1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/IR/ValueHandle.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <cstdlib> 64 #include <iterator> 65 #include <utility> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "loop-accesses" 71 72 static cl::opt<unsigned, true> 73 VectorizationFactor("force-vector-width", cl::Hidden, 74 cl::desc("Sets the SIMD width. Zero is autoselect."), 75 cl::location(VectorizerParams::VectorizationFactor)); 76 unsigned VectorizerParams::VectorizationFactor; 77 78 static cl::opt<unsigned, true> 79 VectorizationInterleave("force-vector-interleave", cl::Hidden, 80 cl::desc("Sets the vectorization interleave count. " 81 "Zero is autoselect."), 82 cl::location( 83 VectorizerParams::VectorizationInterleave)); 84 unsigned VectorizerParams::VectorizationInterleave; 85 86 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 87 "runtime-memory-check-threshold", cl::Hidden, 88 cl::desc("When performing memory disambiguation checks at runtime do not " 89 "generate more than this number of comparisons (default = 8)."), 90 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 91 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 92 93 /// The maximum iterations used to merge memory checks 94 static cl::opt<unsigned> MemoryCheckMergeThreshold( 95 "memory-check-merge-threshold", cl::Hidden, 96 cl::desc("Maximum number of comparisons done when trying to merge " 97 "runtime memory checks. (default = 100)"), 98 cl::init(100)); 99 100 /// Maximum SIMD width. 101 const unsigned VectorizerParams::MaxVectorWidth = 64; 102 103 /// We collect dependences up to this threshold. 104 static cl::opt<unsigned> 105 MaxDependences("max-dependences", cl::Hidden, 106 cl::desc("Maximum number of dependences collected by " 107 "loop-access analysis (default = 100)"), 108 cl::init(100)); 109 110 /// This enables versioning on the strides of symbolically striding memory 111 /// accesses in code like the following. 112 /// for (i = 0; i < N; ++i) 113 /// A[i * Stride1] += B[i * Stride2] ... 114 /// 115 /// Will be roughly translated to 116 /// if (Stride1 == 1 && Stride2 == 1) { 117 /// for (i = 0; i < N; i+=4) 118 /// A[i:i+3] += ... 119 /// } else 120 /// ... 121 static cl::opt<bool> EnableMemAccessVersioning( 122 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 123 cl::desc("Enable symbolic stride memory access versioning")); 124 125 /// Enable store-to-load forwarding conflict detection. This option can 126 /// be disabled for correctness testing. 127 static cl::opt<bool> EnableForwardingConflictDetection( 128 "store-to-load-forwarding-conflict-detection", cl::Hidden, 129 cl::desc("Enable conflict detection in loop-access analysis"), 130 cl::init(true)); 131 132 bool VectorizerParams::isInterleaveForced() { 133 return ::VectorizationInterleave.getNumOccurrences() > 0; 134 } 135 136 Value *llvm::stripIntegerCast(Value *V) { 137 if (auto *CI = dyn_cast<CastInst>(V)) 138 if (CI->getOperand(0)->getType()->isIntegerTy()) 139 return CI->getOperand(0); 140 return V; 141 } 142 143 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 144 const ValueToValueMap &PtrToStride, 145 Value *Ptr) { 146 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 147 148 // If there is an entry in the map return the SCEV of the pointer with the 149 // symbolic stride replaced by one. 150 ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr); 151 if (SI == PtrToStride.end()) 152 // For a non-symbolic stride, just return the original expression. 153 return OrigSCEV; 154 155 Value *StrideVal = stripIntegerCast(SI->second); 156 157 ScalarEvolution *SE = PSE.getSE(); 158 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 159 const auto *CT = 160 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 161 162 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 163 auto *Expr = PSE.getSCEV(Ptr); 164 165 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 166 << " by: " << *Expr << "\n"); 167 return Expr; 168 } 169 170 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 171 unsigned Index, RuntimePointerChecking &RtCheck) 172 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 173 AddressSpace(RtCheck.Pointers[Index] 174 .PointerValue->getType() 175 ->getPointerAddressSpace()) { 176 Members.push_back(Index); 177 } 178 179 /// Calculate Start and End points of memory access. 180 /// Let's assume A is the first access and B is a memory access on N-th loop 181 /// iteration. Then B is calculated as: 182 /// B = A + Step*N . 183 /// Step value may be positive or negative. 184 /// N is a calculated back-edge taken count: 185 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 186 /// Start and End points are calculated in the following way: 187 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 188 /// where SizeOfElt is the size of single memory access in bytes. 189 /// 190 /// There is no conflict when the intervals are disjoint: 191 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 192 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 193 unsigned DepSetId, unsigned ASId, 194 const ValueToValueMap &Strides, 195 PredicatedScalarEvolution &PSE) { 196 // Get the stride replaced scev. 197 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 198 ScalarEvolution *SE = PSE.getSE(); 199 200 const SCEV *ScStart; 201 const SCEV *ScEnd; 202 203 if (SE->isLoopInvariant(Sc, Lp)) { 204 ScStart = ScEnd = Sc; 205 } else { 206 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 207 assert(AR && "Invalid addrec expression"); 208 const SCEV *Ex = PSE.getBackedgeTakenCount(); 209 210 ScStart = AR->getStart(); 211 ScEnd = AR->evaluateAtIteration(Ex, *SE); 212 const SCEV *Step = AR->getStepRecurrence(*SE); 213 214 // For expressions with negative step, the upper bound is ScStart and the 215 // lower bound is ScEnd. 216 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 217 if (CStep->getValue()->isNegative()) 218 std::swap(ScStart, ScEnd); 219 } else { 220 // Fallback case: the step is not constant, but we can still 221 // get the upper and lower bounds of the interval by using min/max 222 // expressions. 223 ScStart = SE->getUMinExpr(ScStart, ScEnd); 224 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 225 } 226 } 227 // Add the size of the pointed element to ScEnd. 228 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 229 Type *IdxTy = DL.getIndexType(Ptr->getType()); 230 const SCEV *EltSizeSCEV = 231 SE->getStoreSizeOfExpr(IdxTy, Ptr->getType()->getPointerElementType()); 232 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 233 234 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 235 } 236 237 SmallVector<RuntimePointerCheck, 4> 238 RuntimePointerChecking::generateChecks() const { 239 SmallVector<RuntimePointerCheck, 4> Checks; 240 241 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 242 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 243 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 244 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 245 246 if (needsChecking(CGI, CGJ)) 247 Checks.push_back(std::make_pair(&CGI, &CGJ)); 248 } 249 } 250 return Checks; 251 } 252 253 void RuntimePointerChecking::generateChecks( 254 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 255 assert(Checks.empty() && "Checks is not empty"); 256 groupChecks(DepCands, UseDependencies); 257 Checks = generateChecks(); 258 } 259 260 bool RuntimePointerChecking::needsChecking( 261 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 262 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 263 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 264 if (needsChecking(M.Members[I], N.Members[J])) 265 return true; 266 return false; 267 } 268 269 /// Compare \p I and \p J and return the minimum. 270 /// Return nullptr in case we couldn't find an answer. 271 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 272 ScalarEvolution *SE) { 273 const SCEV *Diff = SE->getMinusSCEV(J, I); 274 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 275 276 if (!C) 277 return nullptr; 278 if (C->getValue()->isNegative()) 279 return J; 280 return I; 281 } 282 283 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, 284 RuntimePointerChecking &RtCheck) { 285 return addPointer( 286 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 287 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 288 *RtCheck.SE); 289 } 290 291 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 292 const SCEV *End, unsigned AS, 293 ScalarEvolution &SE) { 294 assert(AddressSpace == AS && 295 "all pointers in a checking group must be in the same address space"); 296 297 // Compare the starts and ends with the known minimum and maximum 298 // of this set. We need to know how we compare against the min/max 299 // of the set in order to be able to emit memchecks. 300 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 301 if (!Min0) 302 return false; 303 304 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 305 if (!Min1) 306 return false; 307 308 // Update the low bound expression if we've found a new min value. 309 if (Min0 == Start) 310 Low = Start; 311 312 // Update the high bound expression if we've found a new max value. 313 if (Min1 != End) 314 High = End; 315 316 Members.push_back(Index); 317 return true; 318 } 319 320 void RuntimePointerChecking::groupChecks( 321 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 322 // We build the groups from dependency candidates equivalence classes 323 // because: 324 // - We know that pointers in the same equivalence class share 325 // the same underlying object and therefore there is a chance 326 // that we can compare pointers 327 // - We wouldn't be able to merge two pointers for which we need 328 // to emit a memcheck. The classes in DepCands are already 329 // conveniently built such that no two pointers in the same 330 // class need checking against each other. 331 332 // We use the following (greedy) algorithm to construct the groups 333 // For every pointer in the equivalence class: 334 // For each existing group: 335 // - if the difference between this pointer and the min/max bounds 336 // of the group is a constant, then make the pointer part of the 337 // group and update the min/max bounds of that group as required. 338 339 CheckingGroups.clear(); 340 341 // If we need to check two pointers to the same underlying object 342 // with a non-constant difference, we shouldn't perform any pointer 343 // grouping with those pointers. This is because we can easily get 344 // into cases where the resulting check would return false, even when 345 // the accesses are safe. 346 // 347 // The following example shows this: 348 // for (i = 0; i < 1000; ++i) 349 // a[5000 + i * m] = a[i] + a[i + 9000] 350 // 351 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 352 // (0, 10000) which is always false. However, if m is 1, there is no 353 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 354 // us to perform an accurate check in this case. 355 // 356 // The above case requires that we have an UnknownDependence between 357 // accesses to the same underlying object. This cannot happen unless 358 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 359 // is also false. In this case we will use the fallback path and create 360 // separate checking groups for all pointers. 361 362 // If we don't have the dependency partitions, construct a new 363 // checking pointer group for each pointer. This is also required 364 // for correctness, because in this case we can have checking between 365 // pointers to the same underlying object. 366 if (!UseDependencies) { 367 for (unsigned I = 0; I < Pointers.size(); ++I) 368 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 369 return; 370 } 371 372 unsigned TotalComparisons = 0; 373 374 DenseMap<Value *, unsigned> PositionMap; 375 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 376 PositionMap[Pointers[Index].PointerValue] = Index; 377 378 // We need to keep track of what pointers we've already seen so we 379 // don't process them twice. 380 SmallSet<unsigned, 2> Seen; 381 382 // Go through all equivalence classes, get the "pointer check groups" 383 // and add them to the overall solution. We use the order in which accesses 384 // appear in 'Pointers' to enforce determinism. 385 for (unsigned I = 0; I < Pointers.size(); ++I) { 386 // We've seen this pointer before, and therefore already processed 387 // its equivalence class. 388 if (Seen.count(I)) 389 continue; 390 391 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 392 Pointers[I].IsWritePtr); 393 394 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 395 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 396 397 // Because DepCands is constructed by visiting accesses in the order in 398 // which they appear in alias sets (which is deterministic) and the 399 // iteration order within an equivalence class member is only dependent on 400 // the order in which unions and insertions are performed on the 401 // equivalence class, the iteration order is deterministic. 402 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 403 MI != ME; ++MI) { 404 auto PointerI = PositionMap.find(MI->getPointer()); 405 assert(PointerI != PositionMap.end() && 406 "pointer in equivalence class not found in PositionMap"); 407 unsigned Pointer = PointerI->second; 408 bool Merged = false; 409 // Mark this pointer as seen. 410 Seen.insert(Pointer); 411 412 // Go through all the existing sets and see if we can find one 413 // which can include this pointer. 414 for (RuntimeCheckingPtrGroup &Group : Groups) { 415 // Don't perform more than a certain amount of comparisons. 416 // This should limit the cost of grouping the pointers to something 417 // reasonable. If we do end up hitting this threshold, the algorithm 418 // will create separate groups for all remaining pointers. 419 if (TotalComparisons > MemoryCheckMergeThreshold) 420 break; 421 422 TotalComparisons++; 423 424 if (Group.addPointer(Pointer, *this)) { 425 Merged = true; 426 break; 427 } 428 } 429 430 if (!Merged) 431 // We couldn't add this pointer to any existing set or the threshold 432 // for the number of comparisons has been reached. Create a new group 433 // to hold the current pointer. 434 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 435 } 436 437 // We've computed the grouped checks for this partition. 438 // Save the results and continue with the next one. 439 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 440 } 441 } 442 443 bool RuntimePointerChecking::arePointersInSamePartition( 444 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 445 unsigned PtrIdx2) { 446 return (PtrToPartition[PtrIdx1] != -1 && 447 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 448 } 449 450 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 451 const PointerInfo &PointerI = Pointers[I]; 452 const PointerInfo &PointerJ = Pointers[J]; 453 454 // No need to check if two readonly pointers intersect. 455 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 456 return false; 457 458 // Only need to check pointers between two different dependency sets. 459 if (PointerI.DependencySetId == PointerJ.DependencySetId) 460 return false; 461 462 // Only need to check pointers in the same alias set. 463 if (PointerI.AliasSetId != PointerJ.AliasSetId) 464 return false; 465 466 return true; 467 } 468 469 void RuntimePointerChecking::printChecks( 470 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 471 unsigned Depth) const { 472 unsigned N = 0; 473 for (const auto &Check : Checks) { 474 const auto &First = Check.first->Members, &Second = Check.second->Members; 475 476 OS.indent(Depth) << "Check " << N++ << ":\n"; 477 478 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 479 for (unsigned K = 0; K < First.size(); ++K) 480 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 481 482 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 483 for (unsigned K = 0; K < Second.size(); ++K) 484 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 485 } 486 } 487 488 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 489 490 OS.indent(Depth) << "Run-time memory checks:\n"; 491 printChecks(OS, Checks, Depth); 492 493 OS.indent(Depth) << "Grouped accesses:\n"; 494 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 495 const auto &CG = CheckingGroups[I]; 496 497 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 498 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 499 << ")\n"; 500 for (unsigned J = 0; J < CG.Members.size(); ++J) { 501 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 502 << "\n"; 503 } 504 } 505 } 506 507 namespace { 508 509 /// Analyses memory accesses in a loop. 510 /// 511 /// Checks whether run time pointer checks are needed and builds sets for data 512 /// dependence checking. 513 class AccessAnalysis { 514 public: 515 /// Read or write access location. 516 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 517 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 518 519 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 520 MemoryDepChecker::DepCandidates &DA, 521 PredicatedScalarEvolution &PSE) 522 : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), 523 IsRTCheckAnalysisNeeded(false), PSE(PSE) {} 524 525 /// Register a load and whether it is only read from. 526 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 527 Value *Ptr = const_cast<Value*>(Loc.Ptr); 528 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 529 Accesses.insert(MemAccessInfo(Ptr, false)); 530 if (IsReadOnly) 531 ReadOnlyPtr.insert(Ptr); 532 } 533 534 /// Register a store. 535 void addStore(MemoryLocation &Loc) { 536 Value *Ptr = const_cast<Value*>(Loc.Ptr); 537 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 538 Accesses.insert(MemAccessInfo(Ptr, true)); 539 } 540 541 /// Check if we can emit a run-time no-alias check for \p Access. 542 /// 543 /// Returns true if we can emit a run-time no alias check for \p Access. 544 /// If we can check this access, this also adds it to a dependence set and 545 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 546 /// we will attempt to use additional run-time checks in order to get 547 /// the bounds of the pointer. 548 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 549 MemAccessInfo Access, 550 const ValueToValueMap &Strides, 551 DenseMap<Value *, unsigned> &DepSetId, 552 Loop *TheLoop, unsigned &RunningDepId, 553 unsigned ASId, bool ShouldCheckStride, 554 bool Assume); 555 556 /// Check whether we can check the pointers at runtime for 557 /// non-intersection. 558 /// 559 /// Returns true if we need no check or if we do and we can generate them 560 /// (i.e. the pointers have computable bounds). 561 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 562 Loop *TheLoop, const ValueToValueMap &Strides, 563 bool ShouldCheckWrap = false); 564 565 /// Goes over all memory accesses, checks whether a RT check is needed 566 /// and builds sets of dependent accesses. 567 void buildDependenceSets() { 568 processMemAccesses(); 569 } 570 571 /// Initial processing of memory accesses determined that we need to 572 /// perform dependency checking. 573 /// 574 /// Note that this can later be cleared if we retry memcheck analysis without 575 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 576 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 577 578 /// We decided that no dependence analysis would be used. Reset the state. 579 void resetDepChecks(MemoryDepChecker &DepChecker) { 580 CheckDeps.clear(); 581 DepChecker.clearDependences(); 582 } 583 584 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 585 586 private: 587 typedef SetVector<MemAccessInfo> PtrAccessSet; 588 589 /// Go over all memory access and check whether runtime pointer checks 590 /// are needed and build sets of dependency check candidates. 591 void processMemAccesses(); 592 593 /// Set of all accesses. 594 PtrAccessSet Accesses; 595 596 /// The loop being checked. 597 const Loop *TheLoop; 598 599 /// List of accesses that need a further dependence check. 600 MemAccessInfoList CheckDeps; 601 602 /// Set of pointers that are read only. 603 SmallPtrSet<Value*, 16> ReadOnlyPtr; 604 605 /// An alias set tracker to partition the access set by underlying object and 606 //intrinsic property (such as TBAA metadata). 607 AliasSetTracker AST; 608 609 LoopInfo *LI; 610 611 /// Sets of potentially dependent accesses - members of one set share an 612 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 613 /// dependence check. 614 MemoryDepChecker::DepCandidates &DepCands; 615 616 /// Initial processing of memory accesses determined that we may need 617 /// to add memchecks. Perform the analysis to determine the necessary checks. 618 /// 619 /// Note that, this is different from isDependencyCheckNeeded. When we retry 620 /// memcheck analysis without dependency checking 621 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 622 /// cleared while this remains set if we have potentially dependent accesses. 623 bool IsRTCheckAnalysisNeeded; 624 625 /// The SCEV predicate containing all the SCEV-related assumptions. 626 PredicatedScalarEvolution &PSE; 627 }; 628 629 } // end anonymous namespace 630 631 /// Check whether a pointer can participate in a runtime bounds check. 632 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 633 /// by adding run-time checks (overflow checks) if necessary. 634 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 635 const ValueToValueMap &Strides, Value *Ptr, 636 Loop *L, bool Assume) { 637 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 638 639 // The bounds for loop-invariant pointer is trivial. 640 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 641 return true; 642 643 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 644 645 if (!AR && Assume) 646 AR = PSE.getAsAddRec(Ptr); 647 648 if (!AR) 649 return false; 650 651 return AR->isAffine(); 652 } 653 654 /// Check whether a pointer address cannot wrap. 655 static bool isNoWrap(PredicatedScalarEvolution &PSE, 656 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 657 const SCEV *PtrScev = PSE.getSCEV(Ptr); 658 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 659 return true; 660 661 Type *AccessTy = Ptr->getType()->getPointerElementType(); 662 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides); 663 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 664 return true; 665 666 return false; 667 } 668 669 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 670 MemAccessInfo Access, 671 const ValueToValueMap &StridesMap, 672 DenseMap<Value *, unsigned> &DepSetId, 673 Loop *TheLoop, unsigned &RunningDepId, 674 unsigned ASId, bool ShouldCheckWrap, 675 bool Assume) { 676 Value *Ptr = Access.getPointer(); 677 678 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 679 return false; 680 681 // When we run after a failing dependency check we have to make sure 682 // we don't have wrapping pointers. 683 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { 684 auto *Expr = PSE.getSCEV(Ptr); 685 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 686 return false; 687 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 688 } 689 690 // The id of the dependence set. 691 unsigned DepId; 692 693 if (isDependencyCheckNeeded()) { 694 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 695 unsigned &LeaderId = DepSetId[Leader]; 696 if (!LeaderId) 697 LeaderId = RunningDepId++; 698 DepId = LeaderId; 699 } else 700 // Each access has its own dependence set. 701 DepId = RunningDepId++; 702 703 bool IsWrite = Access.getInt(); 704 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 705 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 706 707 return true; 708 } 709 710 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 711 ScalarEvolution *SE, Loop *TheLoop, 712 const ValueToValueMap &StridesMap, 713 bool ShouldCheckWrap) { 714 // Find pointers with computable bounds. We are going to use this information 715 // to place a runtime bound check. 716 bool CanDoRT = true; 717 718 bool MayNeedRTCheck = false; 719 if (!IsRTCheckAnalysisNeeded) return true; 720 721 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 722 723 // We assign a consecutive id to access from different alias sets. 724 // Accesses between different groups doesn't need to be checked. 725 unsigned ASId = 0; 726 for (auto &AS : AST) { 727 int NumReadPtrChecks = 0; 728 int NumWritePtrChecks = 0; 729 bool CanDoAliasSetRT = true; 730 ++ASId; 731 732 // We assign consecutive id to access from different dependence sets. 733 // Accesses within the same set don't need a runtime check. 734 unsigned RunningDepId = 1; 735 DenseMap<Value *, unsigned> DepSetId; 736 737 SmallVector<MemAccessInfo, 4> Retries; 738 739 // First, count how many write and read accesses are in the alias set. Also 740 // collect MemAccessInfos for later. 741 SmallVector<MemAccessInfo, 4> AccessInfos; 742 for (const auto &A : AS) { 743 Value *Ptr = A.getValue(); 744 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 745 746 if (IsWrite) 747 ++NumWritePtrChecks; 748 else 749 ++NumReadPtrChecks; 750 AccessInfos.emplace_back(Ptr, IsWrite); 751 } 752 753 // We do not need runtime checks for this alias set, if there are no writes 754 // or a single write and no reads. 755 if (NumWritePtrChecks == 0 || 756 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 757 assert((AS.size() <= 1 || 758 all_of(AS, 759 [this](auto AC) { 760 MemAccessInfo AccessWrite(AC.getValue(), true); 761 return DepCands.findValue(AccessWrite) == DepCands.end(); 762 })) && 763 "Can only skip updating CanDoRT below, if all entries in AS " 764 "are reads or there is at most 1 entry"); 765 continue; 766 } 767 768 for (auto &Access : AccessInfos) { 769 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, 770 RunningDepId, ASId, ShouldCheckWrap, false)) { 771 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 772 << *Access.getPointer() << '\n'); 773 Retries.push_back(Access); 774 CanDoAliasSetRT = false; 775 } 776 } 777 778 // Note that this function computes CanDoRT and MayNeedRTCheck 779 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 780 // we have a pointer for which we couldn't find the bounds but we don't 781 // actually need to emit any checks so it does not matter. 782 // 783 // We need runtime checks for this alias set, if there are at least 2 784 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 785 // any bound checks (because in that case the number of dependence sets is 786 // incomplete). 787 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 788 789 // We need to perform run-time alias checks, but some pointers had bounds 790 // that couldn't be checked. 791 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 792 // Reset the CanDoSetRt flag and retry all accesses that have failed. 793 // We know that we need these checks, so we can now be more aggressive 794 // and add further checks if required (overflow checks). 795 CanDoAliasSetRT = true; 796 for (auto Access : Retries) 797 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, 798 TheLoop, RunningDepId, ASId, 799 ShouldCheckWrap, /*Assume=*/true)) { 800 CanDoAliasSetRT = false; 801 break; 802 } 803 } 804 805 CanDoRT &= CanDoAliasSetRT; 806 MayNeedRTCheck |= NeedsAliasSetRTCheck; 807 ++ASId; 808 } 809 810 // If the pointers that we would use for the bounds comparison have different 811 // address spaces, assume the values aren't directly comparable, so we can't 812 // use them for the runtime check. We also have to assume they could 813 // overlap. In the future there should be metadata for whether address spaces 814 // are disjoint. 815 unsigned NumPointers = RtCheck.Pointers.size(); 816 for (unsigned i = 0; i < NumPointers; ++i) { 817 for (unsigned j = i + 1; j < NumPointers; ++j) { 818 // Only need to check pointers between two different dependency sets. 819 if (RtCheck.Pointers[i].DependencySetId == 820 RtCheck.Pointers[j].DependencySetId) 821 continue; 822 // Only need to check pointers in the same alias set. 823 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 824 continue; 825 826 Value *PtrI = RtCheck.Pointers[i].PointerValue; 827 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 828 829 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 830 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 831 if (ASi != ASj) { 832 LLVM_DEBUG( 833 dbgs() << "LAA: Runtime check would require comparison between" 834 " different address spaces\n"); 835 return false; 836 } 837 } 838 } 839 840 if (MayNeedRTCheck && CanDoRT) 841 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 842 843 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 844 << " pointer comparisons.\n"); 845 846 // If we can do run-time checks, but there are no checks, no runtime checks 847 // are needed. This can happen when all pointers point to the same underlying 848 // object for example. 849 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 850 851 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 852 if (!CanDoRTIfNeeded) 853 RtCheck.reset(); 854 return CanDoRTIfNeeded; 855 } 856 857 void AccessAnalysis::processMemAccesses() { 858 // We process the set twice: first we process read-write pointers, last we 859 // process read-only pointers. This allows us to skip dependence tests for 860 // read-only pointers. 861 862 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 863 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 864 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 865 LLVM_DEBUG({ 866 for (auto A : Accesses) 867 dbgs() << "\t" << *A.getPointer() << " (" << 868 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 869 "read-only" : "read")) << ")\n"; 870 }); 871 872 // The AliasSetTracker has nicely partitioned our pointers by metadata 873 // compatibility and potential for underlying-object overlap. As a result, we 874 // only need to check for potential pointer dependencies within each alias 875 // set. 876 for (const auto &AS : AST) { 877 // Note that both the alias-set tracker and the alias sets themselves used 878 // linked lists internally and so the iteration order here is deterministic 879 // (matching the original instruction order within each set). 880 881 bool SetHasWrite = false; 882 883 // Map of pointers to last access encountered. 884 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 885 UnderlyingObjToAccessMap ObjToLastAccess; 886 887 // Set of access to check after all writes have been processed. 888 PtrAccessSet DeferredAccesses; 889 890 // Iterate over each alias set twice, once to process read/write pointers, 891 // and then to process read-only pointers. 892 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 893 bool UseDeferred = SetIteration > 0; 894 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 895 896 for (const auto &AV : AS) { 897 Value *Ptr = AV.getValue(); 898 899 // For a single memory access in AliasSetTracker, Accesses may contain 900 // both read and write, and they both need to be handled for CheckDeps. 901 for (const auto &AC : S) { 902 if (AC.getPointer() != Ptr) 903 continue; 904 905 bool IsWrite = AC.getInt(); 906 907 // If we're using the deferred access set, then it contains only 908 // reads. 909 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 910 if (UseDeferred && !IsReadOnlyPtr) 911 continue; 912 // Otherwise, the pointer must be in the PtrAccessSet, either as a 913 // read or a write. 914 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 915 S.count(MemAccessInfo(Ptr, false))) && 916 "Alias-set pointer not in the access set?"); 917 918 MemAccessInfo Access(Ptr, IsWrite); 919 DepCands.insert(Access); 920 921 // Memorize read-only pointers for later processing and skip them in 922 // the first round (they need to be checked after we have seen all 923 // write pointers). Note: we also mark pointer that are not 924 // consecutive as "read-only" pointers (so that we check 925 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 926 if (!UseDeferred && IsReadOnlyPtr) { 927 DeferredAccesses.insert(Access); 928 continue; 929 } 930 931 // If this is a write - check other reads and writes for conflicts. If 932 // this is a read only check other writes for conflicts (but only if 933 // there is no other write to the ptr - this is an optimization to 934 // catch "a[i] = a[i] + " without having to do a dependence check). 935 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 936 CheckDeps.push_back(Access); 937 IsRTCheckAnalysisNeeded = true; 938 } 939 940 if (IsWrite) 941 SetHasWrite = true; 942 943 // Create sets of pointers connected by a shared alias set and 944 // underlying object. 945 typedef SmallVector<const Value *, 16> ValueVector; 946 ValueVector TempObjects; 947 948 getUnderlyingObjects(Ptr, TempObjects, LI); 949 LLVM_DEBUG(dbgs() 950 << "Underlying objects for pointer " << *Ptr << "\n"); 951 for (const Value *UnderlyingObj : TempObjects) { 952 // nullptr never alias, don't join sets for pointer that have "null" 953 // in their UnderlyingObjects list. 954 if (isa<ConstantPointerNull>(UnderlyingObj) && 955 !NullPointerIsDefined( 956 TheLoop->getHeader()->getParent(), 957 UnderlyingObj->getType()->getPointerAddressSpace())) 958 continue; 959 960 UnderlyingObjToAccessMap::iterator Prev = 961 ObjToLastAccess.find(UnderlyingObj); 962 if (Prev != ObjToLastAccess.end()) 963 DepCands.unionSets(Access, Prev->second); 964 965 ObjToLastAccess[UnderlyingObj] = Access; 966 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 967 } 968 } 969 } 970 } 971 } 972 } 973 974 static bool isInBoundsGep(Value *Ptr) { 975 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 976 return GEP->isInBounds(); 977 return false; 978 } 979 980 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 981 /// i.e. monotonically increasing/decreasing. 982 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 983 PredicatedScalarEvolution &PSE, const Loop *L) { 984 // FIXME: This should probably only return true for NUW. 985 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 986 return true; 987 988 // Scalar evolution does not propagate the non-wrapping flags to values that 989 // are derived from a non-wrapping induction variable because non-wrapping 990 // could be flow-sensitive. 991 // 992 // Look through the potentially overflowing instruction to try to prove 993 // non-wrapping for the *specific* value of Ptr. 994 995 // The arithmetic implied by an inbounds GEP can't overflow. 996 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 997 if (!GEP || !GEP->isInBounds()) 998 return false; 999 1000 // Make sure there is only one non-const index and analyze that. 1001 Value *NonConstIndex = nullptr; 1002 for (Value *Index : GEP->indices()) 1003 if (!isa<ConstantInt>(Index)) { 1004 if (NonConstIndex) 1005 return false; 1006 NonConstIndex = Index; 1007 } 1008 if (!NonConstIndex) 1009 // The recurrence is on the pointer, ignore for now. 1010 return false; 1011 1012 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1013 // AddRec using a NSW operation. 1014 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1015 if (OBO->hasNoSignedWrap() && 1016 // Assume constant for other the operand so that the AddRec can be 1017 // easily found. 1018 isa<ConstantInt>(OBO->getOperand(1))) { 1019 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1020 1021 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1022 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1023 } 1024 1025 return false; 1026 } 1027 1028 /// Check whether the access through \p Ptr has a constant stride. 1029 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, 1030 Value *Ptr, const Loop *Lp, 1031 const ValueToValueMap &StridesMap, bool Assume, 1032 bool ShouldCheckWrap) { 1033 Type *Ty = Ptr->getType(); 1034 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1035 unsigned AddrSpace = Ty->getPointerAddressSpace(); 1036 1037 // Make sure we're not accessing an aggregate type. 1038 // TODO: Why? This doesn't make any sense. 1039 if (AccessTy->isAggregateType()) { 1040 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 1041 << *Ptr << "\n"); 1042 return 0; 1043 } 1044 1045 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1046 1047 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1048 if (Assume && !AR) 1049 AR = PSE.getAsAddRec(Ptr); 1050 1051 if (!AR) { 1052 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1053 << " SCEV: " << *PtrScev << "\n"); 1054 return 0; 1055 } 1056 1057 // The access function must stride over the innermost loop. 1058 if (Lp != AR->getLoop()) { 1059 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1060 << *Ptr << " SCEV: " << *AR << "\n"); 1061 return 0; 1062 } 1063 1064 // The address calculation must not wrap. Otherwise, a dependence could be 1065 // inverted. 1066 // An inbounds getelementptr that is a AddRec with a unit stride 1067 // cannot wrap per definition. The unit stride requirement is checked later. 1068 // An getelementptr without an inbounds attribute and unit stride would have 1069 // to access the pointer value "0" which is undefined behavior in address 1070 // space 0, therefore we can also vectorize this case. 1071 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1072 bool IsNoWrapAddRec = !ShouldCheckWrap || 1073 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1074 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1075 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1076 NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace)) { 1077 if (Assume) { 1078 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1079 IsNoWrapAddRec = true; 1080 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1081 << "LAA: Pointer: " << *Ptr << "\n" 1082 << "LAA: SCEV: " << *AR << "\n" 1083 << "LAA: Added an overflow assumption\n"); 1084 } else { 1085 LLVM_DEBUG( 1086 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1087 << *Ptr << " SCEV: " << *AR << "\n"); 1088 return 0; 1089 } 1090 } 1091 1092 // Check the step is constant. 1093 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1094 1095 // Calculate the pointer stride and check if it is constant. 1096 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1097 if (!C) { 1098 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1099 << " SCEV: " << *AR << "\n"); 1100 return 0; 1101 } 1102 1103 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1104 int64_t Size = DL.getTypeAllocSize(AccessTy); 1105 const APInt &APStepVal = C->getAPInt(); 1106 1107 // Huge step value - give up. 1108 if (APStepVal.getBitWidth() > 64) 1109 return 0; 1110 1111 int64_t StepVal = APStepVal.getSExtValue(); 1112 1113 // Strided access. 1114 int64_t Stride = StepVal / Size; 1115 int64_t Rem = StepVal % Size; 1116 if (Rem) 1117 return 0; 1118 1119 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1120 // know we can't "wrap around the address space". In case of address space 1121 // zero we know that this won't happen without triggering undefined behavior. 1122 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1123 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1124 AddrSpace))) { 1125 if (Assume) { 1126 // We can avoid this case by adding a run-time check. 1127 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1128 << "inbounds or in address space 0 may wrap:\n" 1129 << "LAA: Pointer: " << *Ptr << "\n" 1130 << "LAA: SCEV: " << *AR << "\n" 1131 << "LAA: Added an overflow assumption\n"); 1132 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1133 } else 1134 return 0; 1135 } 1136 1137 return Stride; 1138 } 1139 1140 Optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, 1141 Value *PtrB, const DataLayout &DL, 1142 ScalarEvolution &SE, bool StrictCheck, 1143 bool CheckType) { 1144 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1145 assert(cast<PointerType>(PtrA->getType()) 1146 ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type"); 1147 assert(cast<PointerType>(PtrB->getType()) 1148 ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type"); 1149 1150 // Make sure that A and B are different pointers. 1151 if (PtrA == PtrB) 1152 return 0; 1153 1154 // Make sure that the element types are the same if required. 1155 if (CheckType && ElemTyA != ElemTyB) 1156 return None; 1157 1158 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1159 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1160 1161 // Check that the address spaces match. 1162 if (ASA != ASB) 1163 return None; 1164 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1165 1166 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1167 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1168 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1169 1170 int Val; 1171 if (PtrA1 == PtrB1) { 1172 // Retrieve the address space again as pointer stripping now tracks through 1173 // `addrspacecast`. 1174 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1175 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1176 // Check that the address spaces match and that the pointers are valid. 1177 if (ASA != ASB) 1178 return None; 1179 1180 IdxWidth = DL.getIndexSizeInBits(ASA); 1181 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1182 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1183 1184 OffsetB -= OffsetA; 1185 Val = OffsetB.getSExtValue(); 1186 } else { 1187 // Otherwise compute the distance with SCEV between the base pointers. 1188 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1189 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1190 const auto *Diff = 1191 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA)); 1192 if (!Diff) 1193 return None; 1194 Val = Diff->getAPInt().getSExtValue(); 1195 } 1196 int Size = DL.getTypeStoreSize(ElemTyA); 1197 int Dist = Val / Size; 1198 1199 // Ensure that the calculated distance matches the type-based one after all 1200 // the bitcasts removal in the provided pointers. 1201 if (!StrictCheck || Dist * Size == Val) 1202 return Dist; 1203 return None; 1204 } 1205 1206 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1207 const DataLayout &DL, ScalarEvolution &SE, 1208 SmallVectorImpl<unsigned> &SortedIndices) { 1209 assert(llvm::all_of( 1210 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1211 "Expected list of pointer operands."); 1212 // Walk over the pointers, and map each of them to an offset relative to 1213 // first pointer in the array. 1214 Value *Ptr0 = VL[0]; 1215 1216 using DistOrdPair = std::pair<int64_t, int>; 1217 auto Compare = [](const DistOrdPair &L, const DistOrdPair &R) { 1218 return L.first < R.first; 1219 }; 1220 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1221 Offsets.emplace(0, 0); 1222 int Cnt = 1; 1223 bool IsConsecutive = true; 1224 for (auto *Ptr : VL.drop_front()) { 1225 Optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1226 /*StrictCheck=*/true); 1227 if (!Diff) 1228 return false; 1229 1230 // Check if the pointer with the same offset is found. 1231 int64_t Offset = *Diff; 1232 auto Res = Offsets.emplace(Offset, Cnt); 1233 if (!Res.second) 1234 return false; 1235 // Consecutive order if the inserted element is the last one. 1236 IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end(); 1237 ++Cnt; 1238 } 1239 SortedIndices.clear(); 1240 if (!IsConsecutive) { 1241 // Fill SortedIndices array only if it is non-consecutive. 1242 SortedIndices.resize(VL.size()); 1243 Cnt = 0; 1244 for (const std::pair<int64_t, int> &Pair : Offsets) { 1245 SortedIndices[Cnt] = Pair.second; 1246 ++Cnt; 1247 } 1248 } 1249 return true; 1250 } 1251 1252 /// Returns true if the memory operations \p A and \p B are consecutive. 1253 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1254 ScalarEvolution &SE, bool CheckType) { 1255 Value *PtrA = getLoadStorePointerOperand(A); 1256 Value *PtrB = getLoadStorePointerOperand(B); 1257 if (!PtrA || !PtrB) 1258 return false; 1259 Type *ElemTyA = getLoadStoreType(A); 1260 Type *ElemTyB = getLoadStoreType(B); 1261 Optional<int> Diff = getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1262 /*StrictCheck=*/true, CheckType); 1263 return Diff && *Diff == 1; 1264 } 1265 1266 MemoryDepChecker::VectorizationSafetyStatus 1267 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1268 switch (Type) { 1269 case NoDep: 1270 case Forward: 1271 case BackwardVectorizable: 1272 return VectorizationSafetyStatus::Safe; 1273 1274 case Unknown: 1275 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1276 case ForwardButPreventsForwarding: 1277 case Backward: 1278 case BackwardVectorizableButPreventsForwarding: 1279 return VectorizationSafetyStatus::Unsafe; 1280 } 1281 llvm_unreachable("unexpected DepType!"); 1282 } 1283 1284 bool MemoryDepChecker::Dependence::isBackward() const { 1285 switch (Type) { 1286 case NoDep: 1287 case Forward: 1288 case ForwardButPreventsForwarding: 1289 case Unknown: 1290 return false; 1291 1292 case BackwardVectorizable: 1293 case Backward: 1294 case BackwardVectorizableButPreventsForwarding: 1295 return true; 1296 } 1297 llvm_unreachable("unexpected DepType!"); 1298 } 1299 1300 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1301 return isBackward() || Type == Unknown; 1302 } 1303 1304 bool MemoryDepChecker::Dependence::isForward() const { 1305 switch (Type) { 1306 case Forward: 1307 case ForwardButPreventsForwarding: 1308 return true; 1309 1310 case NoDep: 1311 case Unknown: 1312 case BackwardVectorizable: 1313 case Backward: 1314 case BackwardVectorizableButPreventsForwarding: 1315 return false; 1316 } 1317 llvm_unreachable("unexpected DepType!"); 1318 } 1319 1320 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1321 uint64_t TypeByteSize) { 1322 // If loads occur at a distance that is not a multiple of a feasible vector 1323 // factor store-load forwarding does not take place. 1324 // Positive dependences might cause troubles because vectorizing them might 1325 // prevent store-load forwarding making vectorized code run a lot slower. 1326 // a[i] = a[i-3] ^ a[i-8]; 1327 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1328 // hence on your typical architecture store-load forwarding does not take 1329 // place. Vectorizing in such cases does not make sense. 1330 // Store-load forwarding distance. 1331 1332 // After this many iterations store-to-load forwarding conflicts should not 1333 // cause any slowdowns. 1334 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1335 // Maximum vector factor. 1336 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1337 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1338 1339 // Compute the smallest VF at which the store and load would be misaligned. 1340 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1341 VF *= 2) { 1342 // If the number of vector iteration between the store and the load are 1343 // small we could incur conflicts. 1344 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1345 MaxVFWithoutSLForwardIssues = (VF >> 1); 1346 break; 1347 } 1348 } 1349 1350 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1351 LLVM_DEBUG( 1352 dbgs() << "LAA: Distance " << Distance 1353 << " that could cause a store-load forwarding conflict\n"); 1354 return true; 1355 } 1356 1357 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1358 MaxVFWithoutSLForwardIssues != 1359 VectorizerParams::MaxVectorWidth * TypeByteSize) 1360 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1361 return false; 1362 } 1363 1364 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1365 if (Status < S) 1366 Status = S; 1367 } 1368 1369 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1370 /// memory accesses, that have the same stride whose absolute value is given 1371 /// in \p Stride, and that have the same type size \p TypeByteSize, 1372 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1373 /// possible to prove statically that the dependence distance is larger 1374 /// than the range that the accesses will travel through the execution of 1375 /// the loop. If so, return true; false otherwise. This is useful for 1376 /// example in loops such as the following (PR31098): 1377 /// for (i = 0; i < D; ++i) { 1378 /// = out[i]; 1379 /// out[i+D] = 1380 /// } 1381 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1382 const SCEV &BackedgeTakenCount, 1383 const SCEV &Dist, uint64_t Stride, 1384 uint64_t TypeByteSize) { 1385 1386 // If we can prove that 1387 // (**) |Dist| > BackedgeTakenCount * Step 1388 // where Step is the absolute stride of the memory accesses in bytes, 1389 // then there is no dependence. 1390 // 1391 // Rationale: 1392 // We basically want to check if the absolute distance (|Dist/Step|) 1393 // is >= the loop iteration count (or > BackedgeTakenCount). 1394 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1395 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1396 // that the dependence distance is >= VF; This is checked elsewhere. 1397 // But in some cases we can prune unknown dependence distances early, and 1398 // even before selecting the VF, and without a runtime test, by comparing 1399 // the distance against the loop iteration count. Since the vectorized code 1400 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1401 // also guarantees that distance >= VF. 1402 // 1403 const uint64_t ByteStride = Stride * TypeByteSize; 1404 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1405 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1406 1407 const SCEV *CastedDist = &Dist; 1408 const SCEV *CastedProduct = Product; 1409 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1410 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1411 1412 // The dependence distance can be positive/negative, so we sign extend Dist; 1413 // The multiplication of the absolute stride in bytes and the 1414 // backedgeTakenCount is non-negative, so we zero extend Product. 1415 if (DistTypeSize > ProductTypeSize) 1416 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1417 else 1418 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1419 1420 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1421 // (If so, then we have proven (**) because |Dist| >= Dist) 1422 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1423 if (SE.isKnownPositive(Minus)) 1424 return true; 1425 1426 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1427 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1428 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1429 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1430 if (SE.isKnownPositive(Minus)) 1431 return true; 1432 1433 return false; 1434 } 1435 1436 /// Check the dependence for two accesses with the same stride \p Stride. 1437 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1438 /// bytes. 1439 /// 1440 /// \returns true if they are independent. 1441 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1442 uint64_t TypeByteSize) { 1443 assert(Stride > 1 && "The stride must be greater than 1"); 1444 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1445 assert(Distance > 0 && "The distance must be non-zero"); 1446 1447 // Skip if the distance is not multiple of type byte size. 1448 if (Distance % TypeByteSize) 1449 return false; 1450 1451 uint64_t ScaledDist = Distance / TypeByteSize; 1452 1453 // No dependence if the scaled distance is not multiple of the stride. 1454 // E.g. 1455 // for (i = 0; i < 1024 ; i += 4) 1456 // A[i+2] = A[i] + 1; 1457 // 1458 // Two accesses in memory (scaled distance is 2, stride is 4): 1459 // | A[0] | | | | A[4] | | | | 1460 // | | | A[2] | | | | A[6] | | 1461 // 1462 // E.g. 1463 // for (i = 0; i < 1024 ; i += 3) 1464 // A[i+4] = A[i] + 1; 1465 // 1466 // Two accesses in memory (scaled distance is 4, stride is 3): 1467 // | A[0] | | | A[3] | | | A[6] | | | 1468 // | | | | | A[4] | | | A[7] | | 1469 return ScaledDist % Stride; 1470 } 1471 1472 MemoryDepChecker::Dependence::DepType 1473 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1474 const MemAccessInfo &B, unsigned BIdx, 1475 const ValueToValueMap &Strides) { 1476 assert (AIdx < BIdx && "Must pass arguments in program order"); 1477 1478 Value *APtr = A.getPointer(); 1479 Value *BPtr = B.getPointer(); 1480 bool AIsWrite = A.getInt(); 1481 bool BIsWrite = B.getInt(); 1482 Type *ATy = APtr->getType()->getPointerElementType(); 1483 Type *BTy = BPtr->getType()->getPointerElementType(); 1484 1485 // Two reads are independent. 1486 if (!AIsWrite && !BIsWrite) 1487 return Dependence::NoDep; 1488 1489 // We cannot check pointers in different address spaces. 1490 if (APtr->getType()->getPointerAddressSpace() != 1491 BPtr->getType()->getPointerAddressSpace()) 1492 return Dependence::Unknown; 1493 1494 int64_t StrideAPtr = 1495 getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true); 1496 int64_t StrideBPtr = 1497 getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true); 1498 1499 const SCEV *Src = PSE.getSCEV(APtr); 1500 const SCEV *Sink = PSE.getSCEV(BPtr); 1501 1502 // If the induction step is negative we have to invert source and sink of the 1503 // dependence. 1504 if (StrideAPtr < 0) { 1505 std::swap(APtr, BPtr); 1506 std::swap(ATy, BTy); 1507 std::swap(Src, Sink); 1508 std::swap(AIsWrite, BIsWrite); 1509 std::swap(AIdx, BIdx); 1510 std::swap(StrideAPtr, StrideBPtr); 1511 } 1512 1513 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1514 1515 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1516 << "(Induction step: " << StrideAPtr << ")\n"); 1517 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1518 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1519 1520 // Need accesses with constant stride. We don't want to vectorize 1521 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1522 // the address space. 1523 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1524 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1525 return Dependence::Unknown; 1526 } 1527 1528 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1529 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1530 uint64_t Stride = std::abs(StrideAPtr); 1531 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1532 if (!C) { 1533 if (!isa<SCEVCouldNotCompute>(Dist) && 1534 TypeByteSize == DL.getTypeAllocSize(BTy) && 1535 isSafeDependenceDistance(DL, *(PSE.getSE()), 1536 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1537 TypeByteSize)) 1538 return Dependence::NoDep; 1539 1540 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1541 FoundNonConstantDistanceDependence = true; 1542 return Dependence::Unknown; 1543 } 1544 1545 const APInt &Val = C->getAPInt(); 1546 int64_t Distance = Val.getSExtValue(); 1547 1548 // Attempt to prove strided accesses independent. 1549 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1550 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1551 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1552 return Dependence::NoDep; 1553 } 1554 1555 // Negative distances are not plausible dependencies. 1556 if (Val.isNegative()) { 1557 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1558 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1559 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1560 ATy != BTy)) { 1561 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1562 return Dependence::ForwardButPreventsForwarding; 1563 } 1564 1565 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1566 return Dependence::Forward; 1567 } 1568 1569 // Write to the same location with the same size. 1570 // Could be improved to assert type sizes are the same (i32 == float, etc). 1571 if (Val == 0) { 1572 if (ATy == BTy) 1573 return Dependence::Forward; 1574 LLVM_DEBUG( 1575 dbgs() << "LAA: Zero dependence difference but different types\n"); 1576 return Dependence::Unknown; 1577 } 1578 1579 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1580 1581 if (ATy != BTy) { 1582 LLVM_DEBUG( 1583 dbgs() 1584 << "LAA: ReadWrite-Write positive dependency with different types\n"); 1585 return Dependence::Unknown; 1586 } 1587 1588 // Bail out early if passed-in parameters make vectorization not feasible. 1589 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1590 VectorizerParams::VectorizationFactor : 1); 1591 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1592 VectorizerParams::VectorizationInterleave : 1); 1593 // The minimum number of iterations for a vectorized/unrolled version. 1594 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1595 1596 // It's not vectorizable if the distance is smaller than the minimum distance 1597 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1598 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1599 // TypeByteSize (No need to plus the last gap distance). 1600 // 1601 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1602 // foo(int *A) { 1603 // int *B = (int *)((char *)A + 14); 1604 // for (i = 0 ; i < 1024 ; i += 2) 1605 // B[i] = A[i] + 1; 1606 // } 1607 // 1608 // Two accesses in memory (stride is 2): 1609 // | A[0] | | A[2] | | A[4] | | A[6] | | 1610 // | B[0] | | B[2] | | B[4] | 1611 // 1612 // Distance needs for vectorizing iterations except the last iteration: 1613 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1614 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1615 // 1616 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1617 // 12, which is less than distance. 1618 // 1619 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1620 // the minimum distance needed is 28, which is greater than distance. It is 1621 // not safe to do vectorization. 1622 uint64_t MinDistanceNeeded = 1623 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1624 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1625 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1626 << Distance << '\n'); 1627 return Dependence::Backward; 1628 } 1629 1630 // Unsafe if the minimum distance needed is greater than max safe distance. 1631 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1632 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1633 << MinDistanceNeeded << " size in bytes"); 1634 return Dependence::Backward; 1635 } 1636 1637 // Positive distance bigger than max vectorization factor. 1638 // FIXME: Should use max factor instead of max distance in bytes, which could 1639 // not handle different types. 1640 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1641 // void foo (int *A, char *B) { 1642 // for (unsigned i = 0; i < 1024; i++) { 1643 // A[i+2] = A[i] + 1; 1644 // B[i+2] = B[i] + 1; 1645 // } 1646 // } 1647 // 1648 // This case is currently unsafe according to the max safe distance. If we 1649 // analyze the two accesses on array B, the max safe dependence distance 1650 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1651 // is 8, which is less than 2 and forbidden vectorization, But actually 1652 // both A and B could be vectorized by 2 iterations. 1653 MaxSafeDepDistBytes = 1654 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1655 1656 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1657 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1658 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1659 return Dependence::BackwardVectorizableButPreventsForwarding; 1660 1661 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1662 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1663 << " with max VF = " << MaxVF << '\n'); 1664 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1665 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 1666 return Dependence::BackwardVectorizable; 1667 } 1668 1669 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1670 MemAccessInfoList &CheckDeps, 1671 const ValueToValueMap &Strides) { 1672 1673 MaxSafeDepDistBytes = -1; 1674 SmallPtrSet<MemAccessInfo, 8> Visited; 1675 for (MemAccessInfo CurAccess : CheckDeps) { 1676 if (Visited.count(CurAccess)) 1677 continue; 1678 1679 // Get the relevant memory access set. 1680 EquivalenceClasses<MemAccessInfo>::iterator I = 1681 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1682 1683 // Check accesses within this set. 1684 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1685 AccessSets.member_begin(I); 1686 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1687 AccessSets.member_end(); 1688 1689 // Check every access pair. 1690 while (AI != AE) { 1691 Visited.insert(*AI); 1692 bool AIIsWrite = AI->getInt(); 1693 // Check loads only against next equivalent class, but stores also against 1694 // other stores in the same equivalence class - to the same address. 1695 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1696 (AIIsWrite ? AI : std::next(AI)); 1697 while (OI != AE) { 1698 // Check every accessing instruction pair in program order. 1699 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1700 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1701 // Scan all accesses of another equivalence class, but only the next 1702 // accesses of the same equivalent class. 1703 for (std::vector<unsigned>::iterator 1704 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 1705 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 1706 I2 != I2E; ++I2) { 1707 auto A = std::make_pair(&*AI, *I1); 1708 auto B = std::make_pair(&*OI, *I2); 1709 1710 assert(*I1 != *I2); 1711 if (*I1 > *I2) 1712 std::swap(A, B); 1713 1714 Dependence::DepType Type = 1715 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1716 mergeInStatus(Dependence::isSafeForVectorization(Type)); 1717 1718 // Gather dependences unless we accumulated MaxDependences 1719 // dependences. In that case return as soon as we find the first 1720 // unsafe dependence. This puts a limit on this quadratic 1721 // algorithm. 1722 if (RecordDependences) { 1723 if (Type != Dependence::NoDep) 1724 Dependences.push_back(Dependence(A.second, B.second, Type)); 1725 1726 if (Dependences.size() >= MaxDependences) { 1727 RecordDependences = false; 1728 Dependences.clear(); 1729 LLVM_DEBUG(dbgs() 1730 << "Too many dependences, stopped recording\n"); 1731 } 1732 } 1733 if (!RecordDependences && !isSafeForVectorization()) 1734 return false; 1735 } 1736 ++OI; 1737 } 1738 AI++; 1739 } 1740 } 1741 1742 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1743 return isSafeForVectorization(); 1744 } 1745 1746 SmallVector<Instruction *, 4> 1747 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1748 MemAccessInfo Access(Ptr, isWrite); 1749 auto &IndexVector = Accesses.find(Access)->second; 1750 1751 SmallVector<Instruction *, 4> Insts; 1752 transform(IndexVector, 1753 std::back_inserter(Insts), 1754 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1755 return Insts; 1756 } 1757 1758 const char *MemoryDepChecker::Dependence::DepName[] = { 1759 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1760 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1761 1762 void MemoryDepChecker::Dependence::print( 1763 raw_ostream &OS, unsigned Depth, 1764 const SmallVectorImpl<Instruction *> &Instrs) const { 1765 OS.indent(Depth) << DepName[Type] << ":\n"; 1766 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1767 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1768 } 1769 1770 bool LoopAccessInfo::canAnalyzeLoop() { 1771 // We need to have a loop header. 1772 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1773 << TheLoop->getHeader()->getParent()->getName() << ": " 1774 << TheLoop->getHeader()->getName() << '\n'); 1775 1776 // We can only analyze innermost loops. 1777 if (!TheLoop->isInnermost()) { 1778 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1779 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1780 return false; 1781 } 1782 1783 // We must have a single backedge. 1784 if (TheLoop->getNumBackEdges() != 1) { 1785 LLVM_DEBUG( 1786 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1787 recordAnalysis("CFGNotUnderstood") 1788 << "loop control flow is not understood by analyzer"; 1789 return false; 1790 } 1791 1792 // ScalarEvolution needs to be able to find the exit count. 1793 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1794 if (isa<SCEVCouldNotCompute>(ExitCount)) { 1795 recordAnalysis("CantComputeNumberOfIterations") 1796 << "could not determine number of loop iterations"; 1797 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1798 return false; 1799 } 1800 1801 return true; 1802 } 1803 1804 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 1805 const TargetLibraryInfo *TLI, 1806 DominatorTree *DT) { 1807 typedef SmallPtrSet<Value*, 16> ValueSet; 1808 1809 // Holds the Load and Store instructions. 1810 SmallVector<LoadInst *, 16> Loads; 1811 SmallVector<StoreInst *, 16> Stores; 1812 1813 // Holds all the different accesses in the loop. 1814 unsigned NumReads = 0; 1815 unsigned NumReadWrites = 0; 1816 1817 bool HasComplexMemInst = false; 1818 1819 // A runtime check is only legal to insert if there are no convergent calls. 1820 HasConvergentOp = false; 1821 1822 PtrRtChecking->Pointers.clear(); 1823 PtrRtChecking->Need = false; 1824 1825 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1826 1827 const bool EnableMemAccessVersioningOfLoop = 1828 EnableMemAccessVersioning && 1829 !TheLoop->getHeader()->getParent()->hasOptSize(); 1830 1831 // For each block. 1832 for (BasicBlock *BB : TheLoop->blocks()) { 1833 // Scan the BB and collect legal loads and stores. Also detect any 1834 // convergent instructions. 1835 for (Instruction &I : *BB) { 1836 if (auto *Call = dyn_cast<CallBase>(&I)) { 1837 if (Call->isConvergent()) 1838 HasConvergentOp = true; 1839 } 1840 1841 // With both a non-vectorizable memory instruction and a convergent 1842 // operation, found in this loop, no reason to continue the search. 1843 if (HasComplexMemInst && HasConvergentOp) { 1844 CanVecMem = false; 1845 return; 1846 } 1847 1848 // Avoid hitting recordAnalysis multiple times. 1849 if (HasComplexMemInst) 1850 continue; 1851 1852 // If this is a load, save it. If this instruction can read from memory 1853 // but is not a load, then we quit. Notice that we don't handle function 1854 // calls that read or write. 1855 if (I.mayReadFromMemory()) { 1856 // Many math library functions read the rounding mode. We will only 1857 // vectorize a loop if it contains known function calls that don't set 1858 // the flag. Therefore, it is safe to ignore this read from memory. 1859 auto *Call = dyn_cast<CallInst>(&I); 1860 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1861 continue; 1862 1863 // If the function has an explicit vectorized counterpart, we can safely 1864 // assume that it can be vectorized. 1865 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1866 !VFDatabase::getMappings(*Call).empty()) 1867 continue; 1868 1869 auto *Ld = dyn_cast<LoadInst>(&I); 1870 if (!Ld) { 1871 recordAnalysis("CantVectorizeInstruction", Ld) 1872 << "instruction cannot be vectorized"; 1873 HasComplexMemInst = true; 1874 continue; 1875 } 1876 if (!Ld->isSimple() && !IsAnnotatedParallel) { 1877 recordAnalysis("NonSimpleLoad", Ld) 1878 << "read with atomic ordering or volatile read"; 1879 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1880 HasComplexMemInst = true; 1881 continue; 1882 } 1883 NumLoads++; 1884 Loads.push_back(Ld); 1885 DepChecker->addAccess(Ld); 1886 if (EnableMemAccessVersioningOfLoop) 1887 collectStridedAccess(Ld); 1888 continue; 1889 } 1890 1891 // Save 'store' instructions. Abort if other instructions write to memory. 1892 if (I.mayWriteToMemory()) { 1893 auto *St = dyn_cast<StoreInst>(&I); 1894 if (!St) { 1895 recordAnalysis("CantVectorizeInstruction", St) 1896 << "instruction cannot be vectorized"; 1897 HasComplexMemInst = true; 1898 continue; 1899 } 1900 if (!St->isSimple() && !IsAnnotatedParallel) { 1901 recordAnalysis("NonSimpleStore", St) 1902 << "write with atomic ordering or volatile write"; 1903 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1904 HasComplexMemInst = true; 1905 continue; 1906 } 1907 NumStores++; 1908 Stores.push_back(St); 1909 DepChecker->addAccess(St); 1910 if (EnableMemAccessVersioningOfLoop) 1911 collectStridedAccess(St); 1912 } 1913 } // Next instr. 1914 } // Next block. 1915 1916 if (HasComplexMemInst) { 1917 CanVecMem = false; 1918 return; 1919 } 1920 1921 // Now we have two lists that hold the loads and the stores. 1922 // Next, we find the pointers that they use. 1923 1924 // Check if we see any stores. If there are no stores, then we don't 1925 // care if the pointers are *restrict*. 1926 if (!Stores.size()) { 1927 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1928 CanVecMem = true; 1929 return; 1930 } 1931 1932 MemoryDepChecker::DepCandidates DependentAccesses; 1933 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE); 1934 1935 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 1936 // multiple times on the same object. If the ptr is accessed twice, once 1937 // for read and once for write, it will only appear once (on the write 1938 // list). This is okay, since we are going to check for conflicts between 1939 // writes and between reads and writes, but not between reads and reads. 1940 ValueSet Seen; 1941 1942 // Record uniform store addresses to identify if we have multiple stores 1943 // to the same address. 1944 ValueSet UniformStores; 1945 1946 for (StoreInst *ST : Stores) { 1947 Value *Ptr = ST->getPointerOperand(); 1948 1949 if (isUniform(Ptr)) 1950 HasDependenceInvolvingLoopInvariantAddress |= 1951 !UniformStores.insert(Ptr).second; 1952 1953 // If we did *not* see this pointer before, insert it to the read-write 1954 // list. At this phase it is only a 'write' list. 1955 if (Seen.insert(Ptr).second) { 1956 ++NumReadWrites; 1957 1958 MemoryLocation Loc = MemoryLocation::get(ST); 1959 // The TBAA metadata could have a control dependency on the predication 1960 // condition, so we cannot rely on it when determining whether or not we 1961 // need runtime pointer checks. 1962 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1963 Loc.AATags.TBAA = nullptr; 1964 1965 Accesses.addStore(Loc); 1966 } 1967 } 1968 1969 if (IsAnnotatedParallel) { 1970 LLVM_DEBUG( 1971 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 1972 << "checks.\n"); 1973 CanVecMem = true; 1974 return; 1975 } 1976 1977 for (LoadInst *LD : Loads) { 1978 Value *Ptr = LD->getPointerOperand(); 1979 // If we did *not* see this pointer before, insert it to the 1980 // read list. If we *did* see it before, then it is already in 1981 // the read-write list. This allows us to vectorize expressions 1982 // such as A[i] += x; Because the address of A[i] is a read-write 1983 // pointer. This only works if the index of A[i] is consecutive. 1984 // If the address of i is unknown (for example A[B[i]]) then we may 1985 // read a few words, modify, and write a few words, and some of the 1986 // words may be written to the same address. 1987 bool IsReadOnlyPtr = false; 1988 if (Seen.insert(Ptr).second || 1989 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides)) { 1990 ++NumReads; 1991 IsReadOnlyPtr = true; 1992 } 1993 1994 // See if there is an unsafe dependency between a load to a uniform address and 1995 // store to the same uniform address. 1996 if (UniformStores.count(Ptr)) { 1997 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 1998 "load and uniform store to the same address!\n"); 1999 HasDependenceInvolvingLoopInvariantAddress = true; 2000 } 2001 2002 MemoryLocation Loc = MemoryLocation::get(LD); 2003 // The TBAA metadata could have a control dependency on the predication 2004 // condition, so we cannot rely on it when determining whether or not we 2005 // need runtime pointer checks. 2006 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2007 Loc.AATags.TBAA = nullptr; 2008 2009 Accesses.addLoad(Loc, IsReadOnlyPtr); 2010 } 2011 2012 // If we write (or read-write) to a single destination and there are no 2013 // other reads in this loop then is it safe to vectorize. 2014 if (NumReadWrites == 1 && NumReads == 0) { 2015 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2016 CanVecMem = true; 2017 return; 2018 } 2019 2020 // Build dependence sets and check whether we need a runtime pointer bounds 2021 // check. 2022 Accesses.buildDependenceSets(); 2023 2024 // Find pointers with computable bounds. We are going to use this information 2025 // to place a runtime bound check. 2026 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 2027 TheLoop, SymbolicStrides); 2028 if (!CanDoRTIfNeeded) { 2029 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 2030 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2031 << "the array bounds.\n"); 2032 CanVecMem = false; 2033 return; 2034 } 2035 2036 LLVM_DEBUG( 2037 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2038 2039 CanVecMem = true; 2040 if (Accesses.isDependencyCheckNeeded()) { 2041 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2042 CanVecMem = DepChecker->areDepsSafe( 2043 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2044 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2045 2046 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2047 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2048 2049 // Clear the dependency checks. We assume they are not needed. 2050 Accesses.resetDepChecks(*DepChecker); 2051 2052 PtrRtChecking->reset(); 2053 PtrRtChecking->Need = true; 2054 2055 auto *SE = PSE->getSE(); 2056 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 2057 SymbolicStrides, true); 2058 2059 // Check that we found the bounds for the pointer. 2060 if (!CanDoRTIfNeeded) { 2061 recordAnalysis("CantCheckMemDepsAtRunTime") 2062 << "cannot check memory dependencies at runtime"; 2063 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2064 CanVecMem = false; 2065 return; 2066 } 2067 2068 CanVecMem = true; 2069 } 2070 } 2071 2072 if (HasConvergentOp) { 2073 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2074 << "cannot add control dependency to convergent operation"; 2075 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2076 "would be needed with a convergent operation\n"); 2077 CanVecMem = false; 2078 return; 2079 } 2080 2081 if (CanVecMem) 2082 LLVM_DEBUG( 2083 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2084 << (PtrRtChecking->Need ? "" : " don't") 2085 << " need runtime memory checks.\n"); 2086 else { 2087 recordAnalysis("UnsafeMemDep") 2088 << "unsafe dependent memory operations in loop. Use " 2089 "#pragma loop distribute(enable) to allow loop distribution " 2090 "to attempt to isolate the offending operations into a separate " 2091 "loop"; 2092 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2093 } 2094 } 2095 2096 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2097 DominatorTree *DT) { 2098 assert(TheLoop->contains(BB) && "Unknown block used"); 2099 2100 // Blocks that do not dominate the latch need predication. 2101 BasicBlock* Latch = TheLoop->getLoopLatch(); 2102 return !DT->dominates(BB, Latch); 2103 } 2104 2105 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2106 Instruction *I) { 2107 assert(!Report && "Multiple reports generated"); 2108 2109 Value *CodeRegion = TheLoop->getHeader(); 2110 DebugLoc DL = TheLoop->getStartLoc(); 2111 2112 if (I) { 2113 CodeRegion = I->getParent(); 2114 // If there is no debug location attached to the instruction, revert back to 2115 // using the loop's. 2116 if (I->getDebugLoc()) 2117 DL = I->getDebugLoc(); 2118 } 2119 2120 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2121 CodeRegion); 2122 return *Report; 2123 } 2124 2125 bool LoopAccessInfo::isUniform(Value *V) const { 2126 auto *SE = PSE->getSE(); 2127 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2128 // never considered uniform. 2129 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2130 // trivially loop-invariant FP values to be considered uniform. 2131 if (!SE->isSCEVable(V->getType())) 2132 return false; 2133 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2134 } 2135 2136 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2137 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2138 if (!Ptr) 2139 return; 2140 2141 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2142 if (!Stride) 2143 return; 2144 2145 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2146 "versioning:"); 2147 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2148 2149 // Avoid adding the "Stride == 1" predicate when we know that 2150 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2151 // or zero iteration loop, as Trip-Count <= Stride == 1. 2152 // 2153 // TODO: We are currently not making a very informed decision on when it is 2154 // beneficial to apply stride versioning. It might make more sense that the 2155 // users of this analysis (such as the vectorizer) will trigger it, based on 2156 // their specific cost considerations; For example, in cases where stride 2157 // versioning does not help resolving memory accesses/dependences, the 2158 // vectorizer should evaluate the cost of the runtime test, and the benefit 2159 // of various possible stride specializations, considering the alternatives 2160 // of using gather/scatters (if available). 2161 2162 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2163 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2164 2165 // Match the types so we can compare the stride and the BETakenCount. 2166 // The Stride can be positive/negative, so we sign extend Stride; 2167 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2168 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2169 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); 2170 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); 2171 const SCEV *CastedStride = StrideExpr; 2172 const SCEV *CastedBECount = BETakenCount; 2173 ScalarEvolution *SE = PSE->getSE(); 2174 if (BETypeSize >= StrideTypeSize) 2175 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2176 else 2177 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2178 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2179 // Since TripCount == BackEdgeTakenCount + 1, checking: 2180 // "Stride >= TripCount" is equivalent to checking: 2181 // Stride - BETakenCount > 0 2182 if (SE->isKnownPositive(StrideMinusBETaken)) { 2183 LLVM_DEBUG( 2184 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2185 "Stride==1 predicate will imply that the loop executes " 2186 "at most once.\n"); 2187 return; 2188 } 2189 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); 2190 2191 SymbolicStrides[Ptr] = Stride; 2192 StrideSet.insert(Stride); 2193 } 2194 2195 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2196 const TargetLibraryInfo *TLI, AAResults *AA, 2197 DominatorTree *DT, LoopInfo *LI) 2198 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2199 PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)), 2200 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 2201 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 2202 HasConvergentOp(false), 2203 HasDependenceInvolvingLoopInvariantAddress(false) { 2204 if (canAnalyzeLoop()) 2205 analyzeLoop(AA, LI, TLI, DT); 2206 } 2207 2208 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2209 if (CanVecMem) { 2210 OS.indent(Depth) << "Memory dependences are safe"; 2211 if (MaxSafeDepDistBytes != -1ULL) 2212 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2213 << " bytes"; 2214 if (PtrRtChecking->Need) 2215 OS << " with run-time checks"; 2216 OS << "\n"; 2217 } 2218 2219 if (HasConvergentOp) 2220 OS.indent(Depth) << "Has convergent operation in loop\n"; 2221 2222 if (Report) 2223 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2224 2225 if (auto *Dependences = DepChecker->getDependences()) { 2226 OS.indent(Depth) << "Dependences:\n"; 2227 for (auto &Dep : *Dependences) { 2228 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2229 OS << "\n"; 2230 } 2231 } else 2232 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2233 2234 // List the pair of accesses need run-time checks to prove independence. 2235 PtrRtChecking->print(OS, Depth); 2236 OS << "\n"; 2237 2238 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2239 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2240 << "found in loop.\n"; 2241 2242 OS.indent(Depth) << "SCEV assumptions:\n"; 2243 PSE->getUnionPredicate().print(OS, Depth); 2244 2245 OS << "\n"; 2246 2247 OS.indent(Depth) << "Expressions re-written:\n"; 2248 PSE->print(OS, Depth); 2249 } 2250 2251 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2252 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2253 } 2254 2255 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2256 auto &LAI = LoopAccessInfoMap[L]; 2257 2258 if (!LAI) 2259 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2260 2261 return *LAI.get(); 2262 } 2263 2264 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2265 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2266 2267 for (Loop *TopLevelLoop : *LI) 2268 for (Loop *L : depth_first(TopLevelLoop)) { 2269 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2270 auto &LAI = LAA.getInfo(L); 2271 LAI.print(OS, 4); 2272 } 2273 } 2274 2275 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2276 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2277 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2278 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2279 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2280 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2281 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2282 2283 return false; 2284 } 2285 2286 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2287 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); 2288 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2289 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2290 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 2291 2292 AU.setPreservesAll(); 2293 } 2294 2295 char LoopAccessLegacyAnalysis::ID = 0; 2296 static const char laa_name[] = "Loop Access Analysis"; 2297 #define LAA_NAME "loop-accesses" 2298 2299 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2300 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2301 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2302 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2303 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2304 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2305 2306 AnalysisKey LoopAccessAnalysis::Key; 2307 2308 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2309 LoopStandardAnalysisResults &AR) { 2310 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2311 } 2312 2313 namespace llvm { 2314 2315 Pass *createLAAPass() { 2316 return new LoopAccessLegacyAnalysis(); 2317 } 2318 2319 } // end namespace llvm 2320