getPointer(); 1368 bool AIsWrite = A.getInt(); 1369 bool BIsWrite = B.getInt(); 1370 1371 // Two reads are independent. 1372 if (!AIsWrite && !BIsWrite) 1373 return Dependence::NoDep; 1374 1375 // We cannot check pointers in different address spaces. 1376 if (APtr->getType()->getPointerAddressSpace() != 1377 BPtr->getType()->getPointerAddressSpace()) 1378 return Dependence::Unknown; 1379 1380 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 1381 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 1382 1383 const SCEV *Src = PSE.getSCEV(APtr); 1384 const SCEV *Sink = PSE.getSCEV(BPtr); 1385 1386 // If the induction step is negative we have to invert source and sink of the 1387 // dependence. 1388 if (StrideAPtr < 0) { 1389 std::swap(APtr, BPtr); 1390 std::swap(Src, Sink); 1391 std::swap(AIsWrite, BIsWrite); 1392 std::swap(AIdx, BIdx); 1393 std::swap(StrideAPtr, StrideBPtr); 1394 } 1395 1396 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1397 1398 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1399 << "(Induction step: " << StrideAPtr << ")\n"); 1400 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1401 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1402 1403 // Need accesses with constant stride. We don't want to vectorize 1404 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1405 // the address space. 1406 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1407 DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1408 return Dependence::Unknown; 1409 } 1410 1411 Type *ATy = APtr->getType()->getPointerElementType(); 1412 Type *BTy = BPtr->getType()->getPointerElementType(); 1413 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1414 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1415 uint64_t Stride = std::abs(StrideAPtr); 1416 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1417 if (!C) { 1418 if (TypeByteSize == DL.getTypeAllocSize(BTy) && 1419 isSafeDependenceDistance(DL, *(PSE.getSE()), 1420 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1421 TypeByteSize)) 1422 return Dependence::NoDep; 1423 1424 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1425 ShouldRetryWithRuntimeCheck = true; 1426 return Dependence::Unknown; 1427 } 1428 1429 const APInt &Val = C->getAPInt(); 1430 int64_t Distance = Val.getSExtValue(); 1431 1432 // Attempt to prove strided accesses independent. 1433 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1434 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1435 DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1436 return Dependence::NoDep; 1437 } 1438 1439 // Negative distances are not plausible dependencies. 1440 if (Val.isNegative()) { 1441 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1442 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1443 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1444 ATy != BTy)) { 1445 DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1446 return Dependence::ForwardButPreventsForwarding; 1447 } 1448 1449 DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1450 return Dependence::Forward; 1451 } 1452 1453 // Write to the same location with the same size. 1454 // Could be improved to assert type sizes are the same (i32 == float, etc). 1455 if (Val == 0) { 1456 if (ATy == BTy) 1457 return Dependence::Forward; 1458 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 1459 return Dependence::Unknown; 1460 } 1461 1462 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1463 1464 if (ATy != BTy) { 1465 DEBUG(dbgs() << 1466 "LAA: ReadWrite-Write positive dependency with different types\n"); 1467 return Dependence::Unknown; 1468 } 1469 1470 // Bail out early if passed-in parameters make vectorization not feasible. 1471 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1472 VectorizerParams::VectorizationFactor : 1); 1473 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1474 VectorizerParams::VectorizationInterleave : 1); 1475 // The minimum number of iterations for a vectorized/unrolled version. 1476 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1477 1478 // It's not vectorizable if the distance is smaller than the minimum distance 1479 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1480 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1481 // TypeByteSize (No need to plus the last gap distance). 1482 // 1483 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1484 // foo(int *A) { 1485 // int *B = (int *)((char *)A + 14); 1486 // for (i = 0 ; i < 1024 ; i += 2) 1487 // B[i] = A[i] + 1; 1488 // } 1489 // 1490 // Two accesses in memory (stride is 2): 1491 // | A[0] | | A[2] | | A[4] | | A[6] | | 1492 // | B[0] | | B[2] | | B[4] | 1493 // 1494 // Distance needs for vectorizing iterations except the last iteration: 1495 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1496 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1497 // 1498 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1499 // 12, which is less than distance. 1500 // 1501 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1502 // the minimum distance needed is 28, which is greater than distance. It is 1503 // not safe to do vectorization. 1504 uint64_t MinDistanceNeeded = 1505 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1506 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1507 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1508 << '\n'); 1509 return Dependence::Backward; 1510 } 1511 1512 // Unsafe if the minimum distance needed is greater than max safe distance. 1513 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1514 DEBUG(dbgs() << "LAA: Failure because it needs at least " 1515 << MinDistanceNeeded << " size in bytes"); 1516 return Dependence::Backward; 1517 } 1518 1519 // Positive distance bigger than max vectorization factor. 1520 // FIXME: Should use max factor instead of max distance in bytes, which could 1521 // not handle different types. 1522 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1523 // void foo (int *A, char *B) { 1524 // for (unsigned i = 0; i < 1024; i++) { 1525 // A[i+2] = A[i] + 1; 1526 // B[i+2] = B[i] + 1; 1527 // } 1528 // } 1529 // 1530 // This case is currently unsafe according to the max safe distance. If we 1531 // analyze the two accesses on array B, the max safe dependence distance 1532 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1533 // is 8, which is less than 2 and forbidden vectorization, But actually 1534 // both A and B could be vectorized by 2 iterations. 1535 MaxSafeDepDistBytes = 1536 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1537 1538 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1539 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1540 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1541 return Dependence::BackwardVectorizableButPreventsForwarding; 1542 1543 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1544 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1545 << " with max VF = " << MaxVF << '\n'); 1546 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1547 MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits); 1548 return Dependence::BackwardVectorizable; 1549 } 1550 1551 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1552 MemAccessInfoList &CheckDeps, 1553 const ValueToValueMap &Strides) { 1554 1555 MaxSafeDepDistBytes = -1; 1556 SmallPtrSet<MemAccessInfo, 8> Visited; 1557 for (MemAccessInfo CurAccess : CheckDeps) { 1558 if (Visited.count(CurAccess)) 1559 continue; 1560 1561 // Get the relevant memory access set. 1562 EquivalenceClasses<MemAccessInfo>::iterator I = 1563 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1564 1565 // Check accesses within this set. 1566 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1567 AccessSets.member_begin(I); 1568 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1569 AccessSets.member_end(); 1570 1571 // Check every access pair. 1572 while (AI != AE) { 1573 Visited.insert(*AI); 1574 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 1575 while (OI != AE) { 1576 // Check every accessing instruction pair in program order. 1577 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1578 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1579 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 1580 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 1581 auto A = std::make_pair(&*AI, *I1); 1582 auto B = std::make_pair(&*OI, *I2); 1583 1584 assert(*I1 != *I2); 1585 if (*I1 > *I2) 1586 std::swap(A, B); 1587 1588 Dependence::DepType Type = 1589 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1590 SafeForVectorization &= Dependence::isSafeForVectorization(Type); 1591 1592 // Gather dependences unless we accumulated MaxDependences 1593 // dependences. In that case return as soon as we find the first 1594 // unsafe dependence. This puts a limit on this quadratic 1595 // algorithm. 1596 if (RecordDependences) { 1597 if (Type != Dependence::NoDep) 1598 Dependences.push_back(Dependence(A.second, B.second, Type)); 1599 1600 if (Dependences.size() >= MaxDependences) { 1601 RecordDependences = false; 1602 Dependences.clear(); 1603 DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 1604 } 1605 } 1606 if (!RecordDependences && !SafeForVectorization) 1607 return false; 1608 } 1609 ++OI; 1610 } 1611 AI++; 1612 } 1613 } 1614 1615 DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1616 return SafeForVectorization; 1617 } 1618 1619 SmallVector<Instruction *, 4> 1620 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1621 MemAccessInfo Access(Ptr, isWrite); 1622 auto &IndexVector = Accesses.find(Access)->second; 1623 1624 SmallVector<Instruction *, 4> Insts; 1625 transform(IndexVector, 1626 std::back_inserter(Insts), 1627 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1628 return Insts; 1629 } 1630 1631 const char *MemoryDepChecker::Dependence::DepName[] = { 1632 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1633 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1634 1635 void MemoryDepChecker::Dependence::print( 1636 raw_ostream &OS, unsigned Depth, 1637 const SmallVectorImpl<Instruction *> &Instrs) const { 1638 OS.indent(Depth) << DepName[Type] << ":\n"; 1639 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1640 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1641 } 1642 1643 bool LoopAccessInfo::canAnalyzeLoop() { 1644 // We need to have a loop header. 1645 DEBUG(dbgs() << "LAA: Found a loop in " 1646 << TheLoop->getHeader()->getParent()->getName() << ": " 1647 << TheLoop->getHeader()->getName() << '\n'); 1648 1649 // We can only analyze innermost loops. 1650 if (!TheLoop->empty()) { 1651 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1652 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1653 return false; 1654 } 1655 1656 // We must have a single backedge. 1657 if (TheLoop->getNumBackEdges() != 1) { 1658 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1659 recordAnalysis("CFGNotUnderstood") 1660 << "loop control flow is not understood by analyzer"; 1661 return false; 1662 } 1663 1664 // We must have a single exiting block. 1665 if (!TheLoop->getExitingBlock()) { 1666 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1667 recordAnalysis("CFGNotUnderstood") 1668 << "loop control flow is not understood by analyzer"; 1669 return false; 1670 } 1671 1672 // We only handle bottom-tested loops, i.e. loop in which the condition is 1673 // checked at the end of each iteration. With that we can assume that all 1674 // instructions in the loop are executed the same number of times. 1675 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1676 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1677 recordAnalysis("CFGNotUnderstood") 1678 << "loop control flow is not understood by analyzer"; 1679 return false; 1680 } 1681 1682 // ScalarEvolution needs to be able to find the exit count. 1683 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1684 if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1685 recordAnalysis("CantComputeNumberOfIterations") 1686 << "could not determine number of loop iterations"; 1687 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1688 return false; 1689 } 1690 1691 return true; 1692 } 1693 1694 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, 1695 const TargetLibraryInfo *TLI, 1696 DominatorTree *DT) { 1697 typedef SmallPtrSet<Value*, 16> ValueSet; 1698 1699 // Holds the Load and Store instructions. 1700 SmallVector<LoadInst *, 16> Loads; 1701 SmallVector<StoreInst *, 16> Stores; 1702 1703 // Holds all the different accesses in the loop. 1704 unsigned NumReads = 0; 1705 unsigned NumReadWrites = 0; 1706 1707 PtrRtChecking->Pointers.clear(); 1708 PtrRtChecking->Need = false; 1709 1710 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1711 1712 // For each block. 1713 for (BasicBlock *BB : TheLoop->blocks()) { 1714 // Scan the BB and collect legal loads and stores. 1715 for (Instruction &I : *BB) { 1716 // If this is a load, save it. If this instruction can read from memory 1717 // but is not a load, then we quit. Notice that we don't handle function 1718 // calls that read or write. 1719 if (I.mayReadFromMemory()) { 1720 // Many math library functions read the rounding mode. We will only 1721 // vectorize a loop if it contains known function calls that don't set 1722 // the flag. Therefore, it is safe to ignore this read from memory. 1723 auto *Call = dyn_cast<CallInst>(&I); 1724 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1725 continue; 1726 1727 // If the function has an explicit vectorized counterpart, we can safely 1728 // assume that it can be vectorized. 1729 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1730 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 1731 continue; 1732 1733 auto *Ld = dyn_cast<LoadInst>(&I); 1734 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1735 recordAnalysis("NonSimpleLoad", Ld) 1736 << "read with atomic ordering or volatile read"; 1737 DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1738 CanVecMem = false; 1739 return; 1740 } 1741 NumLoads++; 1742 Loads.push_back(Ld); 1743 DepChecker->addAccess(Ld); 1744 if (EnableMemAccessVersioning) 1745 collectStridedAccess(Ld); 1746 continue; 1747 } 1748 1749 // Save 'store' instructions. Abort if other instructions write to memory. 1750 if (I.mayWriteToMemory()) { 1751 auto *St = dyn_cast<StoreInst>(&I); 1752 if (!St) { 1753 recordAnalysis("CantVectorizeInstruction", St) 1754 << "instruction cannot be vectorized"; 1755 CanVecMem = false; 1756 return; 1757 } 1758 if (!St->isSimple() && !IsAnnotatedParallel) { 1759 recordAnalysis("NonSimpleStore", St) 1760 << "write with atomic ordering or volatile write"; 1761 DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1762 CanVecMem = false; 1763 return; 1764 } 1765 NumStores++; 1766 Stores.push_back(St); 1767 DepChecker->addAccess(St); 1768 if (EnableMemAccessVersioning) 1769 collectStridedAccess(St); 1770 } 1771 } // Next instr. 1772 } // Next block. 1773 1774 // Now we have two lists that hold the loads and the stores. 1775 // Next, we find the pointers that they use. 1776 1777 // Check if we see any stores. If there are no stores, then we don't 1778 // care if the pointers are *restrict*. 1779 if (!Stores.size()) { 1780 DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1781 CanVecMem = true; 1782 return; 1783 } 1784 1785 MemoryDepChecker::DepCandidates DependentAccesses; 1786 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1787 AA, LI, DependentAccesses, *PSE); 1788 1789 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1790 // multiple times on the same object. If the ptr is accessed twice, once 1791 // for read and once for write, it will only appear once (on the write 1792 // list). This is okay, since we are going to check for conflicts between 1793 // writes and between reads and writes, but not between reads and reads. 1794 ValueSet Seen; 1795 1796 for (StoreInst *ST : Stores) { 1797 Value *Ptr = ST->getPointerOperand(); 1798 // Check for store to loop invariant address. 1799 StoreToLoopInvariantAddress |= isUniform(Ptr); 1800 // If we did *not* see this pointer before, insert it to the read-write 1801 // list. At this phase it is only a 'write' list. 1802 if (Seen.insert(Ptr).second) { 1803 ++NumReadWrites; 1804 1805 MemoryLocation Loc = MemoryLocation::get(ST); 1806 // The TBAA metadata could have a control dependency on the predication 1807 // condition, so we cannot rely on it when determining whether or not we 1808 // need runtime pointer checks. 1809 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1810 Loc.AATags.TBAA = nullptr; 1811 1812 Accesses.addStore(Loc); 1813 } 1814 } 1815 1816 if (IsAnnotatedParallel) { 1817 DEBUG(dbgs() 1818 << "LAA: A loop annotated parallel, ignore memory dependency " 1819 << "checks.\n"); 1820 CanVecMem = true; 1821 return; 1822 } 1823 1824 for (LoadInst *LD : Loads) { 1825 Value *Ptr = LD->getPointerOperand(); 1826 // If we did *not* see this pointer before, insert it to the 1827 // read list. If we *did* see it before, then it is already in 1828 // the read-write list. This allows us to vectorize expressions 1829 // such as A[i] += x; Because the address of A[i] is a read-write 1830 // pointer. This only works if the index of A[i] is consecutive. 1831 // If the address of i is unknown (for example A[B[i]]) then we may 1832 // read a few words, modify, and write a few words, and some of the 1833 // words may be written to the same address. 1834 bool IsReadOnlyPtr = false; 1835 if (Seen.insert(Ptr).second || 1836 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 1837 ++NumReads; 1838 IsReadOnlyPtr = true; 1839 } 1840 1841 MemoryLocation Loc = MemoryLocation::get(LD); 1842 // The TBAA metadata could have a control dependency on the predication 1843 // condition, so we cannot rely on it when determining whether or not we 1844 // need runtime pointer checks. 1845 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1846 Loc.AATags.TBAA = nullptr; 1847 1848 Accesses.addLoad(Loc, IsReadOnlyPtr); 1849 } 1850 1851 // If we write (or read-write) to a single destination and there are no 1852 // other reads in this loop then is it safe to vectorize. 1853 if (NumReadWrites == 1 && NumReads == 0) { 1854 DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1855 CanVecMem = true; 1856 return; 1857 } 1858 1859 // Build dependence sets and check whether we need a runtime pointer bounds 1860 // check. 1861 Accesses.buildDependenceSets(); 1862 1863 // Find pointers with computable bounds. We are going to use this information 1864 // to place a runtime bound check. 1865 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 1866 TheLoop, SymbolicStrides); 1867 if (!CanDoRTIfNeeded) { 1868 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 1869 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1870 << "the array bounds.\n"); 1871 CanVecMem = false; 1872 return; 1873 } 1874 1875 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 1876 1877 CanVecMem = true; 1878 if (Accesses.isDependencyCheckNeeded()) { 1879 DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1880 CanVecMem = DepChecker->areDepsSafe( 1881 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 1882 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 1883 1884 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 1885 DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 1886 1887 // Clear the dependency checks. We assume they are not needed. 1888 Accesses.resetDepChecks(*DepChecker); 1889 1890 PtrRtChecking->reset(); 1891 PtrRtChecking->Need = true; 1892 1893 auto *SE = PSE->getSE(); 1894 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 1895 SymbolicStrides, true); 1896 1897 // Check that we found the bounds for the pointer. 1898 if (!CanDoRTIfNeeded) { 1899 recordAnalysis("CantCheckMemDepsAtRunTime") 1900 << "cannot check memory dependencies at runtime"; 1901 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1902 CanVecMem = false; 1903 return; 1904 } 1905 1906 CanVecMem = true; 1907 } 1908 } 1909 1910 if (CanVecMem) 1911 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1912 << (PtrRtChecking->Need ? "" : " don't") 1913 << " need runtime memory checks.\n"); 1914 else { 1915 recordAnalysis("UnsafeMemDep") 1916 << "unsafe dependent memory operations in loop. Use " 1917 "#pragma loop distribute(enable) to allow loop distribution " 1918 "to attempt to isolate the offending operations into a separate " 1919 "loop"; 1920 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 1921 } 1922 } 1923 1924 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 1925 DominatorTree *DT) { 1926 assert(TheLoop->contains(BB) && "Unknown block used"); 1927 1928 // Blocks that do not dominate the latch need predication. 1929 BasicBlock* Latch = TheLoop->getLoopLatch(); 1930 return !DT->dominates(BB, Latch); 1931 } 1932 1933 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 1934 Instruction *I) { 1935 assert(!Report && "Multiple reports generated"); 1936 1937 Value *CodeRegion = TheLoop->getHeader(); 1938 DebugLoc DL = TheLoop->getStartLoc(); 1939 1940 if (I) { 1941 CodeRegion = I->getParent(); 1942 // If there is no debug location attached to the instruction, revert back to 1943 // using the loop's. 1944 if (I->getDebugLoc()) 1945 DL = I->getDebugLoc(); 1946 } 1947 1948 Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 1949 CodeRegion); 1950 return *Report; 1951 } 1952 1953 bool LoopAccessInfo::isUniform(Value *V) const { 1954 auto *SE = PSE->getSE(); 1955 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 1956 // never considered uniform. 1957 // TODO: Is this really what we want? Even without FP SCEV, we may want some 1958 // trivially loop-invariant FP values to be considered uniform. 1959 if (!SE->isSCEVable(V->getType())) 1960 return false; 1961 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1962 } 1963 1964 // FIXME: this function is currently a duplicate of the one in 1965 // LoopVectorize.cpp. 1966 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1967 Instruction *Loc) { 1968 if (FirstInst) 1969 return FirstInst; 1970 if (Instruction *I = dyn_cast<Instruction>(V)) 1971 return I->getParent() == Loc->getParent() ? I : nullptr; 1972 return nullptr; 1973 } 1974 1975 namespace { 1976 1977 /// \brief IR Values for the lower and upper bounds of a pointer evolution. We 1978 /// need to use value-handles because SCEV expansion can invalidate previously 1979 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1980 /// a previous one. 1981 struct PointerBounds { 1982 TrackingVH<Value> Start; 1983 TrackingVH<Value> End; 1984 }; 1985 1986 } // end anonymous namespace 1987 1988 /// \brief Expand code for the lower and upper bound of the pointer group \p CG 1989 /// in \p TheLoop. \return the values for the bounds. 1990 static PointerBounds 1991 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 1992 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 1993 const RuntimePointerChecking &PtrRtChecking) { 1994 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 1995 const SCEV *Sc = SE->getSCEV(Ptr); 1996 1997 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1998 LLVMContext &Ctx = Loc->getContext(); 1999 2000 // Use this type for pointer arithmetic. 2001 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 2002 2003 if (SE->isLoopInvariant(Sc, TheLoop)) { 2004 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 2005 << "\n"); 2006 // Ptr could be in the loop body. If so, expand a new one at the correct 2007 // location. 2008 Instruction *Inst = dyn_cast<Instruction>(Ptr); 2009 Value *NewPtr = (Inst && TheLoop->contains(Inst)) 2010 ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) 2011 : Ptr; 2012 // We must return a half-open range, which means incrementing Sc. 2013 const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy)); 2014 Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc); 2015 return {NewPtr, NewPtrPlusOne}; 2016 } else { 2017 Value *Start = nullptr, *End = nullptr; 2018 DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 2019 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 2020 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 2021 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 2022 return {Start, End}; 2023 } 2024 } 2025 2026 /// \brief Turns a collection of checks into a collection of expanded upper and 2027 /// lower bounds for both pointers in the check. 2028 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 2029 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 2030 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 2031 const RuntimePointerChecking &PtrRtChecking) { 2032 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 2033 2034 // Here we're relying on the SCEV Expander's cache to only emit code for the 2035 // same bounds once. 2036 transform( 2037 PointerChecks, std::back_inserter(ChecksWithBounds), 2038 [&](const RuntimePointerChecking::PointerCheck &Check) { 2039 PointerBounds 2040 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 2041 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 2042 return std::make_pair(First, Second); 2043 }); 2044 2045 return ChecksWithBounds; 2046 } 2047 2048 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 2049 Instruction *Loc, 2050 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 2051 const { 2052 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2053 auto *SE = PSE->getSE(); 2054 SCEVExpander Exp(*SE, DL, "induction"); 2055 auto ExpandedChecks = 2056 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); 2057 2058 LLVMContext &Ctx = Loc->getContext(); 2059 Instruction *FirstInst = nullptr; 2060 IRBuilder<> ChkBuilder(Loc); 2061 // Our instructions might fold to a constant. 2062 Value *MemoryRuntimeCheck = nullptr; 2063 2064 for (const auto &Check : ExpandedChecks) { 2065 const PointerBounds &A = Check.first, &B = Check.second; 2066 // Check if two pointers (A and B) conflict where conflict is computed as: 2067 // start(A) <= end(B) && start(B) <= end(A) 2068 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 2069 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 2070 2071 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 2072 (AS1 == A.End->getType()->getPointerAddressSpace()) && 2073 "Trying to bounds check pointers with different address spaces"); 2074 2075 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 2076 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 2077 2078 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 2079 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 2080 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 2081 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 2082 2083 // [A|B].Start points to the first accessed byte under base [A|B]. 2084 // [A|B].End points to the last accessed byte, plus one. 2085 // There is no conflict when the intervals are disjoint: 2086 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 2087 // 2088 // bound0 = (B.Start < A.End) 2089 // bound1 = (A.Start < B.End) 2090 // IsConflict = bound0 & bound1 2091 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 2092 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 2093 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 2094 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 2095 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 2096 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2097 if (MemoryRuntimeCheck) { 2098 IsConflict = 2099 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 2100 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2101 } 2102 MemoryRuntimeCheck = IsConflict; 2103 } 2104 2105 if (!MemoryRuntimeCheck) 2106 return std::make_pair(nullptr, nullptr); 2107 2108 // We have to do this trickery because the IRBuilder might fold the check to a 2109 // constant expression in which case there is no Instruction anchored in a 2110 // the block. 2111 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 2112 ConstantInt::getTrue(Ctx)); 2113 ChkBuilder.Insert(Check, "memcheck.conflict"); 2114 FirstInst = getFirstInst(FirstInst, Check, Loc); 2115 return std::make_pair(FirstInst, Check); 2116 } 2117 2118 std::pair<Instruction *, Instruction *> 2119 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 2120 if (!PtrRtChecking->Need) 2121 return std::make_pair(nullptr, nullptr); 2122 2123 return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); 2124 } 2125 2126 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2127 Value *Ptr = nullptr; 2128 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 2129 Ptr = LI->getPointerOperand(); 2130 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 2131 Ptr = SI->getPointerOperand(); 2132 else 2133 return; 2134 2135 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2136 if (!Stride) 2137 return; 2138 2139 DEBUG(dbgs() << "LAA: Found a strided access that we can version"); 2140 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2141 SymbolicStrides[Ptr] = Stride; 2142 StrideSet.insert(Stride); 2143 } 2144 2145 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2146 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 2147 DominatorTree *DT, LoopInfo *LI) 2148 : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2149 PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), 2150 DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 2151 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 2152 StoreToLoopInvariantAddress(false) { 2153 if (canAnalyzeLoop()) 2154 analyzeLoop(AA, LI, TLI, DT); 2155 } 2156 2157 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2158 if (CanVecMem) { 2159 OS.indent(Depth) << "Memory dependences are safe"; 2160 if (MaxSafeDepDistBytes != -1ULL) 2161 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2162 << " bytes"; 2163 if (PtrRtChecking->Need) 2164 OS << " with run-time checks"; 2165 OS << "\n"; 2166 } 2167 2168 if (Report) 2169 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2170 2171 if (auto *Dependences = DepChecker->getDependences()) { 2172 OS.indent(Depth) << "Dependences:\n"; 2173 for (auto &Dep : *Dependences) { 2174 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2175 OS << "\n"; 2176 } 2177 } else 2178 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2179 2180 // List the pair of accesses need run-time checks to prove independence. 2181 PtrRtChecking->print(OS, Depth); 2182 OS << "\n"; 2183 2184 OS.indent(Depth) << "Store to invariant address was " 2185 << (StoreToLoopInvariantAddress ? "" : "not ") 2186 << "found in loop.\n"; 2187 2188 OS.indent(Depth) << "SCEV assumptions:\n"; 2189 PSE->getUnionPredicate().print(OS, Depth); 2190 2191 OS << "\n"; 2192 2193 OS.indent(Depth) << "Expressions re-written:\n"; 2194 PSE->print(OS, Depth); 2195 } 2196 2197 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2198 auto &LAI = LoopAccessInfoMap[L]; 2199 2200 if (!LAI) 2201 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2202 2203 return *LAI.get(); 2204 } 2205 2206 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2207 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2208 2209 for (Loop *TopLevelLoop : *LI) 2210 for (Loop *L : depth_first(TopLevelLoop)) { 2211 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2212 auto &LAI = LAA.getInfo(L); 2213 LAI.print(OS, 4); 2214 } 2215 } 2216 2217 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2218 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2219 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2220 TLI = TLIP ? &TLIP->getTLI() : nullptr; 2221 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2222 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2223 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2224 2225 return false; 2226 } 2227 2228 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2229 AU.addRequired<ScalarEvolutionWrapperPass>(); 2230 AU.addRequired<AAResultsWrapperPass>(); 2231 AU.addRequired<DominatorTreeWrapperPass>(); 2232 AU.addRequired<LoopInfoWrapperPass>(); 2233 2234 AU.setPreservesAll(); 2235 } 2236 2237 char LoopAccessLegacyAnalysis::ID = 0; 2238 static const char laa_name[] = "Loop Access Analysis"; 2239 #define LAA_NAME "loop-accesses" 2240 2241 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2242 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2243 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2244 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2245 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2246 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2247 2248 AnalysisKey LoopAccessAnalysis::Key; 2249 2250 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2251 LoopStandardAnalysisResults &AR) { 2252 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2253 } 2254 2255 namespace llvm { 2256 2257 Pass *createLAAPass() { 2258 return new LoopAccessLegacyAnalysis(); 2259 } 2260 2261 } // end namespace llvm 2262