1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The implementation for the loop memory dependence that was originally
11 // developed for the loop vectorizer.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/LoopAccessAnalysis.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/ScalarEvolutionExpander.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "loop-accesses"
29 
30 static cl::opt<unsigned, true>
31 VectorizationFactor("force-vector-width", cl::Hidden,
32                     cl::desc("Sets the SIMD width. Zero is autoselect."),
33                     cl::location(VectorizerParams::VectorizationFactor));
34 unsigned VectorizerParams::VectorizationFactor;
35 
36 static cl::opt<unsigned, true>
37 VectorizationInterleave("force-vector-interleave", cl::Hidden,
38                         cl::desc("Sets the vectorization interleave count. "
39                                  "Zero is autoselect."),
40                         cl::location(
41                             VectorizerParams::VectorizationInterleave));
42 unsigned VectorizerParams::VectorizationInterleave;
43 
44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
45     "runtime-memory-check-threshold", cl::Hidden,
46     cl::desc("When performing memory disambiguation checks at runtime do not "
47              "generate more than this number of comparisons (default = 8)."),
48     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
50 
51 /// \brief The maximum iterations used to merge memory checks
52 static cl::opt<unsigned> MemoryCheckMergeThreshold(
53     "memory-check-merge-threshold", cl::Hidden,
54     cl::desc("Maximum number of comparisons done when trying to merge "
55              "runtime memory checks. (default = 100)"),
56     cl::init(100));
57 
58 /// Maximum SIMD width.
59 const unsigned VectorizerParams::MaxVectorWidth = 64;
60 
61 /// \brief We collect dependences up to this threshold.
62 static cl::opt<unsigned>
63     MaxDependences("max-dependences", cl::Hidden,
64                    cl::desc("Maximum number of dependences collected by "
65                             "loop-access analysis (default = 100)"),
66                    cl::init(100));
67 
68 bool VectorizerParams::isInterleaveForced() {
69   return ::VectorizationInterleave.getNumOccurrences() > 0;
70 }
71 
72 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
73                                     const Function *TheFunction,
74                                     const Loop *TheLoop,
75                                     const char *PassName) {
76   DebugLoc DL = TheLoop->getStartLoc();
77   if (const Instruction *I = Message.getInstr())
78     DL = I->getDebugLoc();
79   emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
80                                  *TheFunction, DL, Message.str());
81 }
82 
83 Value *llvm::stripIntegerCast(Value *V) {
84   if (CastInst *CI = dyn_cast<CastInst>(V))
85     if (CI->getOperand(0)->getType()->isIntegerTy())
86       return CI->getOperand(0);
87   return V;
88 }
89 
90 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
91                                             const ValueToValueMap &PtrToStride,
92                                             Value *Ptr, Value *OrigPtr) {
93   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
94 
95   // If there is an entry in the map return the SCEV of the pointer with the
96   // symbolic stride replaced by one.
97   ValueToValueMap::const_iterator SI =
98       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
99   if (SI != PtrToStride.end()) {
100     Value *StrideVal = SI->second;
101 
102     // Strip casts.
103     StrideVal = stripIntegerCast(StrideVal);
104 
105     // Replace symbolic stride by one.
106     Value *One = ConstantInt::get(StrideVal->getType(), 1);
107     ValueToValueMap RewriteMap;
108     RewriteMap[StrideVal] = One;
109 
110     ScalarEvolution *SE = PSE.getSE();
111     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
112     const auto *CT =
113         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
114 
115     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
116     auto *Expr = PSE.getSCEV(Ptr);
117 
118     DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
119                  << "\n");
120     return Expr;
121   }
122 
123   // Otherwise, just return the SCEV of the original pointer.
124   return OrigSCEV;
125 }
126 
127 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
128                                     unsigned DepSetId, unsigned ASId,
129                                     const ValueToValueMap &Strides,
130                                     PredicatedScalarEvolution &PSE) {
131   // Get the stride replaced scev.
132   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
133   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
134   assert(AR && "Invalid addrec expression");
135   ScalarEvolution *SE = PSE.getSE();
136   const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
137 
138   const SCEV *ScStart = AR->getStart();
139   const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
140   const SCEV *Step = AR->getStepRecurrence(*SE);
141 
142   // For expressions with negative step, the upper bound is ScStart and the
143   // lower bound is ScEnd.
144   if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) {
145     if (CStep->getValue()->isNegative())
146       std::swap(ScStart, ScEnd);
147   } else {
148     // Fallback case: the step is not constant, but the we can still
149     // get the upper and lower bounds of the interval by using min/max
150     // expressions.
151     ScStart = SE->getUMinExpr(ScStart, ScEnd);
152     ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
153   }
154 
155   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
156 }
157 
158 SmallVector<RuntimePointerChecking::PointerCheck, 4>
159 RuntimePointerChecking::generateChecks() const {
160   SmallVector<PointerCheck, 4> Checks;
161 
162   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
163     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
164       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
165       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
166 
167       if (needsChecking(CGI, CGJ))
168         Checks.push_back(std::make_pair(&CGI, &CGJ));
169     }
170   }
171   return Checks;
172 }
173 
174 void RuntimePointerChecking::generateChecks(
175     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
176   assert(Checks.empty() && "Checks is not empty");
177   groupChecks(DepCands, UseDependencies);
178   Checks = generateChecks();
179 }
180 
181 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
182                                            const CheckingPtrGroup &N) const {
183   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
184     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
185       if (needsChecking(M.Members[I], N.Members[J]))
186         return true;
187   return false;
188 }
189 
190 /// Compare \p I and \p J and return the minimum.
191 /// Return nullptr in case we couldn't find an answer.
192 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
193                                    ScalarEvolution *SE) {
194   const SCEV *Diff = SE->getMinusSCEV(J, I);
195   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
196 
197   if (!C)
198     return nullptr;
199   if (C->getValue()->isNegative())
200     return J;
201   return I;
202 }
203 
204 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
205   const SCEV *Start = RtCheck.Pointers[Index].Start;
206   const SCEV *End = RtCheck.Pointers[Index].End;
207 
208   // Compare the starts and ends with the known minimum and maximum
209   // of this set. We need to know how we compare against the min/max
210   // of the set in order to be able to emit memchecks.
211   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
212   if (!Min0)
213     return false;
214 
215   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
216   if (!Min1)
217     return false;
218 
219   // Update the low bound  expression if we've found a new min value.
220   if (Min0 == Start)
221     Low = Start;
222 
223   // Update the high bound expression if we've found a new max value.
224   if (Min1 != End)
225     High = End;
226 
227   Members.push_back(Index);
228   return true;
229 }
230 
231 void RuntimePointerChecking::groupChecks(
232     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
233   // We build the groups from dependency candidates equivalence classes
234   // because:
235   //    - We know that pointers in the same equivalence class share
236   //      the same underlying object and therefore there is a chance
237   //      that we can compare pointers
238   //    - We wouldn't be able to merge two pointers for which we need
239   //      to emit a memcheck. The classes in DepCands are already
240   //      conveniently built such that no two pointers in the same
241   //      class need checking against each other.
242 
243   // We use the following (greedy) algorithm to construct the groups
244   // For every pointer in the equivalence class:
245   //   For each existing group:
246   //   - if the difference between this pointer and the min/max bounds
247   //     of the group is a constant, then make the pointer part of the
248   //     group and update the min/max bounds of that group as required.
249 
250   CheckingGroups.clear();
251 
252   // If we need to check two pointers to the same underlying object
253   // with a non-constant difference, we shouldn't perform any pointer
254   // grouping with those pointers. This is because we can easily get
255   // into cases where the resulting check would return false, even when
256   // the accesses are safe.
257   //
258   // The following example shows this:
259   // for (i = 0; i < 1000; ++i)
260   //   a[5000 + i * m] = a[i] + a[i + 9000]
261   //
262   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
263   // (0, 10000) which is always false. However, if m is 1, there is no
264   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
265   // us to perform an accurate check in this case.
266   //
267   // The above case requires that we have an UnknownDependence between
268   // accesses to the same underlying object. This cannot happen unless
269   // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
270   // is also false. In this case we will use the fallback path and create
271   // separate checking groups for all pointers.
272 
273   // If we don't have the dependency partitions, construct a new
274   // checking pointer group for each pointer. This is also required
275   // for correctness, because in this case we can have checking between
276   // pointers to the same underlying object.
277   if (!UseDependencies) {
278     for (unsigned I = 0; I < Pointers.size(); ++I)
279       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
280     return;
281   }
282 
283   unsigned TotalComparisons = 0;
284 
285   DenseMap<Value *, unsigned> PositionMap;
286   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
287     PositionMap[Pointers[Index].PointerValue] = Index;
288 
289   // We need to keep track of what pointers we've already seen so we
290   // don't process them twice.
291   SmallSet<unsigned, 2> Seen;
292 
293   // Go through all equivalence classes, get the "pointer check groups"
294   // and add them to the overall solution. We use the order in which accesses
295   // appear in 'Pointers' to enforce determinism.
296   for (unsigned I = 0; I < Pointers.size(); ++I) {
297     // We've seen this pointer before, and therefore already processed
298     // its equivalence class.
299     if (Seen.count(I))
300       continue;
301 
302     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
303                                            Pointers[I].IsWritePtr);
304 
305     SmallVector<CheckingPtrGroup, 2> Groups;
306     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
307 
308     // Because DepCands is constructed by visiting accesses in the order in
309     // which they appear in alias sets (which is deterministic) and the
310     // iteration order within an equivalence class member is only dependent on
311     // the order in which unions and insertions are performed on the
312     // equivalence class, the iteration order is deterministic.
313     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
314          MI != ME; ++MI) {
315       unsigned Pointer = PositionMap[MI->getPointer()];
316       bool Merged = false;
317       // Mark this pointer as seen.
318       Seen.insert(Pointer);
319 
320       // Go through all the existing sets and see if we can find one
321       // which can include this pointer.
322       for (CheckingPtrGroup &Group : Groups) {
323         // Don't perform more than a certain amount of comparisons.
324         // This should limit the cost of grouping the pointers to something
325         // reasonable.  If we do end up hitting this threshold, the algorithm
326         // will create separate groups for all remaining pointers.
327         if (TotalComparisons > MemoryCheckMergeThreshold)
328           break;
329 
330         TotalComparisons++;
331 
332         if (Group.addPointer(Pointer)) {
333           Merged = true;
334           break;
335         }
336       }
337 
338       if (!Merged)
339         // We couldn't add this pointer to any existing set or the threshold
340         // for the number of comparisons has been reached. Create a new group
341         // to hold the current pointer.
342         Groups.push_back(CheckingPtrGroup(Pointer, *this));
343     }
344 
345     // We've computed the grouped checks for this partition.
346     // Save the results and continue with the next one.
347     std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
348   }
349 }
350 
351 bool RuntimePointerChecking::arePointersInSamePartition(
352     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
353     unsigned PtrIdx2) {
354   return (PtrToPartition[PtrIdx1] != -1 &&
355           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
356 }
357 
358 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
359   const PointerInfo &PointerI = Pointers[I];
360   const PointerInfo &PointerJ = Pointers[J];
361 
362   // No need to check if two readonly pointers intersect.
363   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
364     return false;
365 
366   // Only need to check pointers between two different dependency sets.
367   if (PointerI.DependencySetId == PointerJ.DependencySetId)
368     return false;
369 
370   // Only need to check pointers in the same alias set.
371   if (PointerI.AliasSetId != PointerJ.AliasSetId)
372     return false;
373 
374   return true;
375 }
376 
377 void RuntimePointerChecking::printChecks(
378     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
379     unsigned Depth) const {
380   unsigned N = 0;
381   for (const auto &Check : Checks) {
382     const auto &First = Check.first->Members, &Second = Check.second->Members;
383 
384     OS.indent(Depth) << "Check " << N++ << ":\n";
385 
386     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
387     for (unsigned K = 0; K < First.size(); ++K)
388       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
389 
390     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
391     for (unsigned K = 0; K < Second.size(); ++K)
392       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
393   }
394 }
395 
396 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
397 
398   OS.indent(Depth) << "Run-time memory checks:\n";
399   printChecks(OS, Checks, Depth);
400 
401   OS.indent(Depth) << "Grouped accesses:\n";
402   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
403     const auto &CG = CheckingGroups[I];
404 
405     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
406     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
407                          << ")\n";
408     for (unsigned J = 0; J < CG.Members.size(); ++J) {
409       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
410                            << "\n";
411     }
412   }
413 }
414 
415 namespace {
416 /// \brief Analyses memory accesses in a loop.
417 ///
418 /// Checks whether run time pointer checks are needed and builds sets for data
419 /// dependence checking.
420 class AccessAnalysis {
421 public:
422   /// \brief Read or write access location.
423   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
424   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
425 
426   AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
427                  MemoryDepChecker::DepCandidates &DA,
428                  PredicatedScalarEvolution &PSE)
429       : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
430         PSE(PSE) {}
431 
432   /// \brief Register a load  and whether it is only read from.
433   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
434     Value *Ptr = const_cast<Value*>(Loc.Ptr);
435     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
436     Accesses.insert(MemAccessInfo(Ptr, false));
437     if (IsReadOnly)
438       ReadOnlyPtr.insert(Ptr);
439   }
440 
441   /// \brief Register a store.
442   void addStore(MemoryLocation &Loc) {
443     Value *Ptr = const_cast<Value*>(Loc.Ptr);
444     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
445     Accesses.insert(MemAccessInfo(Ptr, true));
446   }
447 
448   /// \brief Check whether we can check the pointers at runtime for
449   /// non-intersection.
450   ///
451   /// Returns true if we need no check or if we do and we can generate them
452   /// (i.e. the pointers have computable bounds).
453   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
454                        Loop *TheLoop, const ValueToValueMap &Strides,
455                        bool ShouldCheckStride = false);
456 
457   /// \brief Goes over all memory accesses, checks whether a RT check is needed
458   /// and builds sets of dependent accesses.
459   void buildDependenceSets() {
460     processMemAccesses();
461   }
462 
463   /// \brief Initial processing of memory accesses determined that we need to
464   /// perform dependency checking.
465   ///
466   /// Note that this can later be cleared if we retry memcheck analysis without
467   /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
468   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
469 
470   /// We decided that no dependence analysis would be used.  Reset the state.
471   void resetDepChecks(MemoryDepChecker &DepChecker) {
472     CheckDeps.clear();
473     DepChecker.clearDependences();
474   }
475 
476   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
477 
478 private:
479   typedef SetVector<MemAccessInfo> PtrAccessSet;
480 
481   /// \brief Go over all memory access and check whether runtime pointer checks
482   /// are needed and build sets of dependency check candidates.
483   void processMemAccesses();
484 
485   /// Set of all accesses.
486   PtrAccessSet Accesses;
487 
488   const DataLayout &DL;
489 
490   /// Set of accesses that need a further dependence check.
491   MemAccessInfoSet CheckDeps;
492 
493   /// Set of pointers that are read only.
494   SmallPtrSet<Value*, 16> ReadOnlyPtr;
495 
496   /// An alias set tracker to partition the access set by underlying object and
497   //intrinsic property (such as TBAA metadata).
498   AliasSetTracker AST;
499 
500   LoopInfo *LI;
501 
502   /// Sets of potentially dependent accesses - members of one set share an
503   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
504   /// dependence check.
505   MemoryDepChecker::DepCandidates &DepCands;
506 
507   /// \brief Initial processing of memory accesses determined that we may need
508   /// to add memchecks.  Perform the analysis to determine the necessary checks.
509   ///
510   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
511   /// memcheck analysis without dependency checking
512   /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
513   /// while this remains set if we have potentially dependent accesses.
514   bool IsRTCheckAnalysisNeeded;
515 
516   /// The SCEV predicate containing all the SCEV-related assumptions.
517   PredicatedScalarEvolution &PSE;
518 };
519 
520 } // end anonymous namespace
521 
522 /// \brief Check whether a pointer can participate in a runtime bounds check.
523 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
524                                 const ValueToValueMap &Strides, Value *Ptr,
525                                 Loop *L) {
526   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
527   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
528   if (!AR)
529     return false;
530 
531   return AR->isAffine();
532 }
533 
534 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
535                                      ScalarEvolution *SE, Loop *TheLoop,
536                                      const ValueToValueMap &StridesMap,
537                                      bool ShouldCheckStride) {
538   // Find pointers with computable bounds. We are going to use this information
539   // to place a runtime bound check.
540   bool CanDoRT = true;
541 
542   bool NeedRTCheck = false;
543   if (!IsRTCheckAnalysisNeeded) return true;
544 
545   bool IsDepCheckNeeded = isDependencyCheckNeeded();
546 
547   // We assign a consecutive id to access from different alias sets.
548   // Accesses between different groups doesn't need to be checked.
549   unsigned ASId = 1;
550   for (auto &AS : AST) {
551     int NumReadPtrChecks = 0;
552     int NumWritePtrChecks = 0;
553 
554     // We assign consecutive id to access from different dependence sets.
555     // Accesses within the same set don't need a runtime check.
556     unsigned RunningDepId = 1;
557     DenseMap<Value *, unsigned> DepSetId;
558 
559     for (auto A : AS) {
560       Value *Ptr = A.getValue();
561       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
562       MemAccessInfo Access(Ptr, IsWrite);
563 
564       if (IsWrite)
565         ++NumWritePtrChecks;
566       else
567         ++NumReadPtrChecks;
568 
569       if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
570           // When we run after a failing dependency check we have to make sure
571           // we don't have wrapping pointers.
572           (!ShouldCheckStride ||
573            isStridedPtr(PSE, Ptr, TheLoop, StridesMap) == 1)) {
574         // The id of the dependence set.
575         unsigned DepId;
576 
577         if (IsDepCheckNeeded) {
578           Value *Leader = DepCands.getLeaderValue(Access).getPointer();
579           unsigned &LeaderId = DepSetId[Leader];
580           if (!LeaderId)
581             LeaderId = RunningDepId++;
582           DepId = LeaderId;
583         } else
584           // Each access has its own dependence set.
585           DepId = RunningDepId++;
586 
587         RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
588 
589         DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
590       } else {
591         DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
592         CanDoRT = false;
593       }
594     }
595 
596     // If we have at least two writes or one write and a read then we need to
597     // check them.  But there is no need to checks if there is only one
598     // dependence set for this alias set.
599     //
600     // Note that this function computes CanDoRT and NeedRTCheck independently.
601     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
602     // for which we couldn't find the bounds but we don't actually need to emit
603     // any checks so it does not matter.
604     if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
605       NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
606                                                  NumWritePtrChecks >= 1));
607 
608     ++ASId;
609   }
610 
611   // If the pointers that we would use for the bounds comparison have different
612   // address spaces, assume the values aren't directly comparable, so we can't
613   // use them for the runtime check. We also have to assume they could
614   // overlap. In the future there should be metadata for whether address spaces
615   // are disjoint.
616   unsigned NumPointers = RtCheck.Pointers.size();
617   for (unsigned i = 0; i < NumPointers; ++i) {
618     for (unsigned j = i + 1; j < NumPointers; ++j) {
619       // Only need to check pointers between two different dependency sets.
620       if (RtCheck.Pointers[i].DependencySetId ==
621           RtCheck.Pointers[j].DependencySetId)
622        continue;
623       // Only need to check pointers in the same alias set.
624       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
625         continue;
626 
627       Value *PtrI = RtCheck.Pointers[i].PointerValue;
628       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
629 
630       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
631       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
632       if (ASi != ASj) {
633         DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
634                        " different address spaces\n");
635         return false;
636       }
637     }
638   }
639 
640   if (NeedRTCheck && CanDoRT)
641     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
642 
643   DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
644                << " pointer comparisons.\n");
645 
646   RtCheck.Need = NeedRTCheck;
647 
648   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
649   if (!CanDoRTIfNeeded)
650     RtCheck.reset();
651   return CanDoRTIfNeeded;
652 }
653 
654 void AccessAnalysis::processMemAccesses() {
655   // We process the set twice: first we process read-write pointers, last we
656   // process read-only pointers. This allows us to skip dependence tests for
657   // read-only pointers.
658 
659   DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
660   DEBUG(dbgs() << "  AST: "; AST.dump());
661   DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
662   DEBUG({
663     for (auto A : Accesses)
664       dbgs() << "\t" << *A.getPointer() << " (" <<
665                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
666                                          "read-only" : "read")) << ")\n";
667   });
668 
669   // The AliasSetTracker has nicely partitioned our pointers by metadata
670   // compatibility and potential for underlying-object overlap. As a result, we
671   // only need to check for potential pointer dependencies within each alias
672   // set.
673   for (auto &AS : AST) {
674     // Note that both the alias-set tracker and the alias sets themselves used
675     // linked lists internally and so the iteration order here is deterministic
676     // (matching the original instruction order within each set).
677 
678     bool SetHasWrite = false;
679 
680     // Map of pointers to last access encountered.
681     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
682     UnderlyingObjToAccessMap ObjToLastAccess;
683 
684     // Set of access to check after all writes have been processed.
685     PtrAccessSet DeferredAccesses;
686 
687     // Iterate over each alias set twice, once to process read/write pointers,
688     // and then to process read-only pointers.
689     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
690       bool UseDeferred = SetIteration > 0;
691       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
692 
693       for (auto AV : AS) {
694         Value *Ptr = AV.getValue();
695 
696         // For a single memory access in AliasSetTracker, Accesses may contain
697         // both read and write, and they both need to be handled for CheckDeps.
698         for (auto AC : S) {
699           if (AC.getPointer() != Ptr)
700             continue;
701 
702           bool IsWrite = AC.getInt();
703 
704           // If we're using the deferred access set, then it contains only
705           // reads.
706           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
707           if (UseDeferred && !IsReadOnlyPtr)
708             continue;
709           // Otherwise, the pointer must be in the PtrAccessSet, either as a
710           // read or a write.
711           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
712                   S.count(MemAccessInfo(Ptr, false))) &&
713                  "Alias-set pointer not in the access set?");
714 
715           MemAccessInfo Access(Ptr, IsWrite);
716           DepCands.insert(Access);
717 
718           // Memorize read-only pointers for later processing and skip them in
719           // the first round (they need to be checked after we have seen all
720           // write pointers). Note: we also mark pointer that are not
721           // consecutive as "read-only" pointers (so that we check
722           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
723           if (!UseDeferred && IsReadOnlyPtr) {
724             DeferredAccesses.insert(Access);
725             continue;
726           }
727 
728           // If this is a write - check other reads and writes for conflicts. If
729           // this is a read only check other writes for conflicts (but only if
730           // there is no other write to the ptr - this is an optimization to
731           // catch "a[i] = a[i] + " without having to do a dependence check).
732           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
733             CheckDeps.insert(Access);
734             IsRTCheckAnalysisNeeded = true;
735           }
736 
737           if (IsWrite)
738             SetHasWrite = true;
739 
740           // Create sets of pointers connected by a shared alias set and
741           // underlying object.
742           typedef SmallVector<Value *, 16> ValueVector;
743           ValueVector TempObjects;
744 
745           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
746           DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
747           for (Value *UnderlyingObj : TempObjects) {
748             // nullptr never alias, don't join sets for pointer that have "null"
749             // in their UnderlyingObjects list.
750             if (isa<ConstantPointerNull>(UnderlyingObj))
751               continue;
752 
753             UnderlyingObjToAccessMap::iterator Prev =
754                 ObjToLastAccess.find(UnderlyingObj);
755             if (Prev != ObjToLastAccess.end())
756               DepCands.unionSets(Access, Prev->second);
757 
758             ObjToLastAccess[UnderlyingObj] = Access;
759             DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
760           }
761         }
762       }
763     }
764   }
765 }
766 
767 static bool isInBoundsGep(Value *Ptr) {
768   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
769     return GEP->isInBounds();
770   return false;
771 }
772 
773 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
774 /// i.e. monotonically increasing/decreasing.
775 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
776                            PredicatedScalarEvolution &PSE, const Loop *L) {
777   // FIXME: This should probably only return true for NUW.
778   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
779     return true;
780 
781   // Scalar evolution does not propagate the non-wrapping flags to values that
782   // are derived from a non-wrapping induction variable because non-wrapping
783   // could be flow-sensitive.
784   //
785   // Look through the potentially overflowing instruction to try to prove
786   // non-wrapping for the *specific* value of Ptr.
787 
788   // The arithmetic implied by an inbounds GEP can't overflow.
789   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
790   if (!GEP || !GEP->isInBounds())
791     return false;
792 
793   // Make sure there is only one non-const index and analyze that.
794   Value *NonConstIndex = nullptr;
795   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
796     if (!isa<ConstantInt>(*Index)) {
797       if (NonConstIndex)
798         return false;
799       NonConstIndex = *Index;
800     }
801   if (!NonConstIndex)
802     // The recurrence is on the pointer, ignore for now.
803     return false;
804 
805   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
806   // AddRec using a NSW operation.
807   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
808     if (OBO->hasNoSignedWrap() &&
809         // Assume constant for other the operand so that the AddRec can be
810         // easily found.
811         isa<ConstantInt>(OBO->getOperand(1))) {
812       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
813 
814       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
815         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
816     }
817 
818   return false;
819 }
820 
821 /// \brief Check whether the access through \p Ptr has a constant stride.
822 int llvm::isStridedPtr(PredicatedScalarEvolution &PSE, Value *Ptr,
823                        const Loop *Lp, const ValueToValueMap &StridesMap,
824                        bool Assume) {
825   Type *Ty = Ptr->getType();
826   assert(Ty->isPointerTy() && "Unexpected non-ptr");
827 
828   // Make sure that the pointer does not point to aggregate types.
829   auto *PtrTy = cast<PointerType>(Ty);
830   if (PtrTy->getElementType()->isAggregateType()) {
831     DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
832                  << "\n");
833     return 0;
834   }
835 
836   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
837 
838   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
839   if (Assume && !AR)
840     AR = dyn_cast<SCEVAddRecExpr>(PSE.getAsAddRec(Ptr));
841 
842   if (!AR) {
843     DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
844                  << " SCEV: " << *PtrScev << "\n");
845     return 0;
846   }
847 
848   // The accesss function must stride over the innermost loop.
849   if (Lp != AR->getLoop()) {
850     DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
851           *Ptr << " SCEV: " << *AR << "\n");
852     return 0;
853   }
854 
855   // The address calculation must not wrap. Otherwise, a dependence could be
856   // inverted.
857   // An inbounds getelementptr that is a AddRec with a unit stride
858   // cannot wrap per definition. The unit stride requirement is checked later.
859   // An getelementptr without an inbounds attribute and unit stride would have
860   // to access the pointer value "0" which is undefined behavior in address
861   // space 0, therefore we can also vectorize this case.
862   bool IsInBoundsGEP = isInBoundsGep(Ptr);
863   bool IsNoWrapAddRec =
864       PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
865       isNoWrapAddRec(Ptr, AR, PSE, Lp);
866   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
867   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
868     if (Assume) {
869       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
870       IsNoWrapAddRec = true;
871       DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
872                    << "LAA:   Pointer: " << *Ptr << "\n"
873                    << "LAA:   SCEV: " << *AR << "\n"
874                    << "LAA:   Added an overflow assumption\n");
875     } else {
876       DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
877                    << *Ptr << " SCEV: " << *AR << "\n");
878       return 0;
879     }
880   }
881 
882   // Check the step is constant.
883   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
884 
885   // Calculate the pointer stride and check if it is constant.
886   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
887   if (!C) {
888     DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
889           " SCEV: " << *AR << "\n");
890     return 0;
891   }
892 
893   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
894   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
895   const APInt &APStepVal = C->getAPInt();
896 
897   // Huge step value - give up.
898   if (APStepVal.getBitWidth() > 64)
899     return 0;
900 
901   int64_t StepVal = APStepVal.getSExtValue();
902 
903   // Strided access.
904   int64_t Stride = StepVal / Size;
905   int64_t Rem = StepVal % Size;
906   if (Rem)
907     return 0;
908 
909   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
910   // know we can't "wrap around the address space". In case of address space
911   // zero we know that this won't happen without triggering undefined behavior.
912   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
913       Stride != 1 && Stride != -1) {
914     if (Assume) {
915       // We can avoid this case by adding a run-time check.
916       DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
917                    << "inbouds or in address space 0 may wrap:\n"
918                    << "LAA:   Pointer: " << *Ptr << "\n"
919                    << "LAA:   SCEV: " << *AR << "\n"
920                    << "LAA:   Added an overflow assumption\n");
921       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
922     } else
923       return 0;
924   }
925 
926   return Stride;
927 }
928 
929 /// Take the pointer operand from the Load/Store instruction.
930 /// Returns NULL if this is not a valid Load/Store instruction.
931 static Value *getPointerOperand(Value *I) {
932   if (LoadInst *LI = dyn_cast<LoadInst>(I))
933     return LI->getPointerOperand();
934   if (StoreInst *SI = dyn_cast<StoreInst>(I))
935     return SI->getPointerOperand();
936   return nullptr;
937 }
938 
939 /// Take the address space operand from the Load/Store instruction.
940 /// Returns -1 if this is not a valid Load/Store instruction.
941 static unsigned getAddressSpaceOperand(Value *I) {
942   if (LoadInst *L = dyn_cast<LoadInst>(I))
943     return L->getPointerAddressSpace();
944   if (StoreInst *S = dyn_cast<StoreInst>(I))
945     return S->getPointerAddressSpace();
946   return -1;
947 }
948 
949 /// Returns true if the memory operations \p A and \p B are consecutive.
950 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
951                                ScalarEvolution &SE, bool CheckType) {
952   Value *PtrA = getPointerOperand(A);
953   Value *PtrB = getPointerOperand(B);
954   unsigned ASA = getAddressSpaceOperand(A);
955   unsigned ASB = getAddressSpaceOperand(B);
956 
957   // Check that the address spaces match and that the pointers are valid.
958   if (!PtrA || !PtrB || (ASA != ASB))
959     return false;
960 
961   // Make sure that A and B are different pointers.
962   if (PtrA == PtrB)
963     return false;
964 
965   // Make sure that A and B have the same type if required.
966   if(CheckType && PtrA->getType() != PtrB->getType())
967       return false;
968 
969   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
970   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
971   APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
972 
973   APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
974   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
975   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
976 
977   //  OffsetDelta = OffsetB - OffsetA;
978   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
979   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
980   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
981   const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
982   const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
983   // Check if they are based on the same pointer. That makes the offsets
984   // sufficient.
985   if (PtrA == PtrB)
986     return OffsetDelta == Size;
987 
988   // Compute the necessary base pointer delta to have the necessary final delta
989   // equal to the size.
990   // BaseDelta = Size - OffsetDelta;
991   const SCEV *SizeSCEV = SE.getConstant(Size);
992   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
993 
994   // Otherwise compute the distance with SCEV between the base pointers.
995   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
996   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
997   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
998   return X == PtrSCEVB;
999 }
1000 
1001 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1002   switch (Type) {
1003   case NoDep:
1004   case Forward:
1005   case BackwardVectorizable:
1006     return true;
1007 
1008   case Unknown:
1009   case ForwardButPreventsForwarding:
1010   case Backward:
1011   case BackwardVectorizableButPreventsForwarding:
1012     return false;
1013   }
1014   llvm_unreachable("unexpected DepType!");
1015 }
1016 
1017 bool MemoryDepChecker::Dependence::isBackward() const {
1018   switch (Type) {
1019   case NoDep:
1020   case Forward:
1021   case ForwardButPreventsForwarding:
1022   case Unknown:
1023     return false;
1024 
1025   case BackwardVectorizable:
1026   case Backward:
1027   case BackwardVectorizableButPreventsForwarding:
1028     return true;
1029   }
1030   llvm_unreachable("unexpected DepType!");
1031 }
1032 
1033 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1034   return isBackward() || Type == Unknown;
1035 }
1036 
1037 bool MemoryDepChecker::Dependence::isForward() const {
1038   switch (Type) {
1039   case Forward:
1040   case ForwardButPreventsForwarding:
1041     return true;
1042 
1043   case NoDep:
1044   case Unknown:
1045   case BackwardVectorizable:
1046   case Backward:
1047   case BackwardVectorizableButPreventsForwarding:
1048     return false;
1049   }
1050   llvm_unreachable("unexpected DepType!");
1051 }
1052 
1053 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
1054                                                     unsigned TypeByteSize) {
1055   // If loads occur at a distance that is not a multiple of a feasible vector
1056   // factor store-load forwarding does not take place.
1057   // Positive dependences might cause troubles because vectorizing them might
1058   // prevent store-load forwarding making vectorized code run a lot slower.
1059   //   a[i] = a[i-3] ^ a[i-8];
1060   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1061   //   hence on your typical architecture store-load forwarding does not take
1062   //   place. Vectorizing in such cases does not make sense.
1063   // Store-load forwarding distance.
1064   const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
1065   // Maximum vector factor.
1066   unsigned MaxVFWithoutSLForwardIssues =
1067     VectorizerParams::MaxVectorWidth * TypeByteSize;
1068   if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
1069     MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
1070 
1071   for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
1072        vf *= 2) {
1073     if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
1074       MaxVFWithoutSLForwardIssues = (vf >>=1);
1075       break;
1076     }
1077   }
1078 
1079   if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
1080     DEBUG(dbgs() << "LAA: Distance " << Distance <<
1081           " that could cause a store-load forwarding conflict\n");
1082     return true;
1083   }
1084 
1085   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1086       MaxVFWithoutSLForwardIssues !=
1087       VectorizerParams::MaxVectorWidth * TypeByteSize)
1088     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1089   return false;
1090 }
1091 
1092 /// \brief Check the dependence for two accesses with the same stride \p Stride.
1093 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1094 /// bytes.
1095 ///
1096 /// \returns true if they are independent.
1097 static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
1098                                           unsigned TypeByteSize) {
1099   assert(Stride > 1 && "The stride must be greater than 1");
1100   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1101   assert(Distance > 0 && "The distance must be non-zero");
1102 
1103   // Skip if the distance is not multiple of type byte size.
1104   if (Distance % TypeByteSize)
1105     return false;
1106 
1107   unsigned ScaledDist = Distance / TypeByteSize;
1108 
1109   // No dependence if the scaled distance is not multiple of the stride.
1110   // E.g.
1111   //      for (i = 0; i < 1024 ; i += 4)
1112   //        A[i+2] = A[i] + 1;
1113   //
1114   // Two accesses in memory (scaled distance is 2, stride is 4):
1115   //     | A[0] |      |      |      | A[4] |      |      |      |
1116   //     |      |      | A[2] |      |      |      | A[6] |      |
1117   //
1118   // E.g.
1119   //      for (i = 0; i < 1024 ; i += 3)
1120   //        A[i+4] = A[i] + 1;
1121   //
1122   // Two accesses in memory (scaled distance is 4, stride is 3):
1123   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1124   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1125   return ScaledDist % Stride;
1126 }
1127 
1128 MemoryDepChecker::Dependence::DepType
1129 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1130                               const MemAccessInfo &B, unsigned BIdx,
1131                               const ValueToValueMap &Strides) {
1132   assert (AIdx < BIdx && "Must pass arguments in program order");
1133 
1134   Value *APtr = A.getPointer();
1135   Value *BPtr = B.getPointer();
1136   bool AIsWrite = A.getInt();
1137   bool BIsWrite = B.getInt();
1138 
1139   // Two reads are independent.
1140   if (!AIsWrite && !BIsWrite)
1141     return Dependence::NoDep;
1142 
1143   // We cannot check pointers in different address spaces.
1144   if (APtr->getType()->getPointerAddressSpace() !=
1145       BPtr->getType()->getPointerAddressSpace())
1146     return Dependence::Unknown;
1147 
1148   const SCEV *AScev = replaceSymbolicStrideSCEV(PSE, Strides, APtr);
1149   const SCEV *BScev = replaceSymbolicStrideSCEV(PSE, Strides, BPtr);
1150 
1151   int StrideAPtr = isStridedPtr(PSE, APtr, InnermostLoop, Strides, true);
1152   int StrideBPtr = isStridedPtr(PSE, BPtr, InnermostLoop, Strides, true);
1153 
1154   const SCEV *Src = AScev;
1155   const SCEV *Sink = BScev;
1156 
1157   // If the induction step is negative we have to invert source and sink of the
1158   // dependence.
1159   if (StrideAPtr < 0) {
1160     //Src = BScev;
1161     //Sink = AScev;
1162     std::swap(APtr, BPtr);
1163     std::swap(Src, Sink);
1164     std::swap(AIsWrite, BIsWrite);
1165     std::swap(AIdx, BIdx);
1166     std::swap(StrideAPtr, StrideBPtr);
1167   }
1168 
1169   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1170 
1171   DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1172                << "(Induction step: " << StrideAPtr << ")\n");
1173   DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1174                << *InstMap[BIdx] << ": " << *Dist << "\n");
1175 
1176   // Need accesses with constant stride. We don't want to vectorize
1177   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1178   // the address space.
1179   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1180     DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1181     return Dependence::Unknown;
1182   }
1183 
1184   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1185   if (!C) {
1186     DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1187     ShouldRetryWithRuntimeCheck = true;
1188     return Dependence::Unknown;
1189   }
1190 
1191   Type *ATy = APtr->getType()->getPointerElementType();
1192   Type *BTy = BPtr->getType()->getPointerElementType();
1193   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1194   unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
1195 
1196   // Negative distances are not plausible dependencies.
1197   const APInt &Val = C->getAPInt();
1198   if (Val.isNegative()) {
1199     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1200     if (IsTrueDataDependence &&
1201         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1202          ATy != BTy)) {
1203       DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1204       return Dependence::ForwardButPreventsForwarding;
1205     }
1206 
1207     DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n");
1208     return Dependence::Forward;
1209   }
1210 
1211   // Write to the same location with the same size.
1212   // Could be improved to assert type sizes are the same (i32 == float, etc).
1213   if (Val == 0) {
1214     if (ATy == BTy)
1215       return Dependence::Forward;
1216     DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
1217     return Dependence::Unknown;
1218   }
1219 
1220   assert(Val.isStrictlyPositive() && "Expect a positive value");
1221 
1222   if (ATy != BTy) {
1223     DEBUG(dbgs() <<
1224           "LAA: ReadWrite-Write positive dependency with different types\n");
1225     return Dependence::Unknown;
1226   }
1227 
1228   unsigned Distance = (unsigned) Val.getZExtValue();
1229 
1230   unsigned Stride = std::abs(StrideAPtr);
1231   if (Stride > 1 &&
1232       areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) {
1233     DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1234     return Dependence::NoDep;
1235   }
1236 
1237   // Bail out early if passed-in parameters make vectorization not feasible.
1238   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1239                            VectorizerParams::VectorizationFactor : 1);
1240   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1241                            VectorizerParams::VectorizationInterleave : 1);
1242   // The minimum number of iterations for a vectorized/unrolled version.
1243   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1244 
1245   // It's not vectorizable if the distance is smaller than the minimum distance
1246   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1247   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1248   // TypeByteSize (No need to plus the last gap distance).
1249   //
1250   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1251   //      foo(int *A) {
1252   //        int *B = (int *)((char *)A + 14);
1253   //        for (i = 0 ; i < 1024 ; i += 2)
1254   //          B[i] = A[i] + 1;
1255   //      }
1256   //
1257   // Two accesses in memory (stride is 2):
1258   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1259   //                              | B[0] |      | B[2] |      | B[4] |
1260   //
1261   // Distance needs for vectorizing iterations except the last iteration:
1262   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1263   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1264   //
1265   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1266   // 12, which is less than distance.
1267   //
1268   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1269   // the minimum distance needed is 28, which is greater than distance. It is
1270   // not safe to do vectorization.
1271   unsigned MinDistanceNeeded =
1272       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1273   if (MinDistanceNeeded > Distance) {
1274     DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1275                  << '\n');
1276     return Dependence::Backward;
1277   }
1278 
1279   // Unsafe if the minimum distance needed is greater than max safe distance.
1280   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1281     DEBUG(dbgs() << "LAA: Failure because it needs at least "
1282                  << MinDistanceNeeded << " size in bytes");
1283     return Dependence::Backward;
1284   }
1285 
1286   // Positive distance bigger than max vectorization factor.
1287   // FIXME: Should use max factor instead of max distance in bytes, which could
1288   // not handle different types.
1289   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1290   //      void foo (int *A, char *B) {
1291   //        for (unsigned i = 0; i < 1024; i++) {
1292   //          A[i+2] = A[i] + 1;
1293   //          B[i+2] = B[i] + 1;
1294   //        }
1295   //      }
1296   //
1297   // This case is currently unsafe according to the max safe distance. If we
1298   // analyze the two accesses on array B, the max safe dependence distance
1299   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1300   // is 8, which is less than 2 and forbidden vectorization, But actually
1301   // both A and B could be vectorized by 2 iterations.
1302   MaxSafeDepDistBytes =
1303       Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
1304 
1305   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1306   if (IsTrueDataDependence &&
1307       couldPreventStoreLoadForward(Distance, TypeByteSize))
1308     return Dependence::BackwardVectorizableButPreventsForwarding;
1309 
1310   DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1311                << " with max VF = "
1312                << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
1313 
1314   return Dependence::BackwardVectorizable;
1315 }
1316 
1317 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1318                                    MemAccessInfoSet &CheckDeps,
1319                                    const ValueToValueMap &Strides) {
1320 
1321   MaxSafeDepDistBytes = -1U;
1322   while (!CheckDeps.empty()) {
1323     MemAccessInfo CurAccess = *CheckDeps.begin();
1324 
1325     // Get the relevant memory access set.
1326     EquivalenceClasses<MemAccessInfo>::iterator I =
1327       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1328 
1329     // Check accesses within this set.
1330     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1331         AccessSets.member_begin(I);
1332     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1333         AccessSets.member_end();
1334 
1335     // Check every access pair.
1336     while (AI != AE) {
1337       CheckDeps.erase(*AI);
1338       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1339       while (OI != AE) {
1340         // Check every accessing instruction pair in program order.
1341         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1342              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1343           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1344                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
1345             auto A = std::make_pair(&*AI, *I1);
1346             auto B = std::make_pair(&*OI, *I2);
1347 
1348             assert(*I1 != *I2);
1349             if (*I1 > *I2)
1350               std::swap(A, B);
1351 
1352             Dependence::DepType Type =
1353                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1354             SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1355 
1356             // Gather dependences unless we accumulated MaxDependences
1357             // dependences.  In that case return as soon as we find the first
1358             // unsafe dependence.  This puts a limit on this quadratic
1359             // algorithm.
1360             if (RecordDependences) {
1361               if (Type != Dependence::NoDep)
1362                 Dependences.push_back(Dependence(A.second, B.second, Type));
1363 
1364               if (Dependences.size() >= MaxDependences) {
1365                 RecordDependences = false;
1366                 Dependences.clear();
1367                 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1368               }
1369             }
1370             if (!RecordDependences && !SafeForVectorization)
1371               return false;
1372           }
1373         ++OI;
1374       }
1375       AI++;
1376     }
1377   }
1378 
1379   DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1380   return SafeForVectorization;
1381 }
1382 
1383 SmallVector<Instruction *, 4>
1384 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1385   MemAccessInfo Access(Ptr, isWrite);
1386   auto &IndexVector = Accesses.find(Access)->second;
1387 
1388   SmallVector<Instruction *, 4> Insts;
1389   std::transform(IndexVector.begin(), IndexVector.end(),
1390                  std::back_inserter(Insts),
1391                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1392   return Insts;
1393 }
1394 
1395 const char *MemoryDepChecker::Dependence::DepName[] = {
1396     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1397     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1398 
1399 void MemoryDepChecker::Dependence::print(
1400     raw_ostream &OS, unsigned Depth,
1401     const SmallVectorImpl<Instruction *> &Instrs) const {
1402   OS.indent(Depth) << DepName[Type] << ":\n";
1403   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1404   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1405 }
1406 
1407 bool LoopAccessInfo::canAnalyzeLoop() {
1408   // We need to have a loop header.
1409   DEBUG(dbgs() << "LAA: Found a loop in "
1410                << TheLoop->getHeader()->getParent()->getName() << ": "
1411                << TheLoop->getHeader()->getName() << '\n');
1412 
1413   // We can only analyze innermost loops.
1414   if (!TheLoop->empty()) {
1415     DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1416     emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
1417     return false;
1418   }
1419 
1420   // We must have a single backedge.
1421   if (TheLoop->getNumBackEdges() != 1) {
1422     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1423     emitAnalysis(
1424         LoopAccessReport() <<
1425         "loop control flow is not understood by analyzer");
1426     return false;
1427   }
1428 
1429   // We must have a single exiting block.
1430   if (!TheLoop->getExitingBlock()) {
1431     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1432     emitAnalysis(
1433         LoopAccessReport() <<
1434         "loop control flow is not understood by analyzer");
1435     return false;
1436   }
1437 
1438   // We only handle bottom-tested loops, i.e. loop in which the condition is
1439   // checked at the end of each iteration. With that we can assume that all
1440   // instructions in the loop are executed the same number of times.
1441   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1442     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1443     emitAnalysis(
1444         LoopAccessReport() <<
1445         "loop control flow is not understood by analyzer");
1446     return false;
1447   }
1448 
1449   // ScalarEvolution needs to be able to find the exit count.
1450   const SCEV *ExitCount = PSE.getSE()->getBackedgeTakenCount(TheLoop);
1451   if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
1452     emitAnalysis(LoopAccessReport()
1453                  << "could not determine number of loop iterations");
1454     DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1455     return false;
1456   }
1457 
1458   return true;
1459 }
1460 
1461 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
1462 
1463   typedef SmallVector<Value*, 16> ValueVector;
1464   typedef SmallPtrSet<Value*, 16> ValueSet;
1465 
1466   // Holds the Load and Store *instructions*.
1467   ValueVector Loads;
1468   ValueVector Stores;
1469 
1470   // Holds all the different accesses in the loop.
1471   unsigned NumReads = 0;
1472   unsigned NumReadWrites = 0;
1473 
1474   PtrRtChecking.Pointers.clear();
1475   PtrRtChecking.Need = false;
1476 
1477   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1478 
1479   // For each block.
1480   for (Loop::block_iterator bb = TheLoop->block_begin(),
1481        be = TheLoop->block_end(); bb != be; ++bb) {
1482 
1483     // Scan the BB and collect legal loads and stores.
1484     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1485          ++it) {
1486 
1487       // If this is a load, save it. If this instruction can read from memory
1488       // but is not a load, then we quit. Notice that we don't handle function
1489       // calls that read or write.
1490       if (it->mayReadFromMemory()) {
1491         // Many math library functions read the rounding mode. We will only
1492         // vectorize a loop if it contains known function calls that don't set
1493         // the flag. Therefore, it is safe to ignore this read from memory.
1494         CallInst *Call = dyn_cast<CallInst>(it);
1495         if (Call && getIntrinsicIDForCall(Call, TLI))
1496           continue;
1497 
1498         // If the function has an explicit vectorized counterpart, we can safely
1499         // assume that it can be vectorized.
1500         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1501             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1502           continue;
1503 
1504         LoadInst *Ld = dyn_cast<LoadInst>(it);
1505         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
1506           emitAnalysis(LoopAccessReport(Ld)
1507                        << "read with atomic ordering or volatile read");
1508           DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1509           CanVecMem = false;
1510           return;
1511         }
1512         NumLoads++;
1513         Loads.push_back(Ld);
1514         DepChecker.addAccess(Ld);
1515         continue;
1516       }
1517 
1518       // Save 'store' instructions. Abort if other instructions write to memory.
1519       if (it->mayWriteToMemory()) {
1520         StoreInst *St = dyn_cast<StoreInst>(it);
1521         if (!St) {
1522           emitAnalysis(LoopAccessReport(&*it) <<
1523                        "instruction cannot be vectorized");
1524           CanVecMem = false;
1525           return;
1526         }
1527         if (!St->isSimple() && !IsAnnotatedParallel) {
1528           emitAnalysis(LoopAccessReport(St)
1529                        << "write with atomic ordering or volatile write");
1530           DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1531           CanVecMem = false;
1532           return;
1533         }
1534         NumStores++;
1535         Stores.push_back(St);
1536         DepChecker.addAccess(St);
1537       }
1538     } // Next instr.
1539   } // Next block.
1540 
1541   // Now we have two lists that hold the loads and the stores.
1542   // Next, we find the pointers that they use.
1543 
1544   // Check if we see any stores. If there are no stores, then we don't
1545   // care if the pointers are *restrict*.
1546   if (!Stores.size()) {
1547     DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1548     CanVecMem = true;
1549     return;
1550   }
1551 
1552   MemoryDepChecker::DepCandidates DependentAccesses;
1553   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1554                           AA, LI, DependentAccesses, PSE);
1555 
1556   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1557   // multiple times on the same object. If the ptr is accessed twice, once
1558   // for read and once for write, it will only appear once (on the write
1559   // list). This is okay, since we are going to check for conflicts between
1560   // writes and between reads and writes, but not between reads and reads.
1561   ValueSet Seen;
1562 
1563   ValueVector::iterator I, IE;
1564   for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
1565     StoreInst *ST = cast<StoreInst>(*I);
1566     Value* Ptr = ST->getPointerOperand();
1567     // Check for store to loop invariant address.
1568     StoreToLoopInvariantAddress |= isUniform(Ptr);
1569     // If we did *not* see this pointer before, insert it to  the read-write
1570     // list. At this phase it is only a 'write' list.
1571     if (Seen.insert(Ptr).second) {
1572       ++NumReadWrites;
1573 
1574       MemoryLocation Loc = MemoryLocation::get(ST);
1575       // The TBAA metadata could have a control dependency on the predication
1576       // condition, so we cannot rely on it when determining whether or not we
1577       // need runtime pointer checks.
1578       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1579         Loc.AATags.TBAA = nullptr;
1580 
1581       Accesses.addStore(Loc);
1582     }
1583   }
1584 
1585   if (IsAnnotatedParallel) {
1586     DEBUG(dbgs()
1587           << "LAA: A loop annotated parallel, ignore memory dependency "
1588           << "checks.\n");
1589     CanVecMem = true;
1590     return;
1591   }
1592 
1593   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
1594     LoadInst *LD = cast<LoadInst>(*I);
1595     Value* Ptr = LD->getPointerOperand();
1596     // If we did *not* see this pointer before, insert it to the
1597     // read list. If we *did* see it before, then it is already in
1598     // the read-write list. This allows us to vectorize expressions
1599     // such as A[i] += x;  Because the address of A[i] is a read-write
1600     // pointer. This only works if the index of A[i] is consecutive.
1601     // If the address of i is unknown (for example A[B[i]]) then we may
1602     // read a few words, modify, and write a few words, and some of the
1603     // words may be written to the same address.
1604     bool IsReadOnlyPtr = false;
1605     if (Seen.insert(Ptr).second || !isStridedPtr(PSE, Ptr, TheLoop, Strides)) {
1606       ++NumReads;
1607       IsReadOnlyPtr = true;
1608     }
1609 
1610     MemoryLocation Loc = MemoryLocation::get(LD);
1611     // The TBAA metadata could have a control dependency on the predication
1612     // condition, so we cannot rely on it when determining whether or not we
1613     // need runtime pointer checks.
1614     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1615       Loc.AATags.TBAA = nullptr;
1616 
1617     Accesses.addLoad(Loc, IsReadOnlyPtr);
1618   }
1619 
1620   // If we write (or read-write) to a single destination and there are no
1621   // other reads in this loop then is it safe to vectorize.
1622   if (NumReadWrites == 1 && NumReads == 0) {
1623     DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1624     CanVecMem = true;
1625     return;
1626   }
1627 
1628   // Build dependence sets and check whether we need a runtime pointer bounds
1629   // check.
1630   Accesses.buildDependenceSets();
1631 
1632   // Find pointers with computable bounds. We are going to use this information
1633   // to place a runtime bound check.
1634   bool CanDoRTIfNeeded =
1635       Accesses.canCheckPtrAtRT(PtrRtChecking, PSE.getSE(), TheLoop, Strides);
1636   if (!CanDoRTIfNeeded) {
1637     emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
1638     DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1639                  << "the array bounds.\n");
1640     CanVecMem = false;
1641     return;
1642   }
1643 
1644   DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
1645 
1646   CanVecMem = true;
1647   if (Accesses.isDependencyCheckNeeded()) {
1648     DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1649     CanVecMem = DepChecker.areDepsSafe(
1650         DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
1651     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
1652 
1653     if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
1654       DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
1655 
1656       // Clear the dependency checks. We assume they are not needed.
1657       Accesses.resetDepChecks(DepChecker);
1658 
1659       PtrRtChecking.reset();
1660       PtrRtChecking.Need = true;
1661 
1662       auto *SE = PSE.getSE();
1663       CanDoRTIfNeeded =
1664           Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true);
1665 
1666       // Check that we found the bounds for the pointer.
1667       if (!CanDoRTIfNeeded) {
1668         emitAnalysis(LoopAccessReport()
1669                      << "cannot check memory dependencies at runtime");
1670         DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1671         CanVecMem = false;
1672         return;
1673       }
1674 
1675       CanVecMem = true;
1676     }
1677   }
1678 
1679   if (CanVecMem)
1680     DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
1681                  << (PtrRtChecking.Need ? "" : " don't")
1682                  << " need runtime memory checks.\n");
1683   else {
1684     emitAnalysis(LoopAccessReport() <<
1685                  "unsafe dependent memory operations in loop");
1686     DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1687   }
1688 }
1689 
1690 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1691                                            DominatorTree *DT)  {
1692   assert(TheLoop->contains(BB) && "Unknown block used");
1693 
1694   // Blocks that do not dominate the latch need predication.
1695   BasicBlock* Latch = TheLoop->getLoopLatch();
1696   return !DT->dominates(BB, Latch);
1697 }
1698 
1699 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
1700   assert(!Report && "Multiple reports generated");
1701   Report = Message;
1702 }
1703 
1704 bool LoopAccessInfo::isUniform(Value *V) const {
1705   return (PSE.getSE()->isLoopInvariant(PSE.getSE()->getSCEV(V), TheLoop));
1706 }
1707 
1708 // FIXME: this function is currently a duplicate of the one in
1709 // LoopVectorize.cpp.
1710 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1711                                  Instruction *Loc) {
1712   if (FirstInst)
1713     return FirstInst;
1714   if (Instruction *I = dyn_cast<Instruction>(V))
1715     return I->getParent() == Loc->getParent() ? I : nullptr;
1716   return nullptr;
1717 }
1718 
1719 namespace {
1720 /// \brief IR Values for the lower and upper bounds of a pointer evolution.  We
1721 /// need to use value-handles because SCEV expansion can invalidate previously
1722 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1723 /// a previous one.
1724 struct PointerBounds {
1725   TrackingVH<Value> Start;
1726   TrackingVH<Value> End;
1727 };
1728 } // end anonymous namespace
1729 
1730 /// \brief Expand code for the lower and upper bound of the pointer group \p CG
1731 /// in \p TheLoop.  \return the values for the bounds.
1732 static PointerBounds
1733 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1734              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1735              const RuntimePointerChecking &PtrRtChecking) {
1736   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1737   const SCEV *Sc = SE->getSCEV(Ptr);
1738 
1739   if (SE->isLoopInvariant(Sc, TheLoop)) {
1740     DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1741                  << "\n");
1742     return {Ptr, Ptr};
1743   } else {
1744     unsigned AS = Ptr->getType()->getPointerAddressSpace();
1745     LLVMContext &Ctx = Loc->getContext();
1746 
1747     // Use this type for pointer arithmetic.
1748     Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1749     Value *Start = nullptr, *End = nullptr;
1750 
1751     DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1752     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1753     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1754     DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1755     return {Start, End};
1756   }
1757 }
1758 
1759 /// \brief Turns a collection of checks into a collection of expanded upper and
1760 /// lower bounds for both pointers in the check.
1761 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1762     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1763     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1764     const RuntimePointerChecking &PtrRtChecking) {
1765   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1766 
1767   // Here we're relying on the SCEV Expander's cache to only emit code for the
1768   // same bounds once.
1769   std::transform(
1770       PointerChecks.begin(), PointerChecks.end(),
1771       std::back_inserter(ChecksWithBounds),
1772       [&](const RuntimePointerChecking::PointerCheck &Check) {
1773         PointerBounds
1774           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1775           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1776         return std::make_pair(First, Second);
1777       });
1778 
1779   return ChecksWithBounds;
1780 }
1781 
1782 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
1783     Instruction *Loc,
1784     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1785     const {
1786   auto *SE = PSE.getSE();
1787   SCEVExpander Exp(*SE, DL, "induction");
1788   auto ExpandedChecks =
1789       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking);
1790 
1791   LLVMContext &Ctx = Loc->getContext();
1792   Instruction *FirstInst = nullptr;
1793   IRBuilder<> ChkBuilder(Loc);
1794   // Our instructions might fold to a constant.
1795   Value *MemoryRuntimeCheck = nullptr;
1796 
1797   for (const auto &Check : ExpandedChecks) {
1798     const PointerBounds &A = Check.first, &B = Check.second;
1799     // Check if two pointers (A and B) conflict where conflict is computed as:
1800     // start(A) <= end(B) && start(B) <= end(A)
1801     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1802     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1803 
1804     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1805            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1806            "Trying to bounds check pointers with different address spaces");
1807 
1808     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1809     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1810 
1811     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1812     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1813     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
1814     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
1815 
1816     Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1817     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1818     Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1819     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1820     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1821     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1822     if (MemoryRuntimeCheck) {
1823       IsConflict =
1824           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1825       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1826     }
1827     MemoryRuntimeCheck = IsConflict;
1828   }
1829 
1830   if (!MemoryRuntimeCheck)
1831     return std::make_pair(nullptr, nullptr);
1832 
1833   // We have to do this trickery because the IRBuilder might fold the check to a
1834   // constant expression in which case there is no Instruction anchored in a
1835   // the block.
1836   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1837                                                  ConstantInt::getTrue(Ctx));
1838   ChkBuilder.Insert(Check, "memcheck.conflict");
1839   FirstInst = getFirstInst(FirstInst, Check, Loc);
1840   return std::make_pair(FirstInst, Check);
1841 }
1842 
1843 std::pair<Instruction *, Instruction *>
1844 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
1845   if (!PtrRtChecking.Need)
1846     return std::make_pair(nullptr, nullptr);
1847 
1848   return addRuntimeChecks(Loc, PtrRtChecking.getChecks());
1849 }
1850 
1851 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
1852                                const DataLayout &DL,
1853                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
1854                                DominatorTree *DT, LoopInfo *LI,
1855                                const ValueToValueMap &Strides)
1856     : PSE(*SE, *L), PtrRtChecking(SE), DepChecker(PSE, L), TheLoop(L), DL(DL),
1857       TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
1858       MaxSafeDepDistBytes(-1U), CanVecMem(false),
1859       StoreToLoopInvariantAddress(false) {
1860   if (canAnalyzeLoop())
1861     analyzeLoop(Strides);
1862 }
1863 
1864 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1865   if (CanVecMem) {
1866     if (PtrRtChecking.Need)
1867       OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
1868     else
1869       OS.indent(Depth) << "Memory dependences are safe\n";
1870   }
1871 
1872   if (Report)
1873     OS.indent(Depth) << "Report: " << Report->str() << "\n";
1874 
1875   if (auto *Dependences = DepChecker.getDependences()) {
1876     OS.indent(Depth) << "Dependences:\n";
1877     for (auto &Dep : *Dependences) {
1878       Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
1879       OS << "\n";
1880     }
1881   } else
1882     OS.indent(Depth) << "Too many dependences, not recorded\n";
1883 
1884   // List the pair of accesses need run-time checks to prove independence.
1885   PtrRtChecking.print(OS, Depth);
1886   OS << "\n";
1887 
1888   OS.indent(Depth) << "Store to invariant address was "
1889                    << (StoreToLoopInvariantAddress ? "" : "not ")
1890                    << "found in loop.\n";
1891 
1892   OS.indent(Depth) << "SCEV assumptions:\n";
1893   PSE.getUnionPredicate().print(OS, Depth);
1894 }
1895 
1896 const LoopAccessInfo &
1897 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
1898   auto &LAI = LoopAccessInfoMap[L];
1899 
1900 #ifndef NDEBUG
1901   assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
1902          "Symbolic strides changed for loop");
1903 #endif
1904 
1905   if (!LAI) {
1906     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1907     LAI =
1908         llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, Strides);
1909 #ifndef NDEBUG
1910     LAI->NumSymbolicStrides = Strides.size();
1911 #endif
1912   }
1913   return *LAI.get();
1914 }
1915 
1916 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
1917   LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
1918 
1919   ValueToValueMap NoSymbolicStrides;
1920 
1921   for (Loop *TopLevelLoop : *LI)
1922     for (Loop *L : depth_first(TopLevelLoop)) {
1923       OS.indent(2) << L->getHeader()->getName() << ":\n";
1924       auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
1925       LAI.print(OS, 4);
1926     }
1927 }
1928 
1929 bool LoopAccessAnalysis::runOnFunction(Function &F) {
1930   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1931   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1932   TLI = TLIP ? &TLIP->getTLI() : nullptr;
1933   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1934   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1935   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1936 
1937   return false;
1938 }
1939 
1940 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1941     AU.addRequired<ScalarEvolutionWrapperPass>();
1942     AU.addRequired<AAResultsWrapperPass>();
1943     AU.addRequired<DominatorTreeWrapperPass>();
1944     AU.addRequired<LoopInfoWrapperPass>();
1945 
1946     AU.setPreservesAll();
1947 }
1948 
1949 char LoopAccessAnalysis::ID = 0;
1950 static const char laa_name[] = "Loop Access Analysis";
1951 #define LAA_NAME "loop-accesses"
1952 
1953 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1954 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1955 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1956 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1957 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1958 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1959 
1960 namespace llvm {
1961   Pass *createLAAPass() {
1962     return new LoopAccessAnalysis();
1963   }
1964 }
1965