1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpander.h" 34 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/IRBuilder.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/Operator.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/InitializePasses.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <cstdlib> 66 #include <iterator> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "loop-accesses" 73 74 static cl::opt<unsigned, true> 75 VectorizationFactor("force-vector-width", cl::Hidden, 76 cl::desc("Sets the SIMD width. Zero is autoselect."), 77 cl::location(VectorizerParams::VectorizationFactor)); 78 unsigned VectorizerParams::VectorizationFactor; 79 80 static cl::opt<unsigned, true> 81 VectorizationInterleave("force-vector-interleave", cl::Hidden, 82 cl::desc("Sets the vectorization interleave count. " 83 "Zero is autoselect."), 84 cl::location( 85 VectorizerParams::VectorizationInterleave)); 86 unsigned VectorizerParams::VectorizationInterleave; 87 88 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 89 "runtime-memory-check-threshold", cl::Hidden, 90 cl::desc("When performing memory disambiguation checks at runtime do not " 91 "generate more than this number of comparisons (default = 8)."), 92 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 93 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 94 95 /// The maximum iterations used to merge memory checks 96 static cl::opt<unsigned> MemoryCheckMergeThreshold( 97 "memory-check-merge-threshold", cl::Hidden, 98 cl::desc("Maximum number of comparisons done when trying to merge " 99 "runtime memory checks. (default = 100)"), 100 cl::init(100)); 101 102 /// Maximum SIMD width. 103 const unsigned VectorizerParams::MaxVectorWidth = 64; 104 105 /// We collect dependences up to this threshold. 106 static cl::opt<unsigned> 107 MaxDependences("max-dependences", cl::Hidden, 108 cl::desc("Maximum number of dependences collected by " 109 "loop-access analysis (default = 100)"), 110 cl::init(100)); 111 112 /// This enables versioning on the strides of symbolically striding memory 113 /// accesses in code like the following. 114 /// for (i = 0; i < N; ++i) 115 /// A[i * Stride1] += B[i * Stride2] ... 116 /// 117 /// Will be roughly translated to 118 /// if (Stride1 == 1 && Stride2 == 1) { 119 /// for (i = 0; i < N; i+=4) 120 /// A[i:i+3] += ... 121 /// } else 122 /// ... 123 static cl::opt<bool> EnableMemAccessVersioning( 124 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 125 cl::desc("Enable symbolic stride memory access versioning")); 126 127 /// Enable store-to-load forwarding conflict detection. This option can 128 /// be disabled for correctness testing. 129 static cl::opt<bool> EnableForwardingConflictDetection( 130 "store-to-load-forwarding-conflict-detection", cl::Hidden, 131 cl::desc("Enable conflict detection in loop-access analysis"), 132 cl::init(true)); 133 134 bool VectorizerParams::isInterleaveForced() { 135 return ::VectorizationInterleave.getNumOccurrences() > 0; 136 } 137 138 Value *llvm::stripIntegerCast(Value *V) { 139 if (auto *CI = dyn_cast<CastInst>(V)) 140 if (CI->getOperand(0)->getType()->isIntegerTy()) 141 return CI->getOperand(0); 142 return V; 143 } 144 145 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 146 const ValueToValueMap &PtrToStride, 147 Value *Ptr, Value *OrigPtr) { 148 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 149 150 // If there is an entry in the map return the SCEV of the pointer with the 151 // symbolic stride replaced by one. 152 ValueToValueMap::const_iterator SI = 153 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 154 if (SI != PtrToStride.end()) { 155 Value *StrideVal = SI->second; 156 157 // Strip casts. 158 StrideVal = stripIntegerCast(StrideVal); 159 160 ScalarEvolution *SE = PSE.getSE(); 161 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 162 const auto *CT = 163 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 164 165 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 166 auto *Expr = PSE.getSCEV(Ptr); 167 168 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 169 << " by: " << *Expr << "\n"); 170 return Expr; 171 } 172 173 // Otherwise, just return the SCEV of the original pointer. 174 return OrigSCEV; 175 } 176 177 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 178 unsigned Index, RuntimePointerChecking &RtCheck) 179 : RtCheck(RtCheck), High(RtCheck.Pointers[Index].End), 180 Low(RtCheck.Pointers[Index].Start) { 181 Members.push_back(Index); 182 } 183 184 /// Calculate Start and End points of memory access. 185 /// Let's assume A is the first access and B is a memory access on N-th loop 186 /// iteration. Then B is calculated as: 187 /// B = A + Step*N . 188 /// Step value may be positive or negative. 189 /// N is a calculated back-edge taken count: 190 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 191 /// Start and End points are calculated in the following way: 192 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 193 /// where SizeOfElt is the size of single memory access in bytes. 194 /// 195 /// There is no conflict when the intervals are disjoint: 196 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 197 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 198 unsigned DepSetId, unsigned ASId, 199 const ValueToValueMap &Strides, 200 PredicatedScalarEvolution &PSE) { 201 // Get the stride replaced scev. 202 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 203 ScalarEvolution *SE = PSE.getSE(); 204 205 const SCEV *ScStart; 206 const SCEV *ScEnd; 207 208 if (SE->isLoopInvariant(Sc, Lp)) 209 ScStart = ScEnd = Sc; 210 else { 211 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 212 assert(AR && "Invalid addrec expression"); 213 const SCEV *Ex = PSE.getBackedgeTakenCount(); 214 215 ScStart = AR->getStart(); 216 ScEnd = AR->evaluateAtIteration(Ex, *SE); 217 const SCEV *Step = AR->getStepRecurrence(*SE); 218 219 // For expressions with negative step, the upper bound is ScStart and the 220 // lower bound is ScEnd. 221 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 222 if (CStep->getValue()->isNegative()) 223 std::swap(ScStart, ScEnd); 224 } else { 225 // Fallback case: the step is not constant, but we can still 226 // get the upper and lower bounds of the interval by using min/max 227 // expressions. 228 ScStart = SE->getUMinExpr(ScStart, ScEnd); 229 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 230 } 231 // Add the size of the pointed element to ScEnd. 232 unsigned EltSize = 233 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; 234 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); 235 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 236 } 237 238 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 239 } 240 241 SmallVector<RuntimePointerCheck, 4> 242 RuntimePointerChecking::generateChecks() const { 243 SmallVector<RuntimePointerCheck, 4> Checks; 244 245 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 246 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 247 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 248 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 249 250 if (needsChecking(CGI, CGJ)) 251 Checks.push_back(std::make_pair(&CGI, &CGJ)); 252 } 253 } 254 return Checks; 255 } 256 257 void RuntimePointerChecking::generateChecks( 258 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 259 assert(Checks.empty() && "Checks is not empty"); 260 groupChecks(DepCands, UseDependencies); 261 Checks = generateChecks(); 262 } 263 264 bool RuntimePointerChecking::needsChecking( 265 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 266 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 267 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 268 if (needsChecking(M.Members[I], N.Members[J])) 269 return true; 270 return false; 271 } 272 273 /// Compare \p I and \p J and return the minimum. 274 /// Return nullptr in case we couldn't find an answer. 275 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 276 ScalarEvolution *SE) { 277 const SCEV *Diff = SE->getMinusSCEV(J, I); 278 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 279 280 if (!C) 281 return nullptr; 282 if (C->getValue()->isNegative()) 283 return J; 284 return I; 285 } 286 287 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index) { 288 const SCEV *Start = RtCheck.Pointers[Index].Start; 289 const SCEV *End = RtCheck.Pointers[Index].End; 290 291 // Compare the starts and ends with the known minimum and maximum 292 // of this set. We need to know how we compare against the min/max 293 // of the set in order to be able to emit memchecks. 294 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 295 if (!Min0) 296 return false; 297 298 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 299 if (!Min1) 300 return false; 301 302 // Update the low bound expression if we've found a new min value. 303 if (Min0 == Start) 304 Low = Start; 305 306 // Update the high bound expression if we've found a new max value. 307 if (Min1 != End) 308 High = End; 309 310 Members.push_back(Index); 311 return true; 312 } 313 314 void RuntimePointerChecking::groupChecks( 315 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 316 // We build the groups from dependency candidates equivalence classes 317 // because: 318 // - We know that pointers in the same equivalence class share 319 // the same underlying object and therefore there is a chance 320 // that we can compare pointers 321 // - We wouldn't be able to merge two pointers for which we need 322 // to emit a memcheck. The classes in DepCands are already 323 // conveniently built such that no two pointers in the same 324 // class need checking against each other. 325 326 // We use the following (greedy) algorithm to construct the groups 327 // For every pointer in the equivalence class: 328 // For each existing group: 329 // - if the difference between this pointer and the min/max bounds 330 // of the group is a constant, then make the pointer part of the 331 // group and update the min/max bounds of that group as required. 332 333 CheckingGroups.clear(); 334 335 // If we need to check two pointers to the same underlying object 336 // with a non-constant difference, we shouldn't perform any pointer 337 // grouping with those pointers. This is because we can easily get 338 // into cases where the resulting check would return false, even when 339 // the accesses are safe. 340 // 341 // The following example shows this: 342 // for (i = 0; i < 1000; ++i) 343 // a[5000 + i * m] = a[i] + a[i + 9000] 344 // 345 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 346 // (0, 10000) which is always false. However, if m is 1, there is no 347 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 348 // us to perform an accurate check in this case. 349 // 350 // The above case requires that we have an UnknownDependence between 351 // accesses to the same underlying object. This cannot happen unless 352 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 353 // is also false. In this case we will use the fallback path and create 354 // separate checking groups for all pointers. 355 356 // If we don't have the dependency partitions, construct a new 357 // checking pointer group for each pointer. This is also required 358 // for correctness, because in this case we can have checking between 359 // pointers to the same underlying object. 360 if (!UseDependencies) { 361 for (unsigned I = 0; I < Pointers.size(); ++I) 362 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 363 return; 364 } 365 366 unsigned TotalComparisons = 0; 367 368 DenseMap<Value *, unsigned> PositionMap; 369 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 370 PositionMap[Pointers[Index].PointerValue] = Index; 371 372 // We need to keep track of what pointers we've already seen so we 373 // don't process them twice. 374 SmallSet<unsigned, 2> Seen; 375 376 // Go through all equivalence classes, get the "pointer check groups" 377 // and add them to the overall solution. We use the order in which accesses 378 // appear in 'Pointers' to enforce determinism. 379 for (unsigned I = 0; I < Pointers.size(); ++I) { 380 // We've seen this pointer before, and therefore already processed 381 // its equivalence class. 382 if (Seen.count(I)) 383 continue; 384 385 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 386 Pointers[I].IsWritePtr); 387 388 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 389 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 390 391 // Because DepCands is constructed by visiting accesses in the order in 392 // which they appear in alias sets (which is deterministic) and the 393 // iteration order within an equivalence class member is only dependent on 394 // the order in which unions and insertions are performed on the 395 // equivalence class, the iteration order is deterministic. 396 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 397 MI != ME; ++MI) { 398 unsigned Pointer = PositionMap[MI->getPointer()]; 399 bool Merged = false; 400 // Mark this pointer as seen. 401 Seen.insert(Pointer); 402 403 // Go through all the existing sets and see if we can find one 404 // which can include this pointer. 405 for (RuntimeCheckingPtrGroup &Group : Groups) { 406 // Don't perform more than a certain amount of comparisons. 407 // This should limit the cost of grouping the pointers to something 408 // reasonable. If we do end up hitting this threshold, the algorithm 409 // will create separate groups for all remaining pointers. 410 if (TotalComparisons > MemoryCheckMergeThreshold) 411 break; 412 413 TotalComparisons++; 414 415 if (Group.addPointer(Pointer)) { 416 Merged = true; 417 break; 418 } 419 } 420 421 if (!Merged) 422 // We couldn't add this pointer to any existing set or the threshold 423 // for the number of comparisons has been reached. Create a new group 424 // to hold the current pointer. 425 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 426 } 427 428 // We've computed the grouped checks for this partition. 429 // Save the results and continue with the next one. 430 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 431 } 432 } 433 434 bool RuntimePointerChecking::arePointersInSamePartition( 435 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 436 unsigned PtrIdx2) { 437 return (PtrToPartition[PtrIdx1] != -1 && 438 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 439 } 440 441 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 442 const PointerInfo &PointerI = Pointers[I]; 443 const PointerInfo &PointerJ = Pointers[J]; 444 445 // No need to check if two readonly pointers intersect. 446 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 447 return false; 448 449 // Only need to check pointers between two different dependency sets. 450 if (PointerI.DependencySetId == PointerJ.DependencySetId) 451 return false; 452 453 // Only need to check pointers in the same alias set. 454 if (PointerI.AliasSetId != PointerJ.AliasSetId) 455 return false; 456 457 return true; 458 } 459 460 void RuntimePointerChecking::printChecks( 461 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 462 unsigned Depth) const { 463 unsigned N = 0; 464 for (const auto &Check : Checks) { 465 const auto &First = Check.first->Members, &Second = Check.second->Members; 466 467 OS.indent(Depth) << "Check " << N++ << ":\n"; 468 469 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 470 for (unsigned K = 0; K < First.size(); ++K) 471 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 472 473 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 474 for (unsigned K = 0; K < Second.size(); ++K) 475 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 476 } 477 } 478 479 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 480 481 OS.indent(Depth) << "Run-time memory checks:\n"; 482 printChecks(OS, Checks, Depth); 483 484 OS.indent(Depth) << "Grouped accesses:\n"; 485 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 486 const auto &CG = CheckingGroups[I]; 487 488 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 489 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 490 << ")\n"; 491 for (unsigned J = 0; J < CG.Members.size(); ++J) { 492 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 493 << "\n"; 494 } 495 } 496 } 497 498 namespace { 499 500 /// Analyses memory accesses in a loop. 501 /// 502 /// Checks whether run time pointer checks are needed and builds sets for data 503 /// dependence checking. 504 class AccessAnalysis { 505 public: 506 /// Read or write access location. 507 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 508 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 509 510 AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA, 511 LoopInfo *LI, MemoryDepChecker::DepCandidates &DA, 512 PredicatedScalarEvolution &PSE) 513 : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), 514 IsRTCheckAnalysisNeeded(false), PSE(PSE) {} 515 516 /// Register a load and whether it is only read from. 517 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 518 Value *Ptr = const_cast<Value*>(Loc.Ptr); 519 AST.add(Ptr, LocationSize::unknown(), Loc.AATags); 520 Accesses.insert(MemAccessInfo(Ptr, false)); 521 if (IsReadOnly) 522 ReadOnlyPtr.insert(Ptr); 523 } 524 525 /// Register a store. 526 void addStore(MemoryLocation &Loc) { 527 Value *Ptr = const_cast<Value*>(Loc.Ptr); 528 AST.add(Ptr, LocationSize::unknown(), Loc.AATags); 529 Accesses.insert(MemAccessInfo(Ptr, true)); 530 } 531 532 /// Check if we can emit a run-time no-alias check for \p Access. 533 /// 534 /// Returns true if we can emit a run-time no alias check for \p Access. 535 /// If we can check this access, this also adds it to a dependence set and 536 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 537 /// we will attempt to use additional run-time checks in order to get 538 /// the bounds of the pointer. 539 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 540 MemAccessInfo Access, 541 const ValueToValueMap &Strides, 542 DenseMap<Value *, unsigned> &DepSetId, 543 Loop *TheLoop, unsigned &RunningDepId, 544 unsigned ASId, bool ShouldCheckStride, 545 bool Assume); 546 547 /// Check whether we can check the pointers at runtime for 548 /// non-intersection. 549 /// 550 /// Returns true if we need no check or if we do and we can generate them 551 /// (i.e. the pointers have computable bounds). 552 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 553 Loop *TheLoop, const ValueToValueMap &Strides, 554 bool ShouldCheckWrap = false); 555 556 /// Goes over all memory accesses, checks whether a RT check is needed 557 /// and builds sets of dependent accesses. 558 void buildDependenceSets() { 559 processMemAccesses(); 560 } 561 562 /// Initial processing of memory accesses determined that we need to 563 /// perform dependency checking. 564 /// 565 /// Note that this can later be cleared if we retry memcheck analysis without 566 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 567 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 568 569 /// We decided that no dependence analysis would be used. Reset the state. 570 void resetDepChecks(MemoryDepChecker &DepChecker) { 571 CheckDeps.clear(); 572 DepChecker.clearDependences(); 573 } 574 575 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 576 577 private: 578 typedef SetVector<MemAccessInfo> PtrAccessSet; 579 580 /// Go over all memory access and check whether runtime pointer checks 581 /// are needed and build sets of dependency check candidates. 582 void processMemAccesses(); 583 584 /// Set of all accesses. 585 PtrAccessSet Accesses; 586 587 const DataLayout &DL; 588 589 /// The loop being checked. 590 const Loop *TheLoop; 591 592 /// List of accesses that need a further dependence check. 593 MemAccessInfoList CheckDeps; 594 595 /// Set of pointers that are read only. 596 SmallPtrSet<Value*, 16> ReadOnlyPtr; 597 598 /// An alias set tracker to partition the access set by underlying object and 599 //intrinsic property (such as TBAA metadata). 600 AliasSetTracker AST; 601 602 LoopInfo *LI; 603 604 /// Sets of potentially dependent accesses - members of one set share an 605 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 606 /// dependence check. 607 MemoryDepChecker::DepCandidates &DepCands; 608 609 /// Initial processing of memory accesses determined that we may need 610 /// to add memchecks. Perform the analysis to determine the necessary checks. 611 /// 612 /// Note that, this is different from isDependencyCheckNeeded. When we retry 613 /// memcheck analysis without dependency checking 614 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 615 /// cleared while this remains set if we have potentially dependent accesses. 616 bool IsRTCheckAnalysisNeeded; 617 618 /// The SCEV predicate containing all the SCEV-related assumptions. 619 PredicatedScalarEvolution &PSE; 620 }; 621 622 } // end anonymous namespace 623 624 /// Check whether a pointer can participate in a runtime bounds check. 625 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 626 /// by adding run-time checks (overflow checks) if necessary. 627 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 628 const ValueToValueMap &Strides, Value *Ptr, 629 Loop *L, bool Assume) { 630 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 631 632 // The bounds for loop-invariant pointer is trivial. 633 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 634 return true; 635 636 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 637 638 if (!AR && Assume) 639 AR = PSE.getAsAddRec(Ptr); 640 641 if (!AR) 642 return false; 643 644 return AR->isAffine(); 645 } 646 647 /// Check whether a pointer address cannot wrap. 648 static bool isNoWrap(PredicatedScalarEvolution &PSE, 649 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 650 const SCEV *PtrScev = PSE.getSCEV(Ptr); 651 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 652 return true; 653 654 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 655 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 656 return true; 657 658 return false; 659 } 660 661 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 662 MemAccessInfo Access, 663 const ValueToValueMap &StridesMap, 664 DenseMap<Value *, unsigned> &DepSetId, 665 Loop *TheLoop, unsigned &RunningDepId, 666 unsigned ASId, bool ShouldCheckWrap, 667 bool Assume) { 668 Value *Ptr = Access.getPointer(); 669 670 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 671 return false; 672 673 // When we run after a failing dependency check we have to make sure 674 // we don't have wrapping pointers. 675 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { 676 auto *Expr = PSE.getSCEV(Ptr); 677 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 678 return false; 679 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 680 } 681 682 // The id of the dependence set. 683 unsigned DepId; 684 685 if (isDependencyCheckNeeded()) { 686 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 687 unsigned &LeaderId = DepSetId[Leader]; 688 if (!LeaderId) 689 LeaderId = RunningDepId++; 690 DepId = LeaderId; 691 } else 692 // Each access has its own dependence set. 693 DepId = RunningDepId++; 694 695 bool IsWrite = Access.getInt(); 696 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 697 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 698 699 return true; 700 } 701 702 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 703 ScalarEvolution *SE, Loop *TheLoop, 704 const ValueToValueMap &StridesMap, 705 bool ShouldCheckWrap) { 706 // Find pointers with computable bounds. We are going to use this information 707 // to place a runtime bound check. 708 bool CanDoRT = true; 709 710 bool NeedRTCheck = false; 711 if (!IsRTCheckAnalysisNeeded) return true; 712 713 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 714 715 // We assign a consecutive id to access from different alias sets. 716 // Accesses between different groups doesn't need to be checked. 717 unsigned ASId = 1; 718 for (auto &AS : AST) { 719 int NumReadPtrChecks = 0; 720 int NumWritePtrChecks = 0; 721 bool CanDoAliasSetRT = true; 722 723 // We assign consecutive id to access from different dependence sets. 724 // Accesses within the same set don't need a runtime check. 725 unsigned RunningDepId = 1; 726 DenseMap<Value *, unsigned> DepSetId; 727 728 SmallVector<MemAccessInfo, 4> Retries; 729 730 for (auto A : AS) { 731 Value *Ptr = A.getValue(); 732 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 733 MemAccessInfo Access(Ptr, IsWrite); 734 735 if (IsWrite) 736 ++NumWritePtrChecks; 737 else 738 ++NumReadPtrChecks; 739 740 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, 741 RunningDepId, ASId, ShouldCheckWrap, false)) { 742 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 743 Retries.push_back(Access); 744 CanDoAliasSetRT = false; 745 } 746 } 747 748 // If we have at least two writes or one write and a read then we need to 749 // check them. But there is no need to checks if there is only one 750 // dependence set for this alias set. 751 // 752 // Note that this function computes CanDoRT and NeedRTCheck independently. 753 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 754 // for which we couldn't find the bounds but we don't actually need to emit 755 // any checks so it does not matter. 756 bool NeedsAliasSetRTCheck = false; 757 if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2)) 758 NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 || 759 (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1)); 760 761 // We need to perform run-time alias checks, but some pointers had bounds 762 // that couldn't be checked. 763 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 764 // Reset the CanDoSetRt flag and retry all accesses that have failed. 765 // We know that we need these checks, so we can now be more aggressive 766 // and add further checks if required (overflow checks). 767 CanDoAliasSetRT = true; 768 for (auto Access : Retries) 769 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, 770 TheLoop, RunningDepId, ASId, 771 ShouldCheckWrap, /*Assume=*/true)) { 772 CanDoAliasSetRT = false; 773 break; 774 } 775 } 776 777 CanDoRT &= CanDoAliasSetRT; 778 NeedRTCheck |= NeedsAliasSetRTCheck; 779 ++ASId; 780 } 781 782 // If the pointers that we would use for the bounds comparison have different 783 // address spaces, assume the values aren't directly comparable, so we can't 784 // use them for the runtime check. We also have to assume they could 785 // overlap. In the future there should be metadata for whether address spaces 786 // are disjoint. 787 unsigned NumPointers = RtCheck.Pointers.size(); 788 for (unsigned i = 0; i < NumPointers; ++i) { 789 for (unsigned j = i + 1; j < NumPointers; ++j) { 790 // Only need to check pointers between two different dependency sets. 791 if (RtCheck.Pointers[i].DependencySetId == 792 RtCheck.Pointers[j].DependencySetId) 793 continue; 794 // Only need to check pointers in the same alias set. 795 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 796 continue; 797 798 Value *PtrI = RtCheck.Pointers[i].PointerValue; 799 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 800 801 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 802 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 803 if (ASi != ASj) { 804 LLVM_DEBUG( 805 dbgs() << "LAA: Runtime check would require comparison between" 806 " different address spaces\n"); 807 return false; 808 } 809 } 810 } 811 812 if (NeedRTCheck && CanDoRT) 813 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 814 815 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 816 << " pointer comparisons.\n"); 817 818 RtCheck.Need = NeedRTCheck; 819 820 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 821 if (!CanDoRTIfNeeded) 822 RtCheck.reset(); 823 return CanDoRTIfNeeded; 824 } 825 826 void AccessAnalysis::processMemAccesses() { 827 // We process the set twice: first we process read-write pointers, last we 828 // process read-only pointers. This allows us to skip dependence tests for 829 // read-only pointers. 830 831 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 832 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 833 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 834 LLVM_DEBUG({ 835 for (auto A : Accesses) 836 dbgs() << "\t" << *A.getPointer() << " (" << 837 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 838 "read-only" : "read")) << ")\n"; 839 }); 840 841 // The AliasSetTracker has nicely partitioned our pointers by metadata 842 // compatibility and potential for underlying-object overlap. As a result, we 843 // only need to check for potential pointer dependencies within each alias 844 // set. 845 for (auto &AS : AST) { 846 // Note that both the alias-set tracker and the alias sets themselves used 847 // linked lists internally and so the iteration order here is deterministic 848 // (matching the original instruction order within each set). 849 850 bool SetHasWrite = false; 851 852 // Map of pointers to last access encountered. 853 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 854 UnderlyingObjToAccessMap ObjToLastAccess; 855 856 // Set of access to check after all writes have been processed. 857 PtrAccessSet DeferredAccesses; 858 859 // Iterate over each alias set twice, once to process read/write pointers, 860 // and then to process read-only pointers. 861 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 862 bool UseDeferred = SetIteration > 0; 863 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 864 865 for (auto AV : AS) { 866 Value *Ptr = AV.getValue(); 867 868 // For a single memory access in AliasSetTracker, Accesses may contain 869 // both read and write, and they both need to be handled for CheckDeps. 870 for (auto AC : S) { 871 if (AC.getPointer() != Ptr) 872 continue; 873 874 bool IsWrite = AC.getInt(); 875 876 // If we're using the deferred access set, then it contains only 877 // reads. 878 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 879 if (UseDeferred && !IsReadOnlyPtr) 880 continue; 881 // Otherwise, the pointer must be in the PtrAccessSet, either as a 882 // read or a write. 883 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 884 S.count(MemAccessInfo(Ptr, false))) && 885 "Alias-set pointer not in the access set?"); 886 887 MemAccessInfo Access(Ptr, IsWrite); 888 DepCands.insert(Access); 889 890 // Memorize read-only pointers for later processing and skip them in 891 // the first round (they need to be checked after we have seen all 892 // write pointers). Note: we also mark pointer that are not 893 // consecutive as "read-only" pointers (so that we check 894 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 895 if (!UseDeferred && IsReadOnlyPtr) { 896 DeferredAccesses.insert(Access); 897 continue; 898 } 899 900 // If this is a write - check other reads and writes for conflicts. If 901 // this is a read only check other writes for conflicts (but only if 902 // there is no other write to the ptr - this is an optimization to 903 // catch "a[i] = a[i] + " without having to do a dependence check). 904 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 905 CheckDeps.push_back(Access); 906 IsRTCheckAnalysisNeeded = true; 907 } 908 909 if (IsWrite) 910 SetHasWrite = true; 911 912 // Create sets of pointers connected by a shared alias set and 913 // underlying object. 914 typedef SmallVector<const Value *, 16> ValueVector; 915 ValueVector TempObjects; 916 917 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 918 LLVM_DEBUG(dbgs() 919 << "Underlying objects for pointer " << *Ptr << "\n"); 920 for (const Value *UnderlyingObj : TempObjects) { 921 // nullptr never alias, don't join sets for pointer that have "null" 922 // in their UnderlyingObjects list. 923 if (isa<ConstantPointerNull>(UnderlyingObj) && 924 !NullPointerIsDefined( 925 TheLoop->getHeader()->getParent(), 926 UnderlyingObj->getType()->getPointerAddressSpace())) 927 continue; 928 929 UnderlyingObjToAccessMap::iterator Prev = 930 ObjToLastAccess.find(UnderlyingObj); 931 if (Prev != ObjToLastAccess.end()) 932 DepCands.unionSets(Access, Prev->second); 933 934 ObjToLastAccess[UnderlyingObj] = Access; 935 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 936 } 937 } 938 } 939 } 940 } 941 } 942 943 static bool isInBoundsGep(Value *Ptr) { 944 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 945 return GEP->isInBounds(); 946 return false; 947 } 948 949 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 950 /// i.e. monotonically increasing/decreasing. 951 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 952 PredicatedScalarEvolution &PSE, const Loop *L) { 953 // FIXME: This should probably only return true for NUW. 954 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 955 return true; 956 957 // Scalar evolution does not propagate the non-wrapping flags to values that 958 // are derived from a non-wrapping induction variable because non-wrapping 959 // could be flow-sensitive. 960 // 961 // Look through the potentially overflowing instruction to try to prove 962 // non-wrapping for the *specific* value of Ptr. 963 964 // The arithmetic implied by an inbounds GEP can't overflow. 965 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 966 if (!GEP || !GEP->isInBounds()) 967 return false; 968 969 // Make sure there is only one non-const index and analyze that. 970 Value *NonConstIndex = nullptr; 971 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 972 if (!isa<ConstantInt>(Index)) { 973 if (NonConstIndex) 974 return false; 975 NonConstIndex = Index; 976 } 977 if (!NonConstIndex) 978 // The recurrence is on the pointer, ignore for now. 979 return false; 980 981 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 982 // AddRec using a NSW operation. 983 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 984 if (OBO->hasNoSignedWrap() && 985 // Assume constant for other the operand so that the AddRec can be 986 // easily found. 987 isa<ConstantInt>(OBO->getOperand(1))) { 988 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 989 990 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 991 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 992 } 993 994 return false; 995 } 996 997 /// Check whether the access through \p Ptr has a constant stride. 998 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 999 const Loop *Lp, const ValueToValueMap &StridesMap, 1000 bool Assume, bool ShouldCheckWrap) { 1001 Type *Ty = Ptr->getType(); 1002 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1003 1004 // Make sure that the pointer does not point to aggregate types. 1005 auto *PtrTy = cast<PointerType>(Ty); 1006 if (PtrTy->getElementType()->isAggregateType()) { 1007 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 1008 << *Ptr << "\n"); 1009 return 0; 1010 } 1011 1012 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1013 1014 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1015 if (Assume && !AR) 1016 AR = PSE.getAsAddRec(Ptr); 1017 1018 if (!AR) { 1019 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1020 << " SCEV: " << *PtrScev << "\n"); 1021 return 0; 1022 } 1023 1024 // The access function must stride over the innermost loop. 1025 if (Lp != AR->getLoop()) { 1026 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1027 << *Ptr << " SCEV: " << *AR << "\n"); 1028 return 0; 1029 } 1030 1031 // The address calculation must not wrap. Otherwise, a dependence could be 1032 // inverted. 1033 // An inbounds getelementptr that is a AddRec with a unit stride 1034 // cannot wrap per definition. The unit stride requirement is checked later. 1035 // An getelementptr without an inbounds attribute and unit stride would have 1036 // to access the pointer value "0" which is undefined behavior in address 1037 // space 0, therefore we can also vectorize this case. 1038 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1039 bool IsNoWrapAddRec = !ShouldCheckWrap || 1040 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1041 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1042 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1043 NullPointerIsDefined(Lp->getHeader()->getParent(), 1044 PtrTy->getAddressSpace())) { 1045 if (Assume) { 1046 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1047 IsNoWrapAddRec = true; 1048 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1049 << "LAA: Pointer: " << *Ptr << "\n" 1050 << "LAA: SCEV: " << *AR << "\n" 1051 << "LAA: Added an overflow assumption\n"); 1052 } else { 1053 LLVM_DEBUG( 1054 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1055 << *Ptr << " SCEV: " << *AR << "\n"); 1056 return 0; 1057 } 1058 } 1059 1060 // Check the step is constant. 1061 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1062 1063 // Calculate the pointer stride and check if it is constant. 1064 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1065 if (!C) { 1066 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1067 << " SCEV: " << *AR << "\n"); 1068 return 0; 1069 } 1070 1071 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1072 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 1073 const APInt &APStepVal = C->getAPInt(); 1074 1075 // Huge step value - give up. 1076 if (APStepVal.getBitWidth() > 64) 1077 return 0; 1078 1079 int64_t StepVal = APStepVal.getSExtValue(); 1080 1081 // Strided access. 1082 int64_t Stride = StepVal / Size; 1083 int64_t Rem = StepVal % Size; 1084 if (Rem) 1085 return 0; 1086 1087 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1088 // know we can't "wrap around the address space". In case of address space 1089 // zero we know that this won't happen without triggering undefined behavior. 1090 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1091 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1092 PtrTy->getAddressSpace()))) { 1093 if (Assume) { 1094 // We can avoid this case by adding a run-time check. 1095 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1096 << "inbounds or in address space 0 may wrap:\n" 1097 << "LAA: Pointer: " << *Ptr << "\n" 1098 << "LAA: SCEV: " << *AR << "\n" 1099 << "LAA: Added an overflow assumption\n"); 1100 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1101 } else 1102 return 0; 1103 } 1104 1105 return Stride; 1106 } 1107 1108 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL, 1109 ScalarEvolution &SE, 1110 SmallVectorImpl<unsigned> &SortedIndices) { 1111 assert(llvm::all_of( 1112 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1113 "Expected list of pointer operands."); 1114 SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs; 1115 OffValPairs.reserve(VL.size()); 1116 1117 // Walk over the pointers, and map each of them to an offset relative to 1118 // first pointer in the array. 1119 Value *Ptr0 = VL[0]; 1120 const SCEV *Scev0 = SE.getSCEV(Ptr0); 1121 Value *Obj0 = GetUnderlyingObject(Ptr0, DL); 1122 1123 llvm::SmallSet<int64_t, 4> Offsets; 1124 for (auto *Ptr : VL) { 1125 // TODO: Outline this code as a special, more time consuming, version of 1126 // computeConstantDifference() function. 1127 if (Ptr->getType()->getPointerAddressSpace() != 1128 Ptr0->getType()->getPointerAddressSpace()) 1129 return false; 1130 // If a pointer refers to a different underlying object, bail - the 1131 // pointers are by definition incomparable. 1132 Value *CurrObj = GetUnderlyingObject(Ptr, DL); 1133 if (CurrObj != Obj0) 1134 return false; 1135 1136 const SCEV *Scev = SE.getSCEV(Ptr); 1137 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0)); 1138 // The pointers may not have a constant offset from each other, or SCEV 1139 // may just not be smart enough to figure out they do. Regardless, 1140 // there's nothing we can do. 1141 if (!Diff) 1142 return false; 1143 1144 // Check if the pointer with the same offset is found. 1145 int64_t Offset = Diff->getAPInt().getSExtValue(); 1146 if (!Offsets.insert(Offset).second) 1147 return false; 1148 OffValPairs.emplace_back(Offset, Ptr); 1149 } 1150 SortedIndices.clear(); 1151 SortedIndices.resize(VL.size()); 1152 std::iota(SortedIndices.begin(), SortedIndices.end(), 0); 1153 1154 // Sort the memory accesses and keep the order of their uses in UseOrder. 1155 llvm::stable_sort(SortedIndices, [&](unsigned Left, unsigned Right) { 1156 return OffValPairs[Left].first < OffValPairs[Right].first; 1157 }); 1158 1159 // Check if the order is consecutive already. 1160 if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) { 1161 return I == SortedIndices[I]; 1162 })) 1163 SortedIndices.clear(); 1164 1165 return true; 1166 } 1167 1168 /// Take the address space operand from the Load/Store instruction. 1169 /// Returns -1 if this is not a valid Load/Store instruction. 1170 static unsigned getAddressSpaceOperand(Value *I) { 1171 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1172 return L->getPointerAddressSpace(); 1173 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1174 return S->getPointerAddressSpace(); 1175 return -1; 1176 } 1177 1178 /// Returns true if the memory operations \p A and \p B are consecutive. 1179 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1180 ScalarEvolution &SE, bool CheckType) { 1181 Value *PtrA = getLoadStorePointerOperand(A); 1182 Value *PtrB = getLoadStorePointerOperand(B); 1183 unsigned ASA = getAddressSpaceOperand(A); 1184 unsigned ASB = getAddressSpaceOperand(B); 1185 1186 // Check that the address spaces match and that the pointers are valid. 1187 if (!PtrA || !PtrB || (ASA != ASB)) 1188 return false; 1189 1190 // Make sure that A and B are different pointers. 1191 if (PtrA == PtrB) 1192 return false; 1193 1194 // Make sure that A and B have the same type if required. 1195 if (CheckType && PtrA->getType() != PtrB->getType()) 1196 return false; 1197 1198 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1199 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1200 1201 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1202 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1203 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1204 1205 // Retrieve the address space again as pointer stripping now tracks through 1206 // `addrspacecast`. 1207 ASA = cast<PointerType>(PtrA->getType())->getAddressSpace(); 1208 ASB = cast<PointerType>(PtrB->getType())->getAddressSpace(); 1209 // Check that the address spaces match and that the pointers are valid. 1210 if (ASA != ASB) 1211 return false; 1212 1213 IdxWidth = DL.getIndexSizeInBits(ASA); 1214 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1215 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1216 1217 APInt Size(IdxWidth, DL.getTypeStoreSize(Ty)); 1218 1219 // OffsetDelta = OffsetB - OffsetA; 1220 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1221 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1222 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1223 const APInt &OffsetDelta = cast<SCEVConstant>(OffsetDeltaSCEV)->getAPInt(); 1224 1225 // Check if they are based on the same pointer. That makes the offsets 1226 // sufficient. 1227 if (PtrA == PtrB) 1228 return OffsetDelta == Size; 1229 1230 // Compute the necessary base pointer delta to have the necessary final delta 1231 // equal to the size. 1232 // BaseDelta = Size - OffsetDelta; 1233 const SCEV *SizeSCEV = SE.getConstant(Size); 1234 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1235 1236 // Otherwise compute the distance with SCEV between the base pointers. 1237 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1238 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1239 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1240 return X == PtrSCEVB; 1241 } 1242 1243 MemoryDepChecker::VectorizationSafetyStatus 1244 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1245 switch (Type) { 1246 case NoDep: 1247 case Forward: 1248 case BackwardVectorizable: 1249 return VectorizationSafetyStatus::Safe; 1250 1251 case Unknown: 1252 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1253 case ForwardButPreventsForwarding: 1254 case Backward: 1255 case BackwardVectorizableButPreventsForwarding: 1256 return VectorizationSafetyStatus::Unsafe; 1257 } 1258 llvm_unreachable("unexpected DepType!"); 1259 } 1260 1261 bool MemoryDepChecker::Dependence::isBackward() const { 1262 switch (Type) { 1263 case NoDep: 1264 case Forward: 1265 case ForwardButPreventsForwarding: 1266 case Unknown: 1267 return false; 1268 1269 case BackwardVectorizable: 1270 case Backward: 1271 case BackwardVectorizableButPreventsForwarding: 1272 return true; 1273 } 1274 llvm_unreachable("unexpected DepType!"); 1275 } 1276 1277 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1278 return isBackward() || Type == Unknown; 1279 } 1280 1281 bool MemoryDepChecker::Dependence::isForward() const { 1282 switch (Type) { 1283 case Forward: 1284 case ForwardButPreventsForwarding: 1285 return true; 1286 1287 case NoDep: 1288 case Unknown: 1289 case BackwardVectorizable: 1290 case Backward: 1291 case BackwardVectorizableButPreventsForwarding: 1292 return false; 1293 } 1294 llvm_unreachable("unexpected DepType!"); 1295 } 1296 1297 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1298 uint64_t TypeByteSize) { 1299 // If loads occur at a distance that is not a multiple of a feasible vector 1300 // factor store-load forwarding does not take place. 1301 // Positive dependences might cause troubles because vectorizing them might 1302 // prevent store-load forwarding making vectorized code run a lot slower. 1303 // a[i] = a[i-3] ^ a[i-8]; 1304 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1305 // hence on your typical architecture store-load forwarding does not take 1306 // place. Vectorizing in such cases does not make sense. 1307 // Store-load forwarding distance. 1308 1309 // After this many iterations store-to-load forwarding conflicts should not 1310 // cause any slowdowns. 1311 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1312 // Maximum vector factor. 1313 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1314 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1315 1316 // Compute the smallest VF at which the store and load would be misaligned. 1317 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1318 VF *= 2) { 1319 // If the number of vector iteration between the store and the load are 1320 // small we could incur conflicts. 1321 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1322 MaxVFWithoutSLForwardIssues = (VF >>= 1); 1323 break; 1324 } 1325 } 1326 1327 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1328 LLVM_DEBUG( 1329 dbgs() << "LAA: Distance " << Distance 1330 << " that could cause a store-load forwarding conflict\n"); 1331 return true; 1332 } 1333 1334 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1335 MaxVFWithoutSLForwardIssues != 1336 VectorizerParams::MaxVectorWidth * TypeByteSize) 1337 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1338 return false; 1339 } 1340 1341 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1342 if (Status < S) 1343 Status = S; 1344 } 1345 1346 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1347 /// memory accesses, that have the same stride whose absolute value is given 1348 /// in \p Stride, and that have the same type size \p TypeByteSize, 1349 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1350 /// possible to prove statically that the dependence distance is larger 1351 /// than the range that the accesses will travel through the execution of 1352 /// the loop. If so, return true; false otherwise. This is useful for 1353 /// example in loops such as the following (PR31098): 1354 /// for (i = 0; i < D; ++i) { 1355 /// = out[i]; 1356 /// out[i+D] = 1357 /// } 1358 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1359 const SCEV &BackedgeTakenCount, 1360 const SCEV &Dist, uint64_t Stride, 1361 uint64_t TypeByteSize) { 1362 1363 // If we can prove that 1364 // (**) |Dist| > BackedgeTakenCount * Step 1365 // where Step is the absolute stride of the memory accesses in bytes, 1366 // then there is no dependence. 1367 // 1368 // Rationale: 1369 // We basically want to check if the absolute distance (|Dist/Step|) 1370 // is >= the loop iteration count (or > BackedgeTakenCount). 1371 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1372 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1373 // that the dependence distance is >= VF; This is checked elsewhere. 1374 // But in some cases we can prune unknown dependence distances early, and 1375 // even before selecting the VF, and without a runtime test, by comparing 1376 // the distance against the loop iteration count. Since the vectorized code 1377 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1378 // also guarantees that distance >= VF. 1379 // 1380 const uint64_t ByteStride = Stride * TypeByteSize; 1381 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1382 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1383 1384 const SCEV *CastedDist = &Dist; 1385 const SCEV *CastedProduct = Product; 1386 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1387 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1388 1389 // The dependence distance can be positive/negative, so we sign extend Dist; 1390 // The multiplication of the absolute stride in bytes and the 1391 // backedgeTakenCount is non-negative, so we zero extend Product. 1392 if (DistTypeSize > ProductTypeSize) 1393 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1394 else 1395 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1396 1397 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1398 // (If so, then we have proven (**) because |Dist| >= Dist) 1399 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1400 if (SE.isKnownPositive(Minus)) 1401 return true; 1402 1403 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1404 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1405 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1406 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1407 if (SE.isKnownPositive(Minus)) 1408 return true; 1409 1410 return false; 1411 } 1412 1413 /// Check the dependence for two accesses with the same stride \p Stride. 1414 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1415 /// bytes. 1416 /// 1417 /// \returns true if they are independent. 1418 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1419 uint64_t TypeByteSize) { 1420 assert(Stride > 1 && "The stride must be greater than 1"); 1421 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1422 assert(Distance > 0 && "The distance must be non-zero"); 1423 1424 // Skip if the distance is not multiple of type byte size. 1425 if (Distance % TypeByteSize) 1426 return false; 1427 1428 uint64_t ScaledDist = Distance / TypeByteSize; 1429 1430 // No dependence if the scaled distance is not multiple of the stride. 1431 // E.g. 1432 // for (i = 0; i < 1024 ; i += 4) 1433 // A[i+2] = A[i] + 1; 1434 // 1435 // Two accesses in memory (scaled distance is 2, stride is 4): 1436 // | A[0] | | | | A[4] | | | | 1437 // | | | A[2] | | | | A[6] | | 1438 // 1439 // E.g. 1440 // for (i = 0; i < 1024 ; i += 3) 1441 // A[i+4] = A[i] + 1; 1442 // 1443 // Two accesses in memory (scaled distance is 4, stride is 3): 1444 // | A[0] | | | A[3] | | | A[6] | | | 1445 // | | | | | A[4] | | | A[7] | | 1446 return ScaledDist % Stride; 1447 } 1448 1449 MemoryDepChecker::Dependence::DepType 1450 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1451 const MemAccessInfo &B, unsigned BIdx, 1452 const ValueToValueMap &Strides) { 1453 assert (AIdx < BIdx && "Must pass arguments in program order"); 1454 1455 Value *APtr = A.getPointer(); 1456 Value *BPtr = B.getPointer(); 1457 bool AIsWrite = A.getInt(); 1458 bool BIsWrite = B.getInt(); 1459 1460 // Two reads are independent. 1461 if (!AIsWrite && !BIsWrite) 1462 return Dependence::NoDep; 1463 1464 // We cannot check pointers in different address spaces. 1465 if (APtr->getType()->getPointerAddressSpace() != 1466 BPtr->getType()->getPointerAddressSpace()) 1467 return Dependence::Unknown; 1468 1469 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 1470 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 1471 1472 const SCEV *Src = PSE.getSCEV(APtr); 1473 const SCEV *Sink = PSE.getSCEV(BPtr); 1474 1475 // If the induction step is negative we have to invert source and sink of the 1476 // dependence. 1477 if (StrideAPtr < 0) { 1478 std::swap(APtr, BPtr); 1479 std::swap(Src, Sink); 1480 std::swap(AIsWrite, BIsWrite); 1481 std::swap(AIdx, BIdx); 1482 std::swap(StrideAPtr, StrideBPtr); 1483 } 1484 1485 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1486 1487 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1488 << "(Induction step: " << StrideAPtr << ")\n"); 1489 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1490 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1491 1492 // Need accesses with constant stride. We don't want to vectorize 1493 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1494 // the address space. 1495 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1496 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1497 return Dependence::Unknown; 1498 } 1499 1500 Type *ATy = APtr->getType()->getPointerElementType(); 1501 Type *BTy = BPtr->getType()->getPointerElementType(); 1502 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1503 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1504 uint64_t Stride = std::abs(StrideAPtr); 1505 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1506 if (!C) { 1507 if (TypeByteSize == DL.getTypeAllocSize(BTy) && 1508 isSafeDependenceDistance(DL, *(PSE.getSE()), 1509 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1510 TypeByteSize)) 1511 return Dependence::NoDep; 1512 1513 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1514 FoundNonConstantDistanceDependence = true; 1515 return Dependence::Unknown; 1516 } 1517 1518 const APInt &Val = C->getAPInt(); 1519 int64_t Distance = Val.getSExtValue(); 1520 1521 // Attempt to prove strided accesses independent. 1522 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1523 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1524 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1525 return Dependence::NoDep; 1526 } 1527 1528 // Negative distances are not plausible dependencies. 1529 if (Val.isNegative()) { 1530 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1531 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1532 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1533 ATy != BTy)) { 1534 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1535 return Dependence::ForwardButPreventsForwarding; 1536 } 1537 1538 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1539 return Dependence::Forward; 1540 } 1541 1542 // Write to the same location with the same size. 1543 // Could be improved to assert type sizes are the same (i32 == float, etc). 1544 if (Val == 0) { 1545 if (ATy == BTy) 1546 return Dependence::Forward; 1547 LLVM_DEBUG( 1548 dbgs() << "LAA: Zero dependence difference but different types\n"); 1549 return Dependence::Unknown; 1550 } 1551 1552 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1553 1554 if (ATy != BTy) { 1555 LLVM_DEBUG( 1556 dbgs() 1557 << "LAA: ReadWrite-Write positive dependency with different types\n"); 1558 return Dependence::Unknown; 1559 } 1560 1561 // Bail out early if passed-in parameters make vectorization not feasible. 1562 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1563 VectorizerParams::VectorizationFactor : 1); 1564 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1565 VectorizerParams::VectorizationInterleave : 1); 1566 // The minimum number of iterations for a vectorized/unrolled version. 1567 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1568 1569 // It's not vectorizable if the distance is smaller than the minimum distance 1570 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1571 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1572 // TypeByteSize (No need to plus the last gap distance). 1573 // 1574 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1575 // foo(int *A) { 1576 // int *B = (int *)((char *)A + 14); 1577 // for (i = 0 ; i < 1024 ; i += 2) 1578 // B[i] = A[i] + 1; 1579 // } 1580 // 1581 // Two accesses in memory (stride is 2): 1582 // | A[0] | | A[2] | | A[4] | | A[6] | | 1583 // | B[0] | | B[2] | | B[4] | 1584 // 1585 // Distance needs for vectorizing iterations except the last iteration: 1586 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1587 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1588 // 1589 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1590 // 12, which is less than distance. 1591 // 1592 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1593 // the minimum distance needed is 28, which is greater than distance. It is 1594 // not safe to do vectorization. 1595 uint64_t MinDistanceNeeded = 1596 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1597 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1598 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1599 << Distance << '\n'); 1600 return Dependence::Backward; 1601 } 1602 1603 // Unsafe if the minimum distance needed is greater than max safe distance. 1604 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1605 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1606 << MinDistanceNeeded << " size in bytes"); 1607 return Dependence::Backward; 1608 } 1609 1610 // Positive distance bigger than max vectorization factor. 1611 // FIXME: Should use max factor instead of max distance in bytes, which could 1612 // not handle different types. 1613 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1614 // void foo (int *A, char *B) { 1615 // for (unsigned i = 0; i < 1024; i++) { 1616 // A[i+2] = A[i] + 1; 1617 // B[i+2] = B[i] + 1; 1618 // } 1619 // } 1620 // 1621 // This case is currently unsafe according to the max safe distance. If we 1622 // analyze the two accesses on array B, the max safe dependence distance 1623 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1624 // is 8, which is less than 2 and forbidden vectorization, But actually 1625 // both A and B could be vectorized by 2 iterations. 1626 MaxSafeDepDistBytes = 1627 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1628 1629 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1630 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1631 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1632 return Dependence::BackwardVectorizableButPreventsForwarding; 1633 1634 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1635 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1636 << " with max VF = " << MaxVF << '\n'); 1637 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1638 MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits); 1639 return Dependence::BackwardVectorizable; 1640 } 1641 1642 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1643 MemAccessInfoList &CheckDeps, 1644 const ValueToValueMap &Strides) { 1645 1646 MaxSafeDepDistBytes = -1; 1647 SmallPtrSet<MemAccessInfo, 8> Visited; 1648 for (MemAccessInfo CurAccess : CheckDeps) { 1649 if (Visited.count(CurAccess)) 1650 continue; 1651 1652 // Get the relevant memory access set. 1653 EquivalenceClasses<MemAccessInfo>::iterator I = 1654 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1655 1656 // Check accesses within this set. 1657 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1658 AccessSets.member_begin(I); 1659 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1660 AccessSets.member_end(); 1661 1662 // Check every access pair. 1663 while (AI != AE) { 1664 Visited.insert(*AI); 1665 bool AIIsWrite = AI->getInt(); 1666 // Check loads only against next equivalent class, but stores also against 1667 // other stores in the same equivalence class - to the same address. 1668 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1669 (AIIsWrite ? AI : std::next(AI)); 1670 while (OI != AE) { 1671 // Check every accessing instruction pair in program order. 1672 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1673 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1674 // Scan all accesses of another equivalence class, but only the next 1675 // accesses of the same equivalent class. 1676 for (std::vector<unsigned>::iterator 1677 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 1678 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 1679 I2 != I2E; ++I2) { 1680 auto A = std::make_pair(&*AI, *I1); 1681 auto B = std::make_pair(&*OI, *I2); 1682 1683 assert(*I1 != *I2); 1684 if (*I1 > *I2) 1685 std::swap(A, B); 1686 1687 Dependence::DepType Type = 1688 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1689 mergeInStatus(Dependence::isSafeForVectorization(Type)); 1690 1691 // Gather dependences unless we accumulated MaxDependences 1692 // dependences. In that case return as soon as we find the first 1693 // unsafe dependence. This puts a limit on this quadratic 1694 // algorithm. 1695 if (RecordDependences) { 1696 if (Type != Dependence::NoDep) 1697 Dependences.push_back(Dependence(A.second, B.second, Type)); 1698 1699 if (Dependences.size() >= MaxDependences) { 1700 RecordDependences = false; 1701 Dependences.clear(); 1702 LLVM_DEBUG(dbgs() 1703 << "Too many dependences, stopped recording\n"); 1704 } 1705 } 1706 if (!RecordDependences && !isSafeForVectorization()) 1707 return false; 1708 } 1709 ++OI; 1710 } 1711 AI++; 1712 } 1713 } 1714 1715 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1716 return isSafeForVectorization(); 1717 } 1718 1719 SmallVector<Instruction *, 4> 1720 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1721 MemAccessInfo Access(Ptr, isWrite); 1722 auto &IndexVector = Accesses.find(Access)->second; 1723 1724 SmallVector<Instruction *, 4> Insts; 1725 transform(IndexVector, 1726 std::back_inserter(Insts), 1727 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1728 return Insts; 1729 } 1730 1731 const char *MemoryDepChecker::Dependence::DepName[] = { 1732 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1733 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1734 1735 void MemoryDepChecker::Dependence::print( 1736 raw_ostream &OS, unsigned Depth, 1737 const SmallVectorImpl<Instruction *> &Instrs) const { 1738 OS.indent(Depth) << DepName[Type] << ":\n"; 1739 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1740 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1741 } 1742 1743 bool LoopAccessInfo::canAnalyzeLoop() { 1744 // We need to have a loop header. 1745 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1746 << TheLoop->getHeader()->getParent()->getName() << ": " 1747 << TheLoop->getHeader()->getName() << '\n'); 1748 1749 // We can only analyze innermost loops. 1750 if (!TheLoop->empty()) { 1751 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1752 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1753 return false; 1754 } 1755 1756 // We must have a single backedge. 1757 if (TheLoop->getNumBackEdges() != 1) { 1758 LLVM_DEBUG( 1759 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1760 recordAnalysis("CFGNotUnderstood") 1761 << "loop control flow is not understood by analyzer"; 1762 return false; 1763 } 1764 1765 // We must have a single exiting block. 1766 if (!TheLoop->getExitingBlock()) { 1767 LLVM_DEBUG( 1768 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1769 recordAnalysis("CFGNotUnderstood") 1770 << "loop control flow is not understood by analyzer"; 1771 return false; 1772 } 1773 1774 // We only handle bottom-tested loops, i.e. loop in which the condition is 1775 // checked at the end of each iteration. With that we can assume that all 1776 // instructions in the loop are executed the same number of times. 1777 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1778 LLVM_DEBUG( 1779 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1780 recordAnalysis("CFGNotUnderstood") 1781 << "loop control flow is not understood by analyzer"; 1782 return false; 1783 } 1784 1785 // ScalarEvolution needs to be able to find the exit count. 1786 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1787 if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1788 recordAnalysis("CantComputeNumberOfIterations") 1789 << "could not determine number of loop iterations"; 1790 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1791 return false; 1792 } 1793 1794 return true; 1795 } 1796 1797 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, 1798 const TargetLibraryInfo *TLI, 1799 DominatorTree *DT) { 1800 typedef SmallPtrSet<Value*, 16> ValueSet; 1801 1802 // Holds the Load and Store instructions. 1803 SmallVector<LoadInst *, 16> Loads; 1804 SmallVector<StoreInst *, 16> Stores; 1805 1806 // Holds all the different accesses in the loop. 1807 unsigned NumReads = 0; 1808 unsigned NumReadWrites = 0; 1809 1810 bool HasComplexMemInst = false; 1811 1812 // A runtime check is only legal to insert if there are no convergent calls. 1813 HasConvergentOp = false; 1814 1815 PtrRtChecking->Pointers.clear(); 1816 PtrRtChecking->Need = false; 1817 1818 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1819 1820 // For each block. 1821 for (BasicBlock *BB : TheLoop->blocks()) { 1822 // Scan the BB and collect legal loads and stores. Also detect any 1823 // convergent instructions. 1824 for (Instruction &I : *BB) { 1825 if (auto *Call = dyn_cast<CallBase>(&I)) { 1826 if (Call->isConvergent()) 1827 HasConvergentOp = true; 1828 } 1829 1830 // With both a non-vectorizable memory instruction and a convergent 1831 // operation, found in this loop, no reason to continue the search. 1832 if (HasComplexMemInst && HasConvergentOp) { 1833 CanVecMem = false; 1834 return; 1835 } 1836 1837 // Avoid hitting recordAnalysis multiple times. 1838 if (HasComplexMemInst) 1839 continue; 1840 1841 // If this is a load, save it. If this instruction can read from memory 1842 // but is not a load, then we quit. Notice that we don't handle function 1843 // calls that read or write. 1844 if (I.mayReadFromMemory()) { 1845 // Many math library functions read the rounding mode. We will only 1846 // vectorize a loop if it contains known function calls that don't set 1847 // the flag. Therefore, it is safe to ignore this read from memory. 1848 auto *Call = dyn_cast<CallInst>(&I); 1849 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1850 continue; 1851 1852 // If the function has an explicit vectorized counterpart, we can safely 1853 // assume that it can be vectorized. 1854 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1855 !VFDatabase::getMappings(*Call).empty()) 1856 continue; 1857 1858 auto *Ld = dyn_cast<LoadInst>(&I); 1859 if (!Ld) { 1860 recordAnalysis("CantVectorizeInstruction", Ld) 1861 << "instruction cannot be vectorized"; 1862 HasComplexMemInst = true; 1863 continue; 1864 } 1865 if (!Ld->isSimple() && !IsAnnotatedParallel) { 1866 recordAnalysis("NonSimpleLoad", Ld) 1867 << "read with atomic ordering or volatile read"; 1868 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1869 HasComplexMemInst = true; 1870 continue; 1871 } 1872 NumLoads++; 1873 Loads.push_back(Ld); 1874 DepChecker->addAccess(Ld); 1875 if (EnableMemAccessVersioning) 1876 collectStridedAccess(Ld); 1877 continue; 1878 } 1879 1880 // Save 'store' instructions. Abort if other instructions write to memory. 1881 if (I.mayWriteToMemory()) { 1882 auto *St = dyn_cast<StoreInst>(&I); 1883 if (!St) { 1884 recordAnalysis("CantVectorizeInstruction", St) 1885 << "instruction cannot be vectorized"; 1886 HasComplexMemInst = true; 1887 continue; 1888 } 1889 if (!St->isSimple() && !IsAnnotatedParallel) { 1890 recordAnalysis("NonSimpleStore", St) 1891 << "write with atomic ordering or volatile write"; 1892 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1893 HasComplexMemInst = true; 1894 continue; 1895 } 1896 NumStores++; 1897 Stores.push_back(St); 1898 DepChecker->addAccess(St); 1899 if (EnableMemAccessVersioning) 1900 collectStridedAccess(St); 1901 } 1902 } // Next instr. 1903 } // Next block. 1904 1905 if (HasComplexMemInst) { 1906 CanVecMem = false; 1907 return; 1908 } 1909 1910 // Now we have two lists that hold the loads and the stores. 1911 // Next, we find the pointers that they use. 1912 1913 // Check if we see any stores. If there are no stores, then we don't 1914 // care if the pointers are *restrict*. 1915 if (!Stores.size()) { 1916 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1917 CanVecMem = true; 1918 return; 1919 } 1920 1921 MemoryDepChecker::DepCandidates DependentAccesses; 1922 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1923 TheLoop, AA, LI, DependentAccesses, *PSE); 1924 1925 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1926 // multiple times on the same object. If the ptr is accessed twice, once 1927 // for read and once for write, it will only appear once (on the write 1928 // list). This is okay, since we are going to check for conflicts between 1929 // writes and between reads and writes, but not between reads and reads. 1930 ValueSet Seen; 1931 1932 // Record uniform store addresses to identify if we have multiple stores 1933 // to the same address. 1934 ValueSet UniformStores; 1935 1936 for (StoreInst *ST : Stores) { 1937 Value *Ptr = ST->getPointerOperand(); 1938 1939 if (isUniform(Ptr)) 1940 HasDependenceInvolvingLoopInvariantAddress |= 1941 !UniformStores.insert(Ptr).second; 1942 1943 // If we did *not* see this pointer before, insert it to the read-write 1944 // list. At this phase it is only a 'write' list. 1945 if (Seen.insert(Ptr).second) { 1946 ++NumReadWrites; 1947 1948 MemoryLocation Loc = MemoryLocation::get(ST); 1949 // The TBAA metadata could have a control dependency on the predication 1950 // condition, so we cannot rely on it when determining whether or not we 1951 // need runtime pointer checks. 1952 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1953 Loc.AATags.TBAA = nullptr; 1954 1955 Accesses.addStore(Loc); 1956 } 1957 } 1958 1959 if (IsAnnotatedParallel) { 1960 LLVM_DEBUG( 1961 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 1962 << "checks.\n"); 1963 CanVecMem = true; 1964 return; 1965 } 1966 1967 for (LoadInst *LD : Loads) { 1968 Value *Ptr = LD->getPointerOperand(); 1969 // If we did *not* see this pointer before, insert it to the 1970 // read list. If we *did* see it before, then it is already in 1971 // the read-write list. This allows us to vectorize expressions 1972 // such as A[i] += x; Because the address of A[i] is a read-write 1973 // pointer. This only works if the index of A[i] is consecutive. 1974 // If the address of i is unknown (for example A[B[i]]) then we may 1975 // read a few words, modify, and write a few words, and some of the 1976 // words may be written to the same address. 1977 bool IsReadOnlyPtr = false; 1978 if (Seen.insert(Ptr).second || 1979 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 1980 ++NumReads; 1981 IsReadOnlyPtr = true; 1982 } 1983 1984 // See if there is an unsafe dependency between a load to a uniform address and 1985 // store to the same uniform address. 1986 if (UniformStores.count(Ptr)) { 1987 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 1988 "load and uniform store to the same address!\n"); 1989 HasDependenceInvolvingLoopInvariantAddress = true; 1990 } 1991 1992 MemoryLocation Loc = MemoryLocation::get(LD); 1993 // The TBAA metadata could have a control dependency on the predication 1994 // condition, so we cannot rely on it when determining whether or not we 1995 // need runtime pointer checks. 1996 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1997 Loc.AATags.TBAA = nullptr; 1998 1999 Accesses.addLoad(Loc, IsReadOnlyPtr); 2000 } 2001 2002 // If we write (or read-write) to a single destination and there are no 2003 // other reads in this loop then is it safe to vectorize. 2004 if (NumReadWrites == 1 && NumReads == 0) { 2005 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2006 CanVecMem = true; 2007 return; 2008 } 2009 2010 // Build dependence sets and check whether we need a runtime pointer bounds 2011 // check. 2012 Accesses.buildDependenceSets(); 2013 2014 // Find pointers with computable bounds. We are going to use this information 2015 // to place a runtime bound check. 2016 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 2017 TheLoop, SymbolicStrides); 2018 if (!CanDoRTIfNeeded) { 2019 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 2020 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2021 << "the array bounds.\n"); 2022 CanVecMem = false; 2023 return; 2024 } 2025 2026 LLVM_DEBUG( 2027 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2028 2029 CanVecMem = true; 2030 if (Accesses.isDependencyCheckNeeded()) { 2031 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2032 CanVecMem = DepChecker->areDepsSafe( 2033 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2034 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2035 2036 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2037 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2038 2039 // Clear the dependency checks. We assume they are not needed. 2040 Accesses.resetDepChecks(*DepChecker); 2041 2042 PtrRtChecking->reset(); 2043 PtrRtChecking->Need = true; 2044 2045 auto *SE = PSE->getSE(); 2046 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 2047 SymbolicStrides, true); 2048 2049 // Check that we found the bounds for the pointer. 2050 if (!CanDoRTIfNeeded) { 2051 recordAnalysis("CantCheckMemDepsAtRunTime") 2052 << "cannot check memory dependencies at runtime"; 2053 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2054 CanVecMem = false; 2055 return; 2056 } 2057 2058 CanVecMem = true; 2059 } 2060 } 2061 2062 if (HasConvergentOp) { 2063 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2064 << "cannot add control dependency to convergent operation"; 2065 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2066 "would be needed with a convergent operation\n"); 2067 CanVecMem = false; 2068 return; 2069 } 2070 2071 if (CanVecMem) 2072 LLVM_DEBUG( 2073 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2074 << (PtrRtChecking->Need ? "" : " don't") 2075 << " need runtime memory checks.\n"); 2076 else { 2077 recordAnalysis("UnsafeMemDep") 2078 << "unsafe dependent memory operations in loop. Use " 2079 "#pragma loop distribute(enable) to allow loop distribution " 2080 "to attempt to isolate the offending operations into a separate " 2081 "loop"; 2082 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2083 } 2084 } 2085 2086 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2087 DominatorTree *DT) { 2088 assert(TheLoop->contains(BB) && "Unknown block used"); 2089 2090 // Blocks that do not dominate the latch need predication. 2091 BasicBlock* Latch = TheLoop->getLoopLatch(); 2092 return !DT->dominates(BB, Latch); 2093 } 2094 2095 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2096 Instruction *I) { 2097 assert(!Report && "Multiple reports generated"); 2098 2099 Value *CodeRegion = TheLoop->getHeader(); 2100 DebugLoc DL = TheLoop->getStartLoc(); 2101 2102 if (I) { 2103 CodeRegion = I->getParent(); 2104 // If there is no debug location attached to the instruction, revert back to 2105 // using the loop's. 2106 if (I->getDebugLoc()) 2107 DL = I->getDebugLoc(); 2108 } 2109 2110 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2111 CodeRegion); 2112 return *Report; 2113 } 2114 2115 bool LoopAccessInfo::isUniform(Value *V) const { 2116 auto *SE = PSE->getSE(); 2117 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2118 // never considered uniform. 2119 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2120 // trivially loop-invariant FP values to be considered uniform. 2121 if (!SE->isSCEVable(V->getType())) 2122 return false; 2123 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2124 } 2125 2126 // FIXME: this function is currently a duplicate of the one in 2127 // LoopVectorize.cpp. 2128 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 2129 Instruction *Loc) { 2130 if (FirstInst) 2131 return FirstInst; 2132 if (Instruction *I = dyn_cast<Instruction>(V)) 2133 return I->getParent() == Loc->getParent() ? I : nullptr; 2134 return nullptr; 2135 } 2136 2137 namespace { 2138 2139 /// IR Values for the lower and upper bounds of a pointer evolution. We 2140 /// need to use value-handles because SCEV expansion can invalidate previously 2141 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 2142 /// a previous one. 2143 struct PointerBounds { 2144 TrackingVH<Value> Start; 2145 TrackingVH<Value> End; 2146 }; 2147 2148 } // end anonymous namespace 2149 2150 /// Expand code for the lower and upper bound of the pointer group \p CG 2151 /// in \p TheLoop. \return the values for the bounds. 2152 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, 2153 Loop *TheLoop, Instruction *Loc, 2154 SCEVExpander &Exp, ScalarEvolution *SE, 2155 const RuntimePointerChecking &PtrRtChecking) { 2156 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 2157 const SCEV *Sc = SE->getSCEV(Ptr); 2158 2159 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 2160 LLVMContext &Ctx = Loc->getContext(); 2161 2162 // Use this type for pointer arithmetic. 2163 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 2164 2165 if (SE->isLoopInvariant(Sc, TheLoop)) { 2166 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" 2167 << *Ptr << "\n"); 2168 // Ptr could be in the loop body. If so, expand a new one at the correct 2169 // location. 2170 Instruction *Inst = dyn_cast<Instruction>(Ptr); 2171 Value *NewPtr = (Inst && TheLoop->contains(Inst)) 2172 ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) 2173 : Ptr; 2174 // We must return a half-open range, which means incrementing Sc. 2175 const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy)); 2176 Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc); 2177 return {NewPtr, NewPtrPlusOne}; 2178 } else { 2179 Value *Start = nullptr, *End = nullptr; 2180 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 2181 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 2182 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 2183 LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High 2184 << "\n"); 2185 return {Start, End}; 2186 } 2187 } 2188 2189 /// Turns a collection of checks into a collection of expanded upper and 2190 /// lower bounds for both pointers in the check. 2191 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> 2192 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L, 2193 Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 2194 const RuntimePointerChecking &PtrRtChecking) { 2195 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 2196 2197 // Here we're relying on the SCEV Expander's cache to only emit code for the 2198 // same bounds once. 2199 transform( 2200 PointerChecks, std::back_inserter(ChecksWithBounds), 2201 [&](const RuntimePointerCheck &Check) { 2202 PointerBounds 2203 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 2204 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 2205 return std::make_pair(First, Second); 2206 }); 2207 2208 return ChecksWithBounds; 2209 } 2210 2211 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 2212 Instruction *Loc, 2213 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks) const { 2214 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2215 auto *SE = PSE->getSE(); 2216 SCEVExpander Exp(*SE, DL, "induction"); 2217 auto ExpandedChecks = 2218 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); 2219 2220 LLVMContext &Ctx = Loc->getContext(); 2221 Instruction *FirstInst = nullptr; 2222 IRBuilder<> ChkBuilder(Loc); 2223 // Our instructions might fold to a constant. 2224 Value *MemoryRuntimeCheck = nullptr; 2225 2226 for (const auto &Check : ExpandedChecks) { 2227 const PointerBounds &A = Check.first, &B = Check.second; 2228 // Check if two pointers (A and B) conflict where conflict is computed as: 2229 // start(A) <= end(B) && start(B) <= end(A) 2230 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 2231 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 2232 2233 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 2234 (AS1 == A.End->getType()->getPointerAddressSpace()) && 2235 "Trying to bounds check pointers with different address spaces"); 2236 2237 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 2238 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 2239 2240 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 2241 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 2242 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 2243 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 2244 2245 // [A|B].Start points to the first accessed byte under base [A|B]. 2246 // [A|B].End points to the last accessed byte, plus one. 2247 // There is no conflict when the intervals are disjoint: 2248 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 2249 // 2250 // bound0 = (B.Start < A.End) 2251 // bound1 = (A.Start < B.End) 2252 // IsConflict = bound0 & bound1 2253 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 2254 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 2255 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 2256 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 2257 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 2258 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2259 if (MemoryRuntimeCheck) { 2260 IsConflict = 2261 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 2262 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2263 } 2264 MemoryRuntimeCheck = IsConflict; 2265 } 2266 2267 if (!MemoryRuntimeCheck) 2268 return std::make_pair(nullptr, nullptr); 2269 2270 // We have to do this trickery because the IRBuilder might fold the check to a 2271 // constant expression in which case there is no Instruction anchored in a 2272 // the block. 2273 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 2274 ConstantInt::getTrue(Ctx)); 2275 ChkBuilder.Insert(Check, "memcheck.conflict"); 2276 FirstInst = getFirstInst(FirstInst, Check, Loc); 2277 return std::make_pair(FirstInst, Check); 2278 } 2279 2280 std::pair<Instruction *, Instruction *> 2281 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 2282 if (!PtrRtChecking->Need) 2283 return std::make_pair(nullptr, nullptr); 2284 2285 return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); 2286 } 2287 2288 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2289 Value *Ptr = nullptr; 2290 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 2291 Ptr = LI->getPointerOperand(); 2292 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 2293 Ptr = SI->getPointerOperand(); 2294 else 2295 return; 2296 2297 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2298 if (!Stride) 2299 return; 2300 2301 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2302 "versioning:"); 2303 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2304 2305 // Avoid adding the "Stride == 1" predicate when we know that 2306 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2307 // or zero iteration loop, as Trip-Count <= Stride == 1. 2308 // 2309 // TODO: We are currently not making a very informed decision on when it is 2310 // beneficial to apply stride versioning. It might make more sense that the 2311 // users of this analysis (such as the vectorizer) will trigger it, based on 2312 // their specific cost considerations; For example, in cases where stride 2313 // versioning does not help resolving memory accesses/dependences, the 2314 // vectorizer should evaluate the cost of the runtime test, and the benefit 2315 // of various possible stride specializations, considering the alternatives 2316 // of using gather/scatters (if available). 2317 2318 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2319 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2320 2321 // Match the types so we can compare the stride and the BETakenCount. 2322 // The Stride can be positive/negative, so we sign extend Stride; 2323 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2324 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2325 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); 2326 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); 2327 const SCEV *CastedStride = StrideExpr; 2328 const SCEV *CastedBECount = BETakenCount; 2329 ScalarEvolution *SE = PSE->getSE(); 2330 if (BETypeSize >= StrideTypeSize) 2331 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2332 else 2333 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2334 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2335 // Since TripCount == BackEdgeTakenCount + 1, checking: 2336 // "Stride >= TripCount" is equivalent to checking: 2337 // Stride - BETakenCount > 0 2338 if (SE->isKnownPositive(StrideMinusBETaken)) { 2339 LLVM_DEBUG( 2340 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2341 "Stride==1 predicate will imply that the loop executes " 2342 "at most once.\n"); 2343 return; 2344 } 2345 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); 2346 2347 SymbolicStrides[Ptr] = Stride; 2348 StrideSet.insert(Stride); 2349 } 2350 2351 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2352 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 2353 DominatorTree *DT, LoopInfo *LI) 2354 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2355 PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)), 2356 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 2357 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 2358 HasConvergentOp(false), 2359 HasDependenceInvolvingLoopInvariantAddress(false) { 2360 if (canAnalyzeLoop()) 2361 analyzeLoop(AA, LI, TLI, DT); 2362 } 2363 2364 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2365 if (CanVecMem) { 2366 OS.indent(Depth) << "Memory dependences are safe"; 2367 if (MaxSafeDepDistBytes != -1ULL) 2368 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2369 << " bytes"; 2370 if (PtrRtChecking->Need) 2371 OS << " with run-time checks"; 2372 OS << "\n"; 2373 } 2374 2375 if (HasConvergentOp) 2376 OS.indent(Depth) << "Has convergent operation in loop\n"; 2377 2378 if (Report) 2379 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2380 2381 if (auto *Dependences = DepChecker->getDependences()) { 2382 OS.indent(Depth) << "Dependences:\n"; 2383 for (auto &Dep : *Dependences) { 2384 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2385 OS << "\n"; 2386 } 2387 } else 2388 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2389 2390 // List the pair of accesses need run-time checks to prove independence. 2391 PtrRtChecking->print(OS, Depth); 2392 OS << "\n"; 2393 2394 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2395 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2396 << "found in loop.\n"; 2397 2398 OS.indent(Depth) << "SCEV assumptions:\n"; 2399 PSE->getUnionPredicate().print(OS, Depth); 2400 2401 OS << "\n"; 2402 2403 OS.indent(Depth) << "Expressions re-written:\n"; 2404 PSE->print(OS, Depth); 2405 } 2406 2407 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2408 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2409 } 2410 2411 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2412 auto &LAI = LoopAccessInfoMap[L]; 2413 2414 if (!LAI) 2415 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2416 2417 return *LAI.get(); 2418 } 2419 2420 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2421 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2422 2423 for (Loop *TopLevelLoop : *LI) 2424 for (Loop *L : depth_first(TopLevelLoop)) { 2425 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2426 auto &LAI = LAA.getInfo(L); 2427 LAI.print(OS, 4); 2428 } 2429 } 2430 2431 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2432 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2433 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2434 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2435 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2436 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2437 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2438 2439 return false; 2440 } 2441 2442 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2443 AU.addRequired<ScalarEvolutionWrapperPass>(); 2444 AU.addRequired<AAResultsWrapperPass>(); 2445 AU.addRequired<DominatorTreeWrapperPass>(); 2446 AU.addRequired<LoopInfoWrapperPass>(); 2447 2448 AU.setPreservesAll(); 2449 } 2450 2451 char LoopAccessLegacyAnalysis::ID = 0; 2452 static const char laa_name[] = "Loop Access Analysis"; 2453 #define LAA_NAME "loop-accesses" 2454 2455 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2456 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2457 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2458 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2459 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2460 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2461 2462 AnalysisKey LoopAccessAnalysis::Key; 2463 2464 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2465 LoopStandardAnalysisResults &AR) { 2466 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2467 } 2468 2469 namespace llvm { 2470 2471 Pass *createLAAPass() { 2472 return new LoopAccessLegacyAnalysis(); 2473 } 2474 2475 } // end namespace llvm 2476