1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/ScalarEvolutionExpander.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/DiagnosticInfo.h" 20 #include "llvm/IR/Dominators.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Transforms/Utils/VectorUtils.h" 24 using namespace llvm; 25 26 #define DEBUG_TYPE "loop-accesses" 27 28 static cl::opt<unsigned, true> 29 VectorizationFactor("force-vector-width", cl::Hidden, 30 cl::desc("Sets the SIMD width. Zero is autoselect."), 31 cl::location(VectorizerParams::VectorizationFactor)); 32 unsigned VectorizerParams::VectorizationFactor; 33 34 static cl::opt<unsigned, true> 35 VectorizationInterleave("force-vector-interleave", cl::Hidden, 36 cl::desc("Sets the vectorization interleave count. " 37 "Zero is autoselect."), 38 cl::location( 39 VectorizerParams::VectorizationInterleave)); 40 unsigned VectorizerParams::VectorizationInterleave; 41 42 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 43 "runtime-memory-check-threshold", cl::Hidden, 44 cl::desc("When performing memory disambiguation checks at runtime do not " 45 "generate more than this number of comparisons (default = 8)."), 46 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 47 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 48 49 /// Maximum SIMD width. 50 const unsigned VectorizerParams::MaxVectorWidth = 64; 51 52 bool VectorizerParams::isInterleaveForced() { 53 return ::VectorizationInterleave.getNumOccurrences() > 0; 54 } 55 56 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 57 const Function *TheFunction, 58 const Loop *TheLoop, 59 const char *PassName) { 60 DebugLoc DL = TheLoop->getStartLoc(); 61 if (const Instruction *I = Message.getInstr()) 62 DL = I->getDebugLoc(); 63 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, 64 *TheFunction, DL, Message.str()); 65 } 66 67 Value *llvm::stripIntegerCast(Value *V) { 68 if (CastInst *CI = dyn_cast<CastInst>(V)) 69 if (CI->getOperand(0)->getType()->isIntegerTy()) 70 return CI->getOperand(0); 71 return V; 72 } 73 74 const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE, 75 const ValueToValueMap &PtrToStride, 76 Value *Ptr, Value *OrigPtr) { 77 78 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 79 80 // If there is an entry in the map return the SCEV of the pointer with the 81 // symbolic stride replaced by one. 82 ValueToValueMap::const_iterator SI = 83 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 84 if (SI != PtrToStride.end()) { 85 Value *StrideVal = SI->second; 86 87 // Strip casts. 88 StrideVal = stripIntegerCast(StrideVal); 89 90 // Replace symbolic stride by one. 91 Value *One = ConstantInt::get(StrideVal->getType(), 1); 92 ValueToValueMap RewriteMap; 93 RewriteMap[StrideVal] = One; 94 95 const SCEV *ByOne = 96 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 97 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 98 << "\n"); 99 return ByOne; 100 } 101 102 // Otherwise, just return the SCEV of the original pointer. 103 return SE->getSCEV(Ptr); 104 } 105 106 void LoopAccessInfo::RuntimePointerCheck::insert( 107 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 108 unsigned ASId, const ValueToValueMap &Strides) { 109 // Get the stride replaced scev. 110 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 111 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 112 assert(AR && "Invalid addrec expression"); 113 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 114 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 115 Pointers.push_back(Ptr); 116 Starts.push_back(AR->getStart()); 117 Ends.push_back(ScEnd); 118 IsWritePtr.push_back(WritePtr); 119 DependencySetId.push_back(DepSetId); 120 AliasSetId.push_back(ASId); 121 } 122 123 bool LoopAccessInfo::RuntimePointerCheck::needsChecking(unsigned I, 124 unsigned J) const { 125 // No need to check if two readonly pointers intersect. 126 if (!IsWritePtr[I] && !IsWritePtr[J]) 127 return false; 128 129 // Only need to check pointers between two different dependency sets. 130 if (DependencySetId[I] == DependencySetId[J]) 131 return false; 132 133 // Only need to check pointers in the same alias set. 134 if (AliasSetId[I] != AliasSetId[J]) 135 return false; 136 137 return true; 138 } 139 140 void LoopAccessInfo::RuntimePointerCheck::print(raw_ostream &OS, 141 unsigned Depth) const { 142 unsigned NumPointers = Pointers.size(); 143 if (NumPointers == 0) 144 return; 145 146 OS.indent(Depth) << "Run-time memory checks:\n"; 147 unsigned N = 0; 148 for (unsigned I = 0; I < NumPointers; ++I) 149 for (unsigned J = I + 1; J < NumPointers; ++J) 150 if (needsChecking(I, J)) { 151 OS.indent(Depth) << N++ << ":\n"; 152 OS.indent(Depth + 2) << *Pointers[I] << "\n"; 153 OS.indent(Depth + 2) << *Pointers[J] << "\n"; 154 } 155 } 156 157 namespace { 158 /// \brief Analyses memory accesses in a loop. 159 /// 160 /// Checks whether run time pointer checks are needed and builds sets for data 161 /// dependence checking. 162 class AccessAnalysis { 163 public: 164 /// \brief Read or write access location. 165 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 166 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 167 168 /// \brief Set of potential dependent memory accesses. 169 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 170 171 AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) : 172 DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {} 173 174 /// \brief Register a load and whether it is only read from. 175 void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) { 176 Value *Ptr = const_cast<Value*>(Loc.Ptr); 177 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 178 Accesses.insert(MemAccessInfo(Ptr, false)); 179 if (IsReadOnly) 180 ReadOnlyPtr.insert(Ptr); 181 } 182 183 /// \brief Register a store. 184 void addStore(AliasAnalysis::Location &Loc) { 185 Value *Ptr = const_cast<Value*>(Loc.Ptr); 186 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 187 Accesses.insert(MemAccessInfo(Ptr, true)); 188 } 189 190 /// \brief Check whether we can check the pointers at runtime for 191 /// non-intersection. 192 bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck, 193 unsigned &NumComparisons, ScalarEvolution *SE, 194 Loop *TheLoop, const ValueToValueMap &Strides, 195 bool ShouldCheckStride = false); 196 197 /// \brief Goes over all memory accesses, checks whether a RT check is needed 198 /// and builds sets of dependent accesses. 199 void buildDependenceSets() { 200 processMemAccesses(); 201 } 202 203 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 204 205 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 206 void resetDepChecks() { CheckDeps.clear(); } 207 208 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 209 210 private: 211 typedef SetVector<MemAccessInfo> PtrAccessSet; 212 213 /// \brief Go over all memory access and check whether runtime pointer checks 214 /// are needed /// and build sets of dependency check candidates. 215 void processMemAccesses(); 216 217 /// Set of all accesses. 218 PtrAccessSet Accesses; 219 220 /// Set of accesses that need a further dependence check. 221 MemAccessInfoSet CheckDeps; 222 223 /// Set of pointers that are read only. 224 SmallPtrSet<Value*, 16> ReadOnlyPtr; 225 226 const DataLayout *DL; 227 228 /// An alias set tracker to partition the access set by underlying object and 229 //intrinsic property (such as TBAA metadata). 230 AliasSetTracker AST; 231 232 /// Sets of potentially dependent accesses - members of one set share an 233 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 234 /// dependence check. 235 DepCandidates &DepCands; 236 237 bool IsRTCheckNeeded; 238 }; 239 240 } // end anonymous namespace 241 242 /// \brief Check whether a pointer can participate in a runtime bounds check. 243 static bool hasComputableBounds(ScalarEvolution *SE, 244 const ValueToValueMap &Strides, Value *Ptr) { 245 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 246 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 247 if (!AR) 248 return false; 249 250 return AR->isAffine(); 251 } 252 253 /// \brief Check the stride of the pointer and ensure that it does not wrap in 254 /// the address space. 255 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 256 const Loop *Lp, const ValueToValueMap &StridesMap); 257 258 bool AccessAnalysis::canCheckPtrAtRT( 259 LoopAccessInfo::RuntimePointerCheck &RtCheck, unsigned &NumComparisons, 260 ScalarEvolution *SE, Loop *TheLoop, const ValueToValueMap &StridesMap, 261 bool ShouldCheckStride) { 262 // Find pointers with computable bounds. We are going to use this information 263 // to place a runtime bound check. 264 bool CanDoRT = true; 265 266 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 267 NumComparisons = 0; 268 269 // We assign a consecutive id to access from different alias sets. 270 // Accesses between different groups doesn't need to be checked. 271 unsigned ASId = 1; 272 for (auto &AS : AST) { 273 unsigned NumReadPtrChecks = 0; 274 unsigned NumWritePtrChecks = 0; 275 276 // We assign consecutive id to access from different dependence sets. 277 // Accesses within the same set don't need a runtime check. 278 unsigned RunningDepId = 1; 279 DenseMap<Value *, unsigned> DepSetId; 280 281 for (auto A : AS) { 282 Value *Ptr = A.getValue(); 283 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 284 MemAccessInfo Access(Ptr, IsWrite); 285 286 if (IsWrite) 287 ++NumWritePtrChecks; 288 else 289 ++NumReadPtrChecks; 290 291 if (hasComputableBounds(SE, StridesMap, Ptr) && 292 // When we run after a failing dependency check we have to make sure we 293 // don't have wrapping pointers. 294 (!ShouldCheckStride || 295 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 296 // The id of the dependence set. 297 unsigned DepId; 298 299 if (IsDepCheckNeeded) { 300 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 301 unsigned &LeaderId = DepSetId[Leader]; 302 if (!LeaderId) 303 LeaderId = RunningDepId++; 304 DepId = LeaderId; 305 } else 306 // Each access has its own dependence set. 307 DepId = RunningDepId++; 308 309 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 310 311 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 312 } else { 313 CanDoRT = false; 314 } 315 } 316 317 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 318 NumComparisons += 0; // Only one dependence set. 319 else { 320 NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks + 321 NumWritePtrChecks - 1)); 322 } 323 324 ++ASId; 325 } 326 327 // If the pointers that we would use for the bounds comparison have different 328 // address spaces, assume the values aren't directly comparable, so we can't 329 // use them for the runtime check. We also have to assume they could 330 // overlap. In the future there should be metadata for whether address spaces 331 // are disjoint. 332 unsigned NumPointers = RtCheck.Pointers.size(); 333 for (unsigned i = 0; i < NumPointers; ++i) { 334 for (unsigned j = i + 1; j < NumPointers; ++j) { 335 // Only need to check pointers between two different dependency sets. 336 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 337 continue; 338 // Only need to check pointers in the same alias set. 339 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) 340 continue; 341 342 Value *PtrI = RtCheck.Pointers[i]; 343 Value *PtrJ = RtCheck.Pointers[j]; 344 345 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 346 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 347 if (ASi != ASj) { 348 DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 349 " different address spaces\n"); 350 return false; 351 } 352 } 353 } 354 355 return CanDoRT; 356 } 357 358 void AccessAnalysis::processMemAccesses() { 359 // We process the set twice: first we process read-write pointers, last we 360 // process read-only pointers. This allows us to skip dependence tests for 361 // read-only pointers. 362 363 DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 364 DEBUG(dbgs() << " AST: "; AST.dump()); 365 DEBUG(dbgs() << "LAA: Accesses:\n"); 366 DEBUG({ 367 for (auto A : Accesses) 368 dbgs() << "\t" << *A.getPointer() << " (" << 369 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 370 "read-only" : "read")) << ")\n"; 371 }); 372 373 // The AliasSetTracker has nicely partitioned our pointers by metadata 374 // compatibility and potential for underlying-object overlap. As a result, we 375 // only need to check for potential pointer dependencies within each alias 376 // set. 377 for (auto &AS : AST) { 378 // Note that both the alias-set tracker and the alias sets themselves used 379 // linked lists internally and so the iteration order here is deterministic 380 // (matching the original instruction order within each set). 381 382 bool SetHasWrite = false; 383 384 // Map of pointers to last access encountered. 385 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 386 UnderlyingObjToAccessMap ObjToLastAccess; 387 388 // Set of access to check after all writes have been processed. 389 PtrAccessSet DeferredAccesses; 390 391 // Iterate over each alias set twice, once to process read/write pointers, 392 // and then to process read-only pointers. 393 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 394 bool UseDeferred = SetIteration > 0; 395 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 396 397 for (auto AV : AS) { 398 Value *Ptr = AV.getValue(); 399 400 // For a single memory access in AliasSetTracker, Accesses may contain 401 // both read and write, and they both need to be handled for CheckDeps. 402 for (auto AC : S) { 403 if (AC.getPointer() != Ptr) 404 continue; 405 406 bool IsWrite = AC.getInt(); 407 408 // If we're using the deferred access set, then it contains only 409 // reads. 410 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 411 if (UseDeferred && !IsReadOnlyPtr) 412 continue; 413 // Otherwise, the pointer must be in the PtrAccessSet, either as a 414 // read or a write. 415 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 416 S.count(MemAccessInfo(Ptr, false))) && 417 "Alias-set pointer not in the access set?"); 418 419 MemAccessInfo Access(Ptr, IsWrite); 420 DepCands.insert(Access); 421 422 // Memorize read-only pointers for later processing and skip them in 423 // the first round (they need to be checked after we have seen all 424 // write pointers). Note: we also mark pointer that are not 425 // consecutive as "read-only" pointers (so that we check 426 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 427 if (!UseDeferred && IsReadOnlyPtr) { 428 DeferredAccesses.insert(Access); 429 continue; 430 } 431 432 // If this is a write - check other reads and writes for conflicts. If 433 // this is a read only check other writes for conflicts (but only if 434 // there is no other write to the ptr - this is an optimization to 435 // catch "a[i] = a[i] + " without having to do a dependence check). 436 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 437 CheckDeps.insert(Access); 438 IsRTCheckNeeded = true; 439 } 440 441 if (IsWrite) 442 SetHasWrite = true; 443 444 // Create sets of pointers connected by a shared alias set and 445 // underlying object. 446 typedef SmallVector<Value *, 16> ValueVector; 447 ValueVector TempObjects; 448 GetUnderlyingObjects(Ptr, TempObjects, DL); 449 for (Value *UnderlyingObj : TempObjects) { 450 UnderlyingObjToAccessMap::iterator Prev = 451 ObjToLastAccess.find(UnderlyingObj); 452 if (Prev != ObjToLastAccess.end()) 453 DepCands.unionSets(Access, Prev->second); 454 455 ObjToLastAccess[UnderlyingObj] = Access; 456 } 457 } 458 } 459 } 460 } 461 } 462 463 namespace { 464 /// \brief Checks memory dependences among accesses to the same underlying 465 /// object to determine whether there vectorization is legal or not (and at 466 /// which vectorization factor). 467 /// 468 /// This class works under the assumption that we already checked that memory 469 /// locations with different underlying pointers are "must-not alias". 470 /// We use the ScalarEvolution framework to symbolically evalutate access 471 /// functions pairs. Since we currently don't restructure the loop we can rely 472 /// on the program order of memory accesses to determine their safety. 473 /// At the moment we will only deem accesses as safe for: 474 /// * A negative constant distance assuming program order. 475 /// 476 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 477 /// a[i] = tmp; y = a[i]; 478 /// 479 /// The latter case is safe because later checks guarantuee that there can't 480 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 481 /// the same variable: a header phi can only be an induction or a reduction, a 482 /// reduction can't have a memory sink, an induction can't have a memory 483 /// source). This is important and must not be violated (or we have to 484 /// resort to checking for cycles through memory). 485 /// 486 /// * A positive constant distance assuming program order that is bigger 487 /// than the biggest memory access. 488 /// 489 /// tmp = a[i] OR b[i] = x 490 /// a[i+2] = tmp y = b[i+2]; 491 /// 492 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 493 /// 494 /// * Zero distances and all accesses have the same size. 495 /// 496 class MemoryDepChecker { 497 public: 498 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 499 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 500 501 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L) 502 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 503 ShouldRetryWithRuntimeCheck(false) {} 504 505 /// \brief Register the location (instructions are given increasing numbers) 506 /// of a write access. 507 void addAccess(StoreInst *SI) { 508 Value *Ptr = SI->getPointerOperand(); 509 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 510 InstMap.push_back(SI); 511 ++AccessIdx; 512 } 513 514 /// \brief Register the location (instructions are given increasing numbers) 515 /// of a write access. 516 void addAccess(LoadInst *LI) { 517 Value *Ptr = LI->getPointerOperand(); 518 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 519 InstMap.push_back(LI); 520 ++AccessIdx; 521 } 522 523 /// \brief Check whether the dependencies between the accesses are safe. 524 /// 525 /// Only checks sets with elements in \p CheckDeps. 526 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 527 MemAccessInfoSet &CheckDeps, const ValueToValueMap &Strides); 528 529 /// \brief The maximum number of bytes of a vector register we can vectorize 530 /// the accesses safely with. 531 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 532 533 /// \brief In same cases when the dependency check fails we can still 534 /// vectorize the loop with a dynamic array access check. 535 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 536 537 private: 538 ScalarEvolution *SE; 539 const DataLayout *DL; 540 const Loop *InnermostLoop; 541 542 /// \brief Maps access locations (ptr, read/write) to program order. 543 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 544 545 /// \brief Memory access instructions in program order. 546 SmallVector<Instruction *, 16> InstMap; 547 548 /// \brief The program order index to be used for the next instruction. 549 unsigned AccessIdx; 550 551 // We can access this many bytes in parallel safely. 552 unsigned MaxSafeDepDistBytes; 553 554 /// \brief If we see a non-constant dependence distance we can still try to 555 /// vectorize this loop with runtime checks. 556 bool ShouldRetryWithRuntimeCheck; 557 558 /// \brief Check whether there is a plausible dependence between the two 559 /// accesses. 560 /// 561 /// Access \p A must happen before \p B in program order. The two indices 562 /// identify the index into the program order map. 563 /// 564 /// This function checks whether there is a plausible dependence (or the 565 /// absence of such can't be proved) between the two accesses. If there is a 566 /// plausible dependence but the dependence distance is bigger than one 567 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 568 /// distance is smaller than any other distance encountered so far). 569 /// Otherwise, this function returns true signaling a possible dependence. 570 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 571 const MemAccessInfo &B, unsigned BIdx, 572 const ValueToValueMap &Strides); 573 574 /// \brief Check whether the data dependence could prevent store-load 575 /// forwarding. 576 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 577 }; 578 579 } // end anonymous namespace 580 581 static bool isInBoundsGep(Value *Ptr) { 582 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 583 return GEP->isInBounds(); 584 return false; 585 } 586 587 /// \brief Check whether the access through \p Ptr has a constant stride. 588 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 589 const Loop *Lp, const ValueToValueMap &StridesMap) { 590 const Type *Ty = Ptr->getType(); 591 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 592 593 // Make sure that the pointer does not point to aggregate types. 594 const PointerType *PtrTy = cast<PointerType>(Ty); 595 if (PtrTy->getElementType()->isAggregateType()) { 596 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 597 << *Ptr << "\n"); 598 return 0; 599 } 600 601 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 602 603 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 604 if (!AR) { 605 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " 606 << *Ptr << " SCEV: " << *PtrScev << "\n"); 607 return 0; 608 } 609 610 // The accesss function must stride over the innermost loop. 611 if (Lp != AR->getLoop()) { 612 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 613 *Ptr << " SCEV: " << *PtrScev << "\n"); 614 } 615 616 // The address calculation must not wrap. Otherwise, a dependence could be 617 // inverted. 618 // An inbounds getelementptr that is a AddRec with a unit stride 619 // cannot wrap per definition. The unit stride requirement is checked later. 620 // An getelementptr without an inbounds attribute and unit stride would have 621 // to access the pointer value "0" which is undefined behavior in address 622 // space 0, therefore we can also vectorize this case. 623 bool IsInBoundsGEP = isInBoundsGep(Ptr); 624 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 625 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 626 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 627 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 628 << *Ptr << " SCEV: " << *PtrScev << "\n"); 629 return 0; 630 } 631 632 // Check the step is constant. 633 const SCEV *Step = AR->getStepRecurrence(*SE); 634 635 // Calculate the pointer stride and check if it is consecutive. 636 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 637 if (!C) { 638 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 639 " SCEV: " << *PtrScev << "\n"); 640 return 0; 641 } 642 643 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 644 const APInt &APStepVal = C->getValue()->getValue(); 645 646 // Huge step value - give up. 647 if (APStepVal.getBitWidth() > 64) 648 return 0; 649 650 int64_t StepVal = APStepVal.getSExtValue(); 651 652 // Strided access. 653 int64_t Stride = StepVal / Size; 654 int64_t Rem = StepVal % Size; 655 if (Rem) 656 return 0; 657 658 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 659 // know we can't "wrap around the address space". In case of address space 660 // zero we know that this won't happen without triggering undefined behavior. 661 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 662 Stride != 1 && Stride != -1) 663 return 0; 664 665 return Stride; 666 } 667 668 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 669 unsigned TypeByteSize) { 670 // If loads occur at a distance that is not a multiple of a feasible vector 671 // factor store-load forwarding does not take place. 672 // Positive dependences might cause troubles because vectorizing them might 673 // prevent store-load forwarding making vectorized code run a lot slower. 674 // a[i] = a[i-3] ^ a[i-8]; 675 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 676 // hence on your typical architecture store-load forwarding does not take 677 // place. Vectorizing in such cases does not make sense. 678 // Store-load forwarding distance. 679 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 680 // Maximum vector factor. 681 unsigned MaxVFWithoutSLForwardIssues = 682 VectorizerParams::MaxVectorWidth * TypeByteSize; 683 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 684 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 685 686 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 687 vf *= 2) { 688 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 689 MaxVFWithoutSLForwardIssues = (vf >>=1); 690 break; 691 } 692 } 693 694 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 695 DEBUG(dbgs() << "LAA: Distance " << Distance << 696 " that could cause a store-load forwarding conflict\n"); 697 return true; 698 } 699 700 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 701 MaxVFWithoutSLForwardIssues != 702 VectorizerParams::MaxVectorWidth * TypeByteSize) 703 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 704 return false; 705 } 706 707 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 708 const MemAccessInfo &B, unsigned BIdx, 709 const ValueToValueMap &Strides) { 710 assert (AIdx < BIdx && "Must pass arguments in program order"); 711 712 Value *APtr = A.getPointer(); 713 Value *BPtr = B.getPointer(); 714 bool AIsWrite = A.getInt(); 715 bool BIsWrite = B.getInt(); 716 717 // Two reads are independent. 718 if (!AIsWrite && !BIsWrite) 719 return false; 720 721 // We cannot check pointers in different address spaces. 722 if (APtr->getType()->getPointerAddressSpace() != 723 BPtr->getType()->getPointerAddressSpace()) 724 return true; 725 726 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 727 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 728 729 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 730 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 731 732 const SCEV *Src = AScev; 733 const SCEV *Sink = BScev; 734 735 // If the induction step is negative we have to invert source and sink of the 736 // dependence. 737 if (StrideAPtr < 0) { 738 //Src = BScev; 739 //Sink = AScev; 740 std::swap(APtr, BPtr); 741 std::swap(Src, Sink); 742 std::swap(AIsWrite, BIsWrite); 743 std::swap(AIdx, BIdx); 744 std::swap(StrideAPtr, StrideBPtr); 745 } 746 747 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 748 749 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 750 << "(Induction step: " << StrideAPtr << ")\n"); 751 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 752 << *InstMap[BIdx] << ": " << *Dist << "\n"); 753 754 // Need consecutive accesses. We don't want to vectorize 755 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 756 // the address space. 757 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 758 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 759 return true; 760 } 761 762 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 763 if (!C) { 764 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 765 ShouldRetryWithRuntimeCheck = true; 766 return true; 767 } 768 769 Type *ATy = APtr->getType()->getPointerElementType(); 770 Type *BTy = BPtr->getType()->getPointerElementType(); 771 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 772 773 // Negative distances are not plausible dependencies. 774 const APInt &Val = C->getValue()->getValue(); 775 if (Val.isNegative()) { 776 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 777 if (IsTrueDataDependence && 778 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 779 ATy != BTy)) 780 return true; 781 782 DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n"); 783 return false; 784 } 785 786 // Write to the same location with the same size. 787 // Could be improved to assert type sizes are the same (i32 == float, etc). 788 if (Val == 0) { 789 if (ATy == BTy) 790 return false; 791 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 792 return true; 793 } 794 795 assert(Val.isStrictlyPositive() && "Expect a positive value"); 796 797 if (ATy != BTy) { 798 DEBUG(dbgs() << 799 "LAA: ReadWrite-Write positive dependency with different types\n"); 800 return true; 801 } 802 803 unsigned Distance = (unsigned) Val.getZExtValue(); 804 805 // Bail out early if passed-in parameters make vectorization not feasible. 806 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 807 VectorizerParams::VectorizationFactor : 1); 808 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 809 VectorizerParams::VectorizationInterleave : 1); 810 811 // The distance must be bigger than the size needed for a vectorized version 812 // of the operation and the size of the vectorized operation must not be 813 // bigger than the currrent maximum size. 814 if (Distance < 2*TypeByteSize || 815 2*TypeByteSize > MaxSafeDepDistBytes || 816 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 817 DEBUG(dbgs() << "LAA: Failure because of Positive distance " 818 << Val.getSExtValue() << '\n'); 819 return true; 820 } 821 822 // Positive distance bigger than max vectorization factor. 823 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 824 Distance : MaxSafeDepDistBytes; 825 826 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 827 if (IsTrueDataDependence && 828 couldPreventStoreLoadForward(Distance, TypeByteSize)) 829 return true; 830 831 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() << 832 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 833 834 return false; 835 } 836 837 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 838 MemAccessInfoSet &CheckDeps, 839 const ValueToValueMap &Strides) { 840 841 MaxSafeDepDistBytes = -1U; 842 while (!CheckDeps.empty()) { 843 MemAccessInfo CurAccess = *CheckDeps.begin(); 844 845 // Get the relevant memory access set. 846 EquivalenceClasses<MemAccessInfo>::iterator I = 847 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 848 849 // Check accesses within this set. 850 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 851 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 852 853 // Check every access pair. 854 while (AI != AE) { 855 CheckDeps.erase(*AI); 856 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 857 while (OI != AE) { 858 // Check every accessing instruction pair in program order. 859 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 860 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 861 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 862 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 863 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 864 return false; 865 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 866 return false; 867 } 868 ++OI; 869 } 870 AI++; 871 } 872 } 873 return true; 874 } 875 876 bool LoopAccessInfo::canAnalyzeLoop() { 877 // We can only analyze innermost loops. 878 if (!TheLoop->empty()) { 879 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); 880 return false; 881 } 882 883 // We must have a single backedge. 884 if (TheLoop->getNumBackEdges() != 1) { 885 emitAnalysis( 886 LoopAccessReport() << 887 "loop control flow is not understood by analyzer"); 888 return false; 889 } 890 891 // We must have a single exiting block. 892 if (!TheLoop->getExitingBlock()) { 893 emitAnalysis( 894 LoopAccessReport() << 895 "loop control flow is not understood by analyzer"); 896 return false; 897 } 898 899 // We only handle bottom-tested loops, i.e. loop in which the condition is 900 // checked at the end of each iteration. With that we can assume that all 901 // instructions in the loop are executed the same number of times. 902 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 903 emitAnalysis( 904 LoopAccessReport() << 905 "loop control flow is not understood by analyzer"); 906 return false; 907 } 908 909 // We need to have a loop header. 910 DEBUG(dbgs() << "LAA: Found a loop: " << 911 TheLoop->getHeader()->getName() << '\n'); 912 913 // ScalarEvolution needs to be able to find the exit count. 914 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 915 if (ExitCount == SE->getCouldNotCompute()) { 916 emitAnalysis(LoopAccessReport() << 917 "could not determine number of loop iterations"); 918 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 919 return false; 920 } 921 922 return true; 923 } 924 925 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) { 926 927 typedef SmallVector<Value*, 16> ValueVector; 928 typedef SmallPtrSet<Value*, 16> ValueSet; 929 930 // Holds the Load and Store *instructions*. 931 ValueVector Loads; 932 ValueVector Stores; 933 934 // Holds all the different accesses in the loop. 935 unsigned NumReads = 0; 936 unsigned NumReadWrites = 0; 937 938 PtrRtCheck.Pointers.clear(); 939 PtrRtCheck.Need = false; 940 941 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 942 MemoryDepChecker DepChecker(SE, DL, TheLoop); 943 944 // For each block. 945 for (Loop::block_iterator bb = TheLoop->block_begin(), 946 be = TheLoop->block_end(); bb != be; ++bb) { 947 948 // Scan the BB and collect legal loads and stores. 949 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 950 ++it) { 951 952 // If this is a load, save it. If this instruction can read from memory 953 // but is not a load, then we quit. Notice that we don't handle function 954 // calls that read or write. 955 if (it->mayReadFromMemory()) { 956 // Many math library functions read the rounding mode. We will only 957 // vectorize a loop if it contains known function calls that don't set 958 // the flag. Therefore, it is safe to ignore this read from memory. 959 CallInst *Call = dyn_cast<CallInst>(it); 960 if (Call && getIntrinsicIDForCall(Call, TLI)) 961 continue; 962 963 LoadInst *Ld = dyn_cast<LoadInst>(it); 964 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 965 emitAnalysis(LoopAccessReport(Ld) 966 << "read with atomic ordering or volatile read"); 967 DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 968 CanVecMem = false; 969 return; 970 } 971 NumLoads++; 972 Loads.push_back(Ld); 973 DepChecker.addAccess(Ld); 974 continue; 975 } 976 977 // Save 'store' instructions. Abort if other instructions write to memory. 978 if (it->mayWriteToMemory()) { 979 StoreInst *St = dyn_cast<StoreInst>(it); 980 if (!St) { 981 emitAnalysis(LoopAccessReport(it) << 982 "instruction cannot be vectorized"); 983 CanVecMem = false; 984 return; 985 } 986 if (!St->isSimple() && !IsAnnotatedParallel) { 987 emitAnalysis(LoopAccessReport(St) 988 << "write with atomic ordering or volatile write"); 989 DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 990 CanVecMem = false; 991 return; 992 } 993 NumStores++; 994 Stores.push_back(St); 995 DepChecker.addAccess(St); 996 } 997 } // Next instr. 998 } // Next block. 999 1000 // Now we have two lists that hold the loads and the stores. 1001 // Next, we find the pointers that they use. 1002 1003 // Check if we see any stores. If there are no stores, then we don't 1004 // care if the pointers are *restrict*. 1005 if (!Stores.size()) { 1006 DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1007 CanVecMem = true; 1008 return; 1009 } 1010 1011 AccessAnalysis::DepCandidates DependentAccesses; 1012 AccessAnalysis Accesses(DL, AA, DependentAccesses); 1013 1014 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1015 // multiple times on the same object. If the ptr is accessed twice, once 1016 // for read and once for write, it will only appear once (on the write 1017 // list). This is okay, since we are going to check for conflicts between 1018 // writes and between reads and writes, but not between reads and reads. 1019 ValueSet Seen; 1020 1021 ValueVector::iterator I, IE; 1022 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 1023 StoreInst *ST = cast<StoreInst>(*I); 1024 Value* Ptr = ST->getPointerOperand(); 1025 1026 if (isUniform(Ptr)) { 1027 emitAnalysis( 1028 LoopAccessReport(ST) 1029 << "write to a loop invariant address could not be vectorized"); 1030 DEBUG(dbgs() << "LAA: We don't allow storing to uniform addresses\n"); 1031 CanVecMem = false; 1032 return; 1033 } 1034 1035 // If we did *not* see this pointer before, insert it to the read-write 1036 // list. At this phase it is only a 'write' list. 1037 if (Seen.insert(Ptr).second) { 1038 ++NumReadWrites; 1039 1040 AliasAnalysis::Location Loc = AA->getLocation(ST); 1041 // The TBAA metadata could have a control dependency on the predication 1042 // condition, so we cannot rely on it when determining whether or not we 1043 // need runtime pointer checks. 1044 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1045 Loc.AATags.TBAA = nullptr; 1046 1047 Accesses.addStore(Loc); 1048 } 1049 } 1050 1051 if (IsAnnotatedParallel) { 1052 DEBUG(dbgs() 1053 << "LAA: A loop annotated parallel, ignore memory dependency " 1054 << "checks.\n"); 1055 CanVecMem = true; 1056 return; 1057 } 1058 1059 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 1060 LoadInst *LD = cast<LoadInst>(*I); 1061 Value* Ptr = LD->getPointerOperand(); 1062 // If we did *not* see this pointer before, insert it to the 1063 // read list. If we *did* see it before, then it is already in 1064 // the read-write list. This allows us to vectorize expressions 1065 // such as A[i] += x; Because the address of A[i] is a read-write 1066 // pointer. This only works if the index of A[i] is consecutive. 1067 // If the address of i is unknown (for example A[B[i]]) then we may 1068 // read a few words, modify, and write a few words, and some of the 1069 // words may be written to the same address. 1070 bool IsReadOnlyPtr = false; 1071 if (Seen.insert(Ptr).second || 1072 !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 1073 ++NumReads; 1074 IsReadOnlyPtr = true; 1075 } 1076 1077 AliasAnalysis::Location Loc = AA->getLocation(LD); 1078 // The TBAA metadata could have a control dependency on the predication 1079 // condition, so we cannot rely on it when determining whether or not we 1080 // need runtime pointer checks. 1081 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1082 Loc.AATags.TBAA = nullptr; 1083 1084 Accesses.addLoad(Loc, IsReadOnlyPtr); 1085 } 1086 1087 // If we write (or read-write) to a single destination and there are no 1088 // other reads in this loop then is it safe to vectorize. 1089 if (NumReadWrites == 1 && NumReads == 0) { 1090 DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1091 CanVecMem = true; 1092 return; 1093 } 1094 1095 // Build dependence sets and check whether we need a runtime pointer bounds 1096 // check. 1097 Accesses.buildDependenceSets(); 1098 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 1099 1100 // Find pointers with computable bounds. We are going to use this information 1101 // to place a runtime bound check. 1102 unsigned NumComparisons = 0; 1103 bool CanDoRT = false; 1104 if (NeedRTCheck) 1105 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 1106 Strides); 1107 1108 DEBUG(dbgs() << "LAA: We need to do " << NumComparisons << 1109 " pointer comparisons.\n"); 1110 1111 // If we only have one set of dependences to check pointers among we don't 1112 // need a runtime check. 1113 if (NumComparisons == 0 && NeedRTCheck) 1114 NeedRTCheck = false; 1115 1116 // Check that we did not collect too many pointers or found an unsizeable 1117 // pointer. 1118 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 1119 PtrRtCheck.reset(); 1120 CanDoRT = false; 1121 } 1122 1123 if (CanDoRT) { 1124 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 1125 } 1126 1127 if (NeedRTCheck && !CanDoRT) { 1128 emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); 1129 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " << 1130 "the array bounds.\n"); 1131 PtrRtCheck.reset(); 1132 CanVecMem = false; 1133 return; 1134 } 1135 1136 PtrRtCheck.Need = NeedRTCheck; 1137 1138 CanVecMem = true; 1139 if (Accesses.isDependencyCheckNeeded()) { 1140 DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1141 CanVecMem = DepChecker.areDepsSafe( 1142 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 1143 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 1144 1145 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 1146 DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 1147 NeedRTCheck = true; 1148 1149 // Clear the dependency checks. We assume they are not needed. 1150 Accesses.resetDepChecks(); 1151 1152 PtrRtCheck.reset(); 1153 PtrRtCheck.Need = true; 1154 1155 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 1156 TheLoop, Strides, true); 1157 // Check that we did not collect too many pointers or found an unsizeable 1158 // pointer. 1159 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 1160 if (!CanDoRT && NumComparisons > 0) 1161 emitAnalysis(LoopAccessReport() 1162 << "cannot check memory dependencies at runtime"); 1163 else 1164 emitAnalysis(LoopAccessReport() 1165 << NumComparisons << " exceeds limit of " 1166 << RuntimeMemoryCheckThreshold 1167 << " dependent memory operations checked at runtime"); 1168 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1169 PtrRtCheck.reset(); 1170 CanVecMem = false; 1171 return; 1172 } 1173 1174 CanVecMem = true; 1175 } 1176 } 1177 1178 if (!CanVecMem) 1179 emitAnalysis(LoopAccessReport() << 1180 "unsafe dependent memory operations in loop"); 1181 1182 DEBUG(dbgs() << "LAA: We" << (NeedRTCheck ? "" : " don't") << 1183 " need a runtime memory check.\n"); 1184 } 1185 1186 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 1187 DominatorTree *DT) { 1188 assert(TheLoop->contains(BB) && "Unknown block used"); 1189 1190 // Blocks that do not dominate the latch need predication. 1191 BasicBlock* Latch = TheLoop->getLoopLatch(); 1192 return !DT->dominates(BB, Latch); 1193 } 1194 1195 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { 1196 assert(!Report && "Multiple reports generated"); 1197 Report = Message; 1198 } 1199 1200 bool LoopAccessInfo::isUniform(Value *V) const { 1201 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1202 } 1203 1204 // FIXME: this function is currently a duplicate of the one in 1205 // LoopVectorize.cpp. 1206 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1207 Instruction *Loc) { 1208 if (FirstInst) 1209 return FirstInst; 1210 if (Instruction *I = dyn_cast<Instruction>(V)) 1211 return I->getParent() == Loc->getParent() ? I : nullptr; 1212 return nullptr; 1213 } 1214 1215 std::pair<Instruction *, Instruction *> 1216 LoopAccessInfo::addRuntimeCheck(Instruction *Loc) const { 1217 Instruction *tnullptr = nullptr; 1218 if (!PtrRtCheck.Need) 1219 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1220 1221 unsigned NumPointers = PtrRtCheck.Pointers.size(); 1222 SmallVector<TrackingVH<Value> , 2> Starts; 1223 SmallVector<TrackingVH<Value> , 2> Ends; 1224 1225 LLVMContext &Ctx = Loc->getContext(); 1226 SCEVExpander Exp(*SE, "induction"); 1227 Instruction *FirstInst = nullptr; 1228 1229 for (unsigned i = 0; i < NumPointers; ++i) { 1230 Value *Ptr = PtrRtCheck.Pointers[i]; 1231 const SCEV *Sc = SE->getSCEV(Ptr); 1232 1233 if (SE->isLoopInvariant(Sc, TheLoop)) { 1234 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << 1235 *Ptr <<"\n"); 1236 Starts.push_back(Ptr); 1237 Ends.push_back(Ptr); 1238 } else { 1239 DEBUG(dbgs() << "LAA: Adding RT check for range:" << *Ptr << '\n'); 1240 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1241 1242 // Use this type for pointer arithmetic. 1243 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1244 1245 Value *Start = Exp.expandCodeFor(PtrRtCheck.Starts[i], PtrArithTy, Loc); 1246 Value *End = Exp.expandCodeFor(PtrRtCheck.Ends[i], PtrArithTy, Loc); 1247 Starts.push_back(Start); 1248 Ends.push_back(End); 1249 } 1250 } 1251 1252 IRBuilder<> ChkBuilder(Loc); 1253 // Our instructions might fold to a constant. 1254 Value *MemoryRuntimeCheck = nullptr; 1255 for (unsigned i = 0; i < NumPointers; ++i) { 1256 for (unsigned j = i+1; j < NumPointers; ++j) { 1257 if (!PtrRtCheck.needsChecking(i, j)) 1258 continue; 1259 1260 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 1261 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 1262 1263 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 1264 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 1265 "Trying to bounds check pointers with different address spaces"); 1266 1267 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1268 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1269 1270 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 1271 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 1272 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 1273 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 1274 1275 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1276 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1277 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1278 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1279 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1280 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1281 if (MemoryRuntimeCheck) { 1282 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 1283 "conflict.rdx"); 1284 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1285 } 1286 MemoryRuntimeCheck = IsConflict; 1287 } 1288 } 1289 1290 // We have to do this trickery because the IRBuilder might fold the check to a 1291 // constant expression in which case there is no Instruction anchored in a 1292 // the block. 1293 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1294 ConstantInt::getTrue(Ctx)); 1295 ChkBuilder.Insert(Check, "memcheck.conflict"); 1296 FirstInst = getFirstInst(FirstInst, Check, Loc); 1297 return std::make_pair(FirstInst, Check); 1298 } 1299 1300 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 1301 const DataLayout *DL, 1302 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1303 DominatorTree *DT, 1304 const ValueToValueMap &Strides) 1305 : TheLoop(L), SE(SE), DL(DL), TLI(TLI), AA(AA), DT(DT), NumLoads(0), 1306 NumStores(0), MaxSafeDepDistBytes(-1U), CanVecMem(false) { 1307 if (canAnalyzeLoop()) 1308 analyzeLoop(Strides); 1309 } 1310 1311 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1312 if (CanVecMem) { 1313 if (PtrRtCheck.empty()) 1314 OS.indent(Depth) << "Memory dependences are safe\n"; 1315 else 1316 OS.indent(Depth) << "Memory dependences are safe with run-time checks\n"; 1317 } 1318 1319 if (Report) 1320 OS.indent(Depth) << "Report: " << Report->str() << "\n"; 1321 1322 // FIXME: Print unsafe dependences 1323 1324 // List the pair of accesses need run-time checks to prove independence. 1325 PtrRtCheck.print(OS, Depth); 1326 OS << "\n"; 1327 } 1328 1329 const LoopAccessInfo & 1330 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) { 1331 auto &LAI = LoopAccessInfoMap[L]; 1332 1333 #ifndef NDEBUG 1334 assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) && 1335 "Symbolic strides changed for loop"); 1336 #endif 1337 1338 if (!LAI) { 1339 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, Strides); 1340 #ifndef NDEBUG 1341 LAI->NumSymbolicStrides = Strides.size(); 1342 #endif 1343 } 1344 return *LAI.get(); 1345 } 1346 1347 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const { 1348 LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this); 1349 1350 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1351 ValueToValueMap NoSymbolicStrides; 1352 1353 for (Loop *TopLevelLoop : *LI) 1354 for (Loop *L : depth_first(TopLevelLoop)) { 1355 OS.indent(2) << L->getHeader()->getName() << ":\n"; 1356 auto &LAI = LAA.getInfo(L, NoSymbolicStrides); 1357 LAI.print(OS, 4); 1358 } 1359 } 1360 1361 bool LoopAccessAnalysis::runOnFunction(Function &F) { 1362 SE = &getAnalysis<ScalarEvolution>(); 1363 DL = &F.getParent()->getDataLayout(); 1364 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1365 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1366 AA = &getAnalysis<AliasAnalysis>(); 1367 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1368 1369 return false; 1370 } 1371 1372 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 1373 AU.addRequired<ScalarEvolution>(); 1374 AU.addRequired<AliasAnalysis>(); 1375 AU.addRequired<DominatorTreeWrapperPass>(); 1376 AU.addRequired<LoopInfoWrapperPass>(); 1377 1378 AU.setPreservesAll(); 1379 } 1380 1381 char LoopAccessAnalysis::ID = 0; 1382 static const char laa_name[] = "Loop Access Analysis"; 1383 #define LAA_NAME "loop-accesses" 1384 1385 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1386 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 1387 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 1388 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1389 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1390 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1391 1392 namespace llvm { 1393 Pass *createLAAPass() { 1394 return new LoopAccessAnalysis(); 1395 } 1396 } 1397