1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/ScalarEvolutionExpander.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/DiagnosticInfo.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Transforms/Utils/VectorUtils.h" 26 using namespace llvm; 27 28 #define DEBUG_TYPE "loop-accesses" 29 30 static cl::opt<unsigned, true> 31 VectorizationFactor("force-vector-width", cl::Hidden, 32 cl::desc("Sets the SIMD width. Zero is autoselect."), 33 cl::location(VectorizerParams::VectorizationFactor)); 34 unsigned VectorizerParams::VectorizationFactor; 35 36 static cl::opt<unsigned, true> 37 VectorizationInterleave("force-vector-interleave", cl::Hidden, 38 cl::desc("Sets the vectorization interleave count. " 39 "Zero is autoselect."), 40 cl::location( 41 VectorizerParams::VectorizationInterleave)); 42 unsigned VectorizerParams::VectorizationInterleave; 43 44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 45 "runtime-memory-check-threshold", cl::Hidden, 46 cl::desc("When performing memory disambiguation checks at runtime do not " 47 "generate more than this number of comparisons (default = 8)."), 48 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 50 51 /// Maximum SIMD width. 52 const unsigned VectorizerParams::MaxVectorWidth = 64; 53 54 /// \brief We collect interesting dependences up to this threshold. 55 static cl::opt<unsigned> MaxInterestingDependence( 56 "max-interesting-dependences", cl::Hidden, 57 cl::desc("Maximum number of interesting dependences collected by " 58 "loop-access analysis (default = 100)"), 59 cl::init(100)); 60 61 bool VectorizerParams::isInterleaveForced() { 62 return ::VectorizationInterleave.getNumOccurrences() > 0; 63 } 64 65 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 66 const Function *TheFunction, 67 const Loop *TheLoop, 68 const char *PassName) { 69 DebugLoc DL = TheLoop->getStartLoc(); 70 if (const Instruction *I = Message.getInstr()) 71 DL = I->getDebugLoc(); 72 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, 73 *TheFunction, DL, Message.str()); 74 } 75 76 Value *llvm::stripIntegerCast(Value *V) { 77 if (CastInst *CI = dyn_cast<CastInst>(V)) 78 if (CI->getOperand(0)->getType()->isIntegerTy()) 79 return CI->getOperand(0); 80 return V; 81 } 82 83 const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE, 84 const ValueToValueMap &PtrToStride, 85 Value *Ptr, Value *OrigPtr) { 86 87 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 88 89 // If there is an entry in the map return the SCEV of the pointer with the 90 // symbolic stride replaced by one. 91 ValueToValueMap::const_iterator SI = 92 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 93 if (SI != PtrToStride.end()) { 94 Value *StrideVal = SI->second; 95 96 // Strip casts. 97 StrideVal = stripIntegerCast(StrideVal); 98 99 // Replace symbolic stride by one. 100 Value *One = ConstantInt::get(StrideVal->getType(), 1); 101 ValueToValueMap RewriteMap; 102 RewriteMap[StrideVal] = One; 103 104 const SCEV *ByOne = 105 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 106 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 107 << "\n"); 108 return ByOne; 109 } 110 111 // Otherwise, just return the SCEV of the original pointer. 112 return SE->getSCEV(Ptr); 113 } 114 115 void LoopAccessInfo::RuntimePointerCheck::insert( 116 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 117 unsigned ASId, const ValueToValueMap &Strides) { 118 // Get the stride replaced scev. 119 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 120 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 121 assert(AR && "Invalid addrec expression"); 122 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 123 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 124 Pointers.push_back(Ptr); 125 Starts.push_back(AR->getStart()); 126 Ends.push_back(ScEnd); 127 IsWritePtr.push_back(WritePtr); 128 DependencySetId.push_back(DepSetId); 129 AliasSetId.push_back(ASId); 130 } 131 132 bool LoopAccessInfo::RuntimePointerCheck::needsChecking( 133 unsigned I, unsigned J, const SmallVectorImpl<int> *PtrPartition) const { 134 // No need to check if two readonly pointers intersect. 135 if (!IsWritePtr[I] && !IsWritePtr[J]) 136 return false; 137 138 // Only need to check pointers between two different dependency sets. 139 if (DependencySetId[I] == DependencySetId[J]) 140 return false; 141 142 // Only need to check pointers in the same alias set. 143 if (AliasSetId[I] != AliasSetId[J]) 144 return false; 145 146 // If PtrPartition is set omit checks between pointers of the same partition. 147 // Partition number -1 means that the pointer is used in multiple partitions. 148 // In this case we can't omit the check. 149 if (PtrPartition && (*PtrPartition)[I] != -1 && 150 (*PtrPartition)[I] == (*PtrPartition)[J]) 151 return false; 152 153 return true; 154 } 155 156 void LoopAccessInfo::RuntimePointerCheck::print( 157 raw_ostream &OS, unsigned Depth, 158 const SmallVectorImpl<int> *PtrPartition) const { 159 unsigned NumPointers = Pointers.size(); 160 if (NumPointers == 0) 161 return; 162 163 OS.indent(Depth) << "Run-time memory checks:\n"; 164 unsigned N = 0; 165 for (unsigned I = 0; I < NumPointers; ++I) 166 for (unsigned J = I + 1; J < NumPointers; ++J) 167 if (needsChecking(I, J, PtrPartition)) { 168 OS.indent(Depth) << N++ << ":\n"; 169 OS.indent(Depth + 2) << *Pointers[I]; 170 if (PtrPartition) 171 OS << " (Partition: " << (*PtrPartition)[I] << ")"; 172 OS << "\n"; 173 OS.indent(Depth + 2) << *Pointers[J]; 174 if (PtrPartition) 175 OS << " (Partition: " << (*PtrPartition)[J] << ")"; 176 OS << "\n"; 177 } 178 } 179 180 bool LoopAccessInfo::RuntimePointerCheck::needsAnyChecking( 181 const SmallVectorImpl<int> *PtrPartition) const { 182 unsigned NumPointers = Pointers.size(); 183 184 for (unsigned I = 0; I < NumPointers; ++I) 185 for (unsigned J = I + 1; J < NumPointers; ++J) 186 if (needsChecking(I, J, PtrPartition)) 187 return true; 188 return false; 189 } 190 191 namespace { 192 /// \brief Analyses memory accesses in a loop. 193 /// 194 /// Checks whether run time pointer checks are needed and builds sets for data 195 /// dependence checking. 196 class AccessAnalysis { 197 public: 198 /// \brief Read or write access location. 199 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 200 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 201 202 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 203 MemoryDepChecker::DepCandidates &DA) 204 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckNeeded(false) {} 205 206 /// \brief Register a load and whether it is only read from. 207 void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) { 208 Value *Ptr = const_cast<Value*>(Loc.Ptr); 209 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 210 Accesses.insert(MemAccessInfo(Ptr, false)); 211 if (IsReadOnly) 212 ReadOnlyPtr.insert(Ptr); 213 } 214 215 /// \brief Register a store. 216 void addStore(AliasAnalysis::Location &Loc) { 217 Value *Ptr = const_cast<Value*>(Loc.Ptr); 218 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 219 Accesses.insert(MemAccessInfo(Ptr, true)); 220 } 221 222 /// \brief Check whether we can check the pointers at runtime for 223 /// non-intersection. 224 bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck, 225 unsigned &NumComparisons, ScalarEvolution *SE, 226 Loop *TheLoop, const ValueToValueMap &Strides, 227 bool ShouldCheckStride = false); 228 229 /// \brief Goes over all memory accesses, checks whether a RT check is needed 230 /// and builds sets of dependent accesses. 231 void buildDependenceSets() { 232 processMemAccesses(); 233 } 234 235 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 236 237 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 238 239 /// We decided that no dependence analysis would be used. Reset the state. 240 void resetDepChecks(MemoryDepChecker &DepChecker) { 241 CheckDeps.clear(); 242 DepChecker.clearInterestingDependences(); 243 } 244 245 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 246 247 private: 248 typedef SetVector<MemAccessInfo> PtrAccessSet; 249 250 /// \brief Go over all memory access and check whether runtime pointer checks 251 /// are needed /// and build sets of dependency check candidates. 252 void processMemAccesses(); 253 254 /// Set of all accesses. 255 PtrAccessSet Accesses; 256 257 const DataLayout &DL; 258 259 /// Set of accesses that need a further dependence check. 260 MemAccessInfoSet CheckDeps; 261 262 /// Set of pointers that are read only. 263 SmallPtrSet<Value*, 16> ReadOnlyPtr; 264 265 /// An alias set tracker to partition the access set by underlying object and 266 //intrinsic property (such as TBAA metadata). 267 AliasSetTracker AST; 268 269 LoopInfo *LI; 270 271 /// Sets of potentially dependent accesses - members of one set share an 272 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 273 /// dependence check. 274 MemoryDepChecker::DepCandidates &DepCands; 275 276 bool IsRTCheckNeeded; 277 }; 278 279 } // end anonymous namespace 280 281 /// \brief Check whether a pointer can participate in a runtime bounds check. 282 static bool hasComputableBounds(ScalarEvolution *SE, 283 const ValueToValueMap &Strides, Value *Ptr) { 284 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 285 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 286 if (!AR) 287 return false; 288 289 return AR->isAffine(); 290 } 291 292 /// \brief Check the stride of the pointer and ensure that it does not wrap in 293 /// the address space. 294 static int isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp, 295 const ValueToValueMap &StridesMap); 296 297 bool AccessAnalysis::canCheckPtrAtRT( 298 LoopAccessInfo::RuntimePointerCheck &RtCheck, unsigned &NumComparisons, 299 ScalarEvolution *SE, Loop *TheLoop, const ValueToValueMap &StridesMap, 300 bool ShouldCheckStride) { 301 // Find pointers with computable bounds. We are going to use this information 302 // to place a runtime bound check. 303 bool CanDoRT = true; 304 305 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 306 NumComparisons = 0; 307 308 // We assign a consecutive id to access from different alias sets. 309 // Accesses between different groups doesn't need to be checked. 310 unsigned ASId = 1; 311 for (auto &AS : AST) { 312 unsigned NumReadPtrChecks = 0; 313 unsigned NumWritePtrChecks = 0; 314 315 // We assign consecutive id to access from different dependence sets. 316 // Accesses within the same set don't need a runtime check. 317 unsigned RunningDepId = 1; 318 DenseMap<Value *, unsigned> DepSetId; 319 320 for (auto A : AS) { 321 Value *Ptr = A.getValue(); 322 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 323 MemAccessInfo Access(Ptr, IsWrite); 324 325 if (IsWrite) 326 ++NumWritePtrChecks; 327 else 328 ++NumReadPtrChecks; 329 330 if (hasComputableBounds(SE, StridesMap, Ptr) && 331 // When we run after a failing dependency check we have to make sure 332 // we don't have wrapping pointers. 333 (!ShouldCheckStride || 334 isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) { 335 // The id of the dependence set. 336 unsigned DepId; 337 338 if (IsDepCheckNeeded) { 339 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 340 unsigned &LeaderId = DepSetId[Leader]; 341 if (!LeaderId) 342 LeaderId = RunningDepId++; 343 DepId = LeaderId; 344 } else 345 // Each access has its own dependence set. 346 DepId = RunningDepId++; 347 348 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 349 350 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 351 } else { 352 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 353 CanDoRT = false; 354 } 355 } 356 357 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 358 NumComparisons += 0; // Only one dependence set. 359 else { 360 NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks + 361 NumWritePtrChecks - 1)); 362 } 363 364 ++ASId; 365 } 366 367 // If the pointers that we would use for the bounds comparison have different 368 // address spaces, assume the values aren't directly comparable, so we can't 369 // use them for the runtime check. We also have to assume they could 370 // overlap. In the future there should be metadata for whether address spaces 371 // are disjoint. 372 unsigned NumPointers = RtCheck.Pointers.size(); 373 for (unsigned i = 0; i < NumPointers; ++i) { 374 for (unsigned j = i + 1; j < NumPointers; ++j) { 375 // Only need to check pointers between two different dependency sets. 376 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 377 continue; 378 // Only need to check pointers in the same alias set. 379 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) 380 continue; 381 382 Value *PtrI = RtCheck.Pointers[i]; 383 Value *PtrJ = RtCheck.Pointers[j]; 384 385 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 386 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 387 if (ASi != ASj) { 388 DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 389 " different address spaces\n"); 390 return false; 391 } 392 } 393 } 394 395 return CanDoRT; 396 } 397 398 void AccessAnalysis::processMemAccesses() { 399 // We process the set twice: first we process read-write pointers, last we 400 // process read-only pointers. This allows us to skip dependence tests for 401 // read-only pointers. 402 403 DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 404 DEBUG(dbgs() << " AST: "; AST.dump()); 405 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 406 DEBUG({ 407 for (auto A : Accesses) 408 dbgs() << "\t" << *A.getPointer() << " (" << 409 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 410 "read-only" : "read")) << ")\n"; 411 }); 412 413 // The AliasSetTracker has nicely partitioned our pointers by metadata 414 // compatibility and potential for underlying-object overlap. As a result, we 415 // only need to check for potential pointer dependencies within each alias 416 // set. 417 for (auto &AS : AST) { 418 // Note that both the alias-set tracker and the alias sets themselves used 419 // linked lists internally and so the iteration order here is deterministic 420 // (matching the original instruction order within each set). 421 422 bool SetHasWrite = false; 423 424 // Map of pointers to last access encountered. 425 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 426 UnderlyingObjToAccessMap ObjToLastAccess; 427 428 // Set of access to check after all writes have been processed. 429 PtrAccessSet DeferredAccesses; 430 431 // Iterate over each alias set twice, once to process read/write pointers, 432 // and then to process read-only pointers. 433 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 434 bool UseDeferred = SetIteration > 0; 435 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 436 437 for (auto AV : AS) { 438 Value *Ptr = AV.getValue(); 439 440 // For a single memory access in AliasSetTracker, Accesses may contain 441 // both read and write, and they both need to be handled for CheckDeps. 442 for (auto AC : S) { 443 if (AC.getPointer() != Ptr) 444 continue; 445 446 bool IsWrite = AC.getInt(); 447 448 // If we're using the deferred access set, then it contains only 449 // reads. 450 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 451 if (UseDeferred && !IsReadOnlyPtr) 452 continue; 453 // Otherwise, the pointer must be in the PtrAccessSet, either as a 454 // read or a write. 455 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 456 S.count(MemAccessInfo(Ptr, false))) && 457 "Alias-set pointer not in the access set?"); 458 459 MemAccessInfo Access(Ptr, IsWrite); 460 DepCands.insert(Access); 461 462 // Memorize read-only pointers for later processing and skip them in 463 // the first round (they need to be checked after we have seen all 464 // write pointers). Note: we also mark pointer that are not 465 // consecutive as "read-only" pointers (so that we check 466 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 467 if (!UseDeferred && IsReadOnlyPtr) { 468 DeferredAccesses.insert(Access); 469 continue; 470 } 471 472 // If this is a write - check other reads and writes for conflicts. If 473 // this is a read only check other writes for conflicts (but only if 474 // there is no other write to the ptr - this is an optimization to 475 // catch "a[i] = a[i] + " without having to do a dependence check). 476 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 477 CheckDeps.insert(Access); 478 IsRTCheckNeeded = true; 479 } 480 481 if (IsWrite) 482 SetHasWrite = true; 483 484 // Create sets of pointers connected by a shared alias set and 485 // underlying object. 486 typedef SmallVector<Value *, 16> ValueVector; 487 ValueVector TempObjects; 488 489 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 490 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 491 for (Value *UnderlyingObj : TempObjects) { 492 UnderlyingObjToAccessMap::iterator Prev = 493 ObjToLastAccess.find(UnderlyingObj); 494 if (Prev != ObjToLastAccess.end()) 495 DepCands.unionSets(Access, Prev->second); 496 497 ObjToLastAccess[UnderlyingObj] = Access; 498 DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 499 } 500 } 501 } 502 } 503 } 504 } 505 506 static bool isInBoundsGep(Value *Ptr) { 507 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 508 return GEP->isInBounds(); 509 return false; 510 } 511 512 /// \brief Check whether the access through \p Ptr has a constant stride. 513 static int isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp, 514 const ValueToValueMap &StridesMap) { 515 const Type *Ty = Ptr->getType(); 516 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 517 518 // Make sure that the pointer does not point to aggregate types. 519 const PointerType *PtrTy = cast<PointerType>(Ty); 520 if (PtrTy->getElementType()->isAggregateType()) { 521 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 522 << *Ptr << "\n"); 523 return 0; 524 } 525 526 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 527 528 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 529 if (!AR) { 530 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " 531 << *Ptr << " SCEV: " << *PtrScev << "\n"); 532 return 0; 533 } 534 535 // The accesss function must stride over the innermost loop. 536 if (Lp != AR->getLoop()) { 537 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 538 *Ptr << " SCEV: " << *PtrScev << "\n"); 539 } 540 541 // The address calculation must not wrap. Otherwise, a dependence could be 542 // inverted. 543 // An inbounds getelementptr that is a AddRec with a unit stride 544 // cannot wrap per definition. The unit stride requirement is checked later. 545 // An getelementptr without an inbounds attribute and unit stride would have 546 // to access the pointer value "0" which is undefined behavior in address 547 // space 0, therefore we can also vectorize this case. 548 bool IsInBoundsGEP = isInBoundsGep(Ptr); 549 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 550 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 551 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 552 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 553 << *Ptr << " SCEV: " << *PtrScev << "\n"); 554 return 0; 555 } 556 557 // Check the step is constant. 558 const SCEV *Step = AR->getStepRecurrence(*SE); 559 560 // Calculate the pointer stride and check if it is consecutive. 561 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 562 if (!C) { 563 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 564 " SCEV: " << *PtrScev << "\n"); 565 return 0; 566 } 567 568 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 569 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 570 const APInt &APStepVal = C->getValue()->getValue(); 571 572 // Huge step value - give up. 573 if (APStepVal.getBitWidth() > 64) 574 return 0; 575 576 int64_t StepVal = APStepVal.getSExtValue(); 577 578 // Strided access. 579 int64_t Stride = StepVal / Size; 580 int64_t Rem = StepVal % Size; 581 if (Rem) 582 return 0; 583 584 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 585 // know we can't "wrap around the address space". In case of address space 586 // zero we know that this won't happen without triggering undefined behavior. 587 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 588 Stride != 1 && Stride != -1) 589 return 0; 590 591 return Stride; 592 } 593 594 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 595 switch (Type) { 596 case NoDep: 597 case Forward: 598 case BackwardVectorizable: 599 return true; 600 601 case Unknown: 602 case ForwardButPreventsForwarding: 603 case Backward: 604 case BackwardVectorizableButPreventsForwarding: 605 return false; 606 } 607 llvm_unreachable("unexpected DepType!"); 608 } 609 610 bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) { 611 switch (Type) { 612 case NoDep: 613 case Forward: 614 return false; 615 616 case BackwardVectorizable: 617 case Unknown: 618 case ForwardButPreventsForwarding: 619 case Backward: 620 case BackwardVectorizableButPreventsForwarding: 621 return true; 622 } 623 llvm_unreachable("unexpected DepType!"); 624 } 625 626 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 627 switch (Type) { 628 case NoDep: 629 case Forward: 630 case ForwardButPreventsForwarding: 631 return false; 632 633 case Unknown: 634 case BackwardVectorizable: 635 case Backward: 636 case BackwardVectorizableButPreventsForwarding: 637 return true; 638 } 639 llvm_unreachable("unexpected DepType!"); 640 } 641 642 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 643 unsigned TypeByteSize) { 644 // If loads occur at a distance that is not a multiple of a feasible vector 645 // factor store-load forwarding does not take place. 646 // Positive dependences might cause troubles because vectorizing them might 647 // prevent store-load forwarding making vectorized code run a lot slower. 648 // a[i] = a[i-3] ^ a[i-8]; 649 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 650 // hence on your typical architecture store-load forwarding does not take 651 // place. Vectorizing in such cases does not make sense. 652 // Store-load forwarding distance. 653 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 654 // Maximum vector factor. 655 unsigned MaxVFWithoutSLForwardIssues = 656 VectorizerParams::MaxVectorWidth * TypeByteSize; 657 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 658 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 659 660 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 661 vf *= 2) { 662 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 663 MaxVFWithoutSLForwardIssues = (vf >>=1); 664 break; 665 } 666 } 667 668 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 669 DEBUG(dbgs() << "LAA: Distance " << Distance << 670 " that could cause a store-load forwarding conflict\n"); 671 return true; 672 } 673 674 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 675 MaxVFWithoutSLForwardIssues != 676 VectorizerParams::MaxVectorWidth * TypeByteSize) 677 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 678 return false; 679 } 680 681 MemoryDepChecker::Dependence::DepType 682 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 683 const MemAccessInfo &B, unsigned BIdx, 684 const ValueToValueMap &Strides) { 685 assert (AIdx < BIdx && "Must pass arguments in program order"); 686 687 Value *APtr = A.getPointer(); 688 Value *BPtr = B.getPointer(); 689 bool AIsWrite = A.getInt(); 690 bool BIsWrite = B.getInt(); 691 692 // Two reads are independent. 693 if (!AIsWrite && !BIsWrite) 694 return Dependence::NoDep; 695 696 // We cannot check pointers in different address spaces. 697 if (APtr->getType()->getPointerAddressSpace() != 698 BPtr->getType()->getPointerAddressSpace()) 699 return Dependence::Unknown; 700 701 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 702 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 703 704 int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides); 705 int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides); 706 707 const SCEV *Src = AScev; 708 const SCEV *Sink = BScev; 709 710 // If the induction step is negative we have to invert source and sink of the 711 // dependence. 712 if (StrideAPtr < 0) { 713 //Src = BScev; 714 //Sink = AScev; 715 std::swap(APtr, BPtr); 716 std::swap(Src, Sink); 717 std::swap(AIsWrite, BIsWrite); 718 std::swap(AIdx, BIdx); 719 std::swap(StrideAPtr, StrideBPtr); 720 } 721 722 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 723 724 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 725 << "(Induction step: " << StrideAPtr << ")\n"); 726 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 727 << *InstMap[BIdx] << ": " << *Dist << "\n"); 728 729 // Need consecutive accesses. We don't want to vectorize 730 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 731 // the address space. 732 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 733 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 734 return Dependence::Unknown; 735 } 736 737 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 738 if (!C) { 739 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 740 ShouldRetryWithRuntimeCheck = true; 741 return Dependence::Unknown; 742 } 743 744 Type *ATy = APtr->getType()->getPointerElementType(); 745 Type *BTy = BPtr->getType()->getPointerElementType(); 746 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 747 unsigned TypeByteSize = DL.getTypeAllocSize(ATy); 748 749 // Negative distances are not plausible dependencies. 750 const APInt &Val = C->getValue()->getValue(); 751 if (Val.isNegative()) { 752 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 753 if (IsTrueDataDependence && 754 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 755 ATy != BTy)) 756 return Dependence::ForwardButPreventsForwarding; 757 758 DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n"); 759 return Dependence::Forward; 760 } 761 762 // Write to the same location with the same size. 763 // Could be improved to assert type sizes are the same (i32 == float, etc). 764 if (Val == 0) { 765 if (ATy == BTy) 766 return Dependence::NoDep; 767 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 768 return Dependence::Unknown; 769 } 770 771 assert(Val.isStrictlyPositive() && "Expect a positive value"); 772 773 if (ATy != BTy) { 774 DEBUG(dbgs() << 775 "LAA: ReadWrite-Write positive dependency with different types\n"); 776 return Dependence::Unknown; 777 } 778 779 unsigned Distance = (unsigned) Val.getZExtValue(); 780 781 // Bail out early if passed-in parameters make vectorization not feasible. 782 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 783 VectorizerParams::VectorizationFactor : 1); 784 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 785 VectorizerParams::VectorizationInterleave : 1); 786 787 // The distance must be bigger than the size needed for a vectorized version 788 // of the operation and the size of the vectorized operation must not be 789 // bigger than the currrent maximum size. 790 if (Distance < 2*TypeByteSize || 791 2*TypeByteSize > MaxSafeDepDistBytes || 792 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 793 DEBUG(dbgs() << "LAA: Failure because of Positive distance " 794 << Val.getSExtValue() << '\n'); 795 return Dependence::Backward; 796 } 797 798 // Positive distance bigger than max vectorization factor. 799 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 800 Distance : MaxSafeDepDistBytes; 801 802 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 803 if (IsTrueDataDependence && 804 couldPreventStoreLoadForward(Distance, TypeByteSize)) 805 return Dependence::BackwardVectorizableButPreventsForwarding; 806 807 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() << 808 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 809 810 return Dependence::BackwardVectorizable; 811 } 812 813 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 814 MemAccessInfoSet &CheckDeps, 815 const ValueToValueMap &Strides) { 816 817 MaxSafeDepDistBytes = -1U; 818 while (!CheckDeps.empty()) { 819 MemAccessInfo CurAccess = *CheckDeps.begin(); 820 821 // Get the relevant memory access set. 822 EquivalenceClasses<MemAccessInfo>::iterator I = 823 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 824 825 // Check accesses within this set. 826 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 827 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 828 829 // Check every access pair. 830 while (AI != AE) { 831 CheckDeps.erase(*AI); 832 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 833 while (OI != AE) { 834 // Check every accessing instruction pair in program order. 835 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 836 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 837 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 838 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 839 auto A = std::make_pair(&*AI, *I1); 840 auto B = std::make_pair(&*OI, *I2); 841 842 assert(*I1 != *I2); 843 if (*I1 > *I2) 844 std::swap(A, B); 845 846 Dependence::DepType Type = 847 isDependent(*A.first, A.second, *B.first, B.second, Strides); 848 SafeForVectorization &= Dependence::isSafeForVectorization(Type); 849 850 // Gather dependences unless we accumulated MaxInterestingDependence 851 // dependences. In that case return as soon as we find the first 852 // unsafe dependence. This puts a limit on this quadratic 853 // algorithm. 854 if (RecordInterestingDependences) { 855 if (Dependence::isInterestingDependence(Type)) 856 InterestingDependences.push_back( 857 Dependence(A.second, B.second, Type)); 858 859 if (InterestingDependences.size() >= MaxInterestingDependence) { 860 RecordInterestingDependences = false; 861 InterestingDependences.clear(); 862 DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 863 } 864 } 865 if (!RecordInterestingDependences && !SafeForVectorization) 866 return false; 867 } 868 ++OI; 869 } 870 AI++; 871 } 872 } 873 874 DEBUG(dbgs() << "Total Interesting Dependences: " 875 << InterestingDependences.size() << "\n"); 876 return SafeForVectorization; 877 } 878 879 SmallVector<Instruction *, 4> 880 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 881 MemAccessInfo Access(Ptr, isWrite); 882 auto &IndexVector = Accesses.find(Access)->second; 883 884 SmallVector<Instruction *, 4> Insts; 885 std::transform(IndexVector.begin(), IndexVector.end(), 886 std::back_inserter(Insts), 887 [&](unsigned Idx) { return this->InstMap[Idx]; }); 888 return Insts; 889 } 890 891 const char *MemoryDepChecker::Dependence::DepName[] = { 892 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 893 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 894 895 void MemoryDepChecker::Dependence::print( 896 raw_ostream &OS, unsigned Depth, 897 const SmallVectorImpl<Instruction *> &Instrs) const { 898 OS.indent(Depth) << DepName[Type] << ":\n"; 899 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 900 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 901 } 902 903 bool LoopAccessInfo::canAnalyzeLoop() { 904 // We need to have a loop header. 905 DEBUG(dbgs() << "LAA: Found a loop: " << 906 TheLoop->getHeader()->getName() << '\n'); 907 908 // We can only analyze innermost loops. 909 if (!TheLoop->empty()) { 910 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 911 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); 912 return false; 913 } 914 915 // We must have a single backedge. 916 if (TheLoop->getNumBackEdges() != 1) { 917 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 918 emitAnalysis( 919 LoopAccessReport() << 920 "loop control flow is not understood by analyzer"); 921 return false; 922 } 923 924 // We must have a single exiting block. 925 if (!TheLoop->getExitingBlock()) { 926 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 927 emitAnalysis( 928 LoopAccessReport() << 929 "loop control flow is not understood by analyzer"); 930 return false; 931 } 932 933 // We only handle bottom-tested loops, i.e. loop in which the condition is 934 // checked at the end of each iteration. With that we can assume that all 935 // instructions in the loop are executed the same number of times. 936 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 937 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 938 emitAnalysis( 939 LoopAccessReport() << 940 "loop control flow is not understood by analyzer"); 941 return false; 942 } 943 944 // ScalarEvolution needs to be able to find the exit count. 945 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 946 if (ExitCount == SE->getCouldNotCompute()) { 947 emitAnalysis(LoopAccessReport() << 948 "could not determine number of loop iterations"); 949 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 950 return false; 951 } 952 953 return true; 954 } 955 956 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) { 957 958 typedef SmallVector<Value*, 16> ValueVector; 959 typedef SmallPtrSet<Value*, 16> ValueSet; 960 961 // Holds the Load and Store *instructions*. 962 ValueVector Loads; 963 ValueVector Stores; 964 965 // Holds all the different accesses in the loop. 966 unsigned NumReads = 0; 967 unsigned NumReadWrites = 0; 968 969 PtrRtCheck.Pointers.clear(); 970 PtrRtCheck.Need = false; 971 972 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 973 974 // For each block. 975 for (Loop::block_iterator bb = TheLoop->block_begin(), 976 be = TheLoop->block_end(); bb != be; ++bb) { 977 978 // Scan the BB and collect legal loads and stores. 979 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 980 ++it) { 981 982 // If this is a load, save it. If this instruction can read from memory 983 // but is not a load, then we quit. Notice that we don't handle function 984 // calls that read or write. 985 if (it->mayReadFromMemory()) { 986 // Many math library functions read the rounding mode. We will only 987 // vectorize a loop if it contains known function calls that don't set 988 // the flag. Therefore, it is safe to ignore this read from memory. 989 CallInst *Call = dyn_cast<CallInst>(it); 990 if (Call && getIntrinsicIDForCall(Call, TLI)) 991 continue; 992 993 // If the function has an explicit vectorized counterpart, we can safely 994 // assume that it can be vectorized. 995 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 996 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 997 continue; 998 999 LoadInst *Ld = dyn_cast<LoadInst>(it); 1000 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1001 emitAnalysis(LoopAccessReport(Ld) 1002 << "read with atomic ordering or volatile read"); 1003 DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1004 CanVecMem = false; 1005 return; 1006 } 1007 NumLoads++; 1008 Loads.push_back(Ld); 1009 DepChecker.addAccess(Ld); 1010 continue; 1011 } 1012 1013 // Save 'store' instructions. Abort if other instructions write to memory. 1014 if (it->mayWriteToMemory()) { 1015 StoreInst *St = dyn_cast<StoreInst>(it); 1016 if (!St) { 1017 emitAnalysis(LoopAccessReport(it) << 1018 "instruction cannot be vectorized"); 1019 CanVecMem = false; 1020 return; 1021 } 1022 if (!St->isSimple() && !IsAnnotatedParallel) { 1023 emitAnalysis(LoopAccessReport(St) 1024 << "write with atomic ordering or volatile write"); 1025 DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1026 CanVecMem = false; 1027 return; 1028 } 1029 NumStores++; 1030 Stores.push_back(St); 1031 DepChecker.addAccess(St); 1032 } 1033 } // Next instr. 1034 } // Next block. 1035 1036 // Now we have two lists that hold the loads and the stores. 1037 // Next, we find the pointers that they use. 1038 1039 // Check if we see any stores. If there are no stores, then we don't 1040 // care if the pointers are *restrict*. 1041 if (!Stores.size()) { 1042 DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1043 CanVecMem = true; 1044 return; 1045 } 1046 1047 MemoryDepChecker::DepCandidates DependentAccesses; 1048 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1049 AA, LI, DependentAccesses); 1050 1051 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1052 // multiple times on the same object. If the ptr is accessed twice, once 1053 // for read and once for write, it will only appear once (on the write 1054 // list). This is okay, since we are going to check for conflicts between 1055 // writes and between reads and writes, but not between reads and reads. 1056 ValueSet Seen; 1057 1058 ValueVector::iterator I, IE; 1059 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 1060 StoreInst *ST = cast<StoreInst>(*I); 1061 Value* Ptr = ST->getPointerOperand(); 1062 // Check for store to loop invariant address. 1063 StoreToLoopInvariantAddress |= isUniform(Ptr); 1064 // If we did *not* see this pointer before, insert it to the read-write 1065 // list. At this phase it is only a 'write' list. 1066 if (Seen.insert(Ptr).second) { 1067 ++NumReadWrites; 1068 1069 AliasAnalysis::Location Loc = AA->getLocation(ST); 1070 // The TBAA metadata could have a control dependency on the predication 1071 // condition, so we cannot rely on it when determining whether or not we 1072 // need runtime pointer checks. 1073 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1074 Loc.AATags.TBAA = nullptr; 1075 1076 Accesses.addStore(Loc); 1077 } 1078 } 1079 1080 if (IsAnnotatedParallel) { 1081 DEBUG(dbgs() 1082 << "LAA: A loop annotated parallel, ignore memory dependency " 1083 << "checks.\n"); 1084 CanVecMem = true; 1085 return; 1086 } 1087 1088 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 1089 LoadInst *LD = cast<LoadInst>(*I); 1090 Value* Ptr = LD->getPointerOperand(); 1091 // If we did *not* see this pointer before, insert it to the 1092 // read list. If we *did* see it before, then it is already in 1093 // the read-write list. This allows us to vectorize expressions 1094 // such as A[i] += x; Because the address of A[i] is a read-write 1095 // pointer. This only works if the index of A[i] is consecutive. 1096 // If the address of i is unknown (for example A[B[i]]) then we may 1097 // read a few words, modify, and write a few words, and some of the 1098 // words may be written to the same address. 1099 bool IsReadOnlyPtr = false; 1100 if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) { 1101 ++NumReads; 1102 IsReadOnlyPtr = true; 1103 } 1104 1105 AliasAnalysis::Location Loc = AA->getLocation(LD); 1106 // The TBAA metadata could have a control dependency on the predication 1107 // condition, so we cannot rely on it when determining whether or not we 1108 // need runtime pointer checks. 1109 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1110 Loc.AATags.TBAA = nullptr; 1111 1112 Accesses.addLoad(Loc, IsReadOnlyPtr); 1113 } 1114 1115 // If we write (or read-write) to a single destination and there are no 1116 // other reads in this loop then is it safe to vectorize. 1117 if (NumReadWrites == 1 && NumReads == 0) { 1118 DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1119 CanVecMem = true; 1120 return; 1121 } 1122 1123 // Build dependence sets and check whether we need a runtime pointer bounds 1124 // check. 1125 Accesses.buildDependenceSets(); 1126 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 1127 1128 // Find pointers with computable bounds. We are going to use this information 1129 // to place a runtime bound check. 1130 bool CanDoRT = false; 1131 if (NeedRTCheck) 1132 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 1133 Strides); 1134 1135 DEBUG(dbgs() << "LAA: We need to do " << NumComparisons << 1136 " pointer comparisons.\n"); 1137 1138 // If we only have one set of dependences to check pointers among we don't 1139 // need a runtime check. 1140 if (NumComparisons == 0 && NeedRTCheck) 1141 NeedRTCheck = false; 1142 1143 // Check that we found the bounds for the pointer. 1144 if (CanDoRT) 1145 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 1146 else if (NeedRTCheck) { 1147 emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); 1148 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " << 1149 "the array bounds.\n"); 1150 PtrRtCheck.reset(); 1151 CanVecMem = false; 1152 return; 1153 } 1154 1155 PtrRtCheck.Need = NeedRTCheck; 1156 1157 CanVecMem = true; 1158 if (Accesses.isDependencyCheckNeeded()) { 1159 DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1160 CanVecMem = DepChecker.areDepsSafe( 1161 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 1162 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 1163 1164 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 1165 DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 1166 NeedRTCheck = true; 1167 1168 // Clear the dependency checks. We assume they are not needed. 1169 Accesses.resetDepChecks(DepChecker); 1170 1171 PtrRtCheck.reset(); 1172 PtrRtCheck.Need = true; 1173 1174 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 1175 TheLoop, Strides, true); 1176 // Check that we found the bounds for the pointer. 1177 if (!CanDoRT && NumComparisons > 0) { 1178 emitAnalysis(LoopAccessReport() 1179 << "cannot check memory dependencies at runtime"); 1180 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1181 PtrRtCheck.reset(); 1182 CanVecMem = false; 1183 return; 1184 } 1185 1186 CanVecMem = true; 1187 } 1188 } 1189 1190 if (CanVecMem) 1191 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1192 << (NeedRTCheck ? "" : " don't") 1193 << " need a runtime memory check.\n"); 1194 else { 1195 emitAnalysis(LoopAccessReport() << 1196 "unsafe dependent memory operations in loop"); 1197 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 1198 } 1199 } 1200 1201 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 1202 DominatorTree *DT) { 1203 assert(TheLoop->contains(BB) && "Unknown block used"); 1204 1205 // Blocks that do not dominate the latch need predication. 1206 BasicBlock* Latch = TheLoop->getLoopLatch(); 1207 return !DT->dominates(BB, Latch); 1208 } 1209 1210 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { 1211 assert(!Report && "Multiple reports generated"); 1212 Report = Message; 1213 } 1214 1215 bool LoopAccessInfo::isUniform(Value *V) const { 1216 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1217 } 1218 1219 // FIXME: this function is currently a duplicate of the one in 1220 // LoopVectorize.cpp. 1221 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1222 Instruction *Loc) { 1223 if (FirstInst) 1224 return FirstInst; 1225 if (Instruction *I = dyn_cast<Instruction>(V)) 1226 return I->getParent() == Loc->getParent() ? I : nullptr; 1227 return nullptr; 1228 } 1229 1230 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck( 1231 Instruction *Loc, const SmallVectorImpl<int> *PtrPartition) const { 1232 if (!PtrRtCheck.Need) 1233 return std::make_pair(nullptr, nullptr); 1234 1235 unsigned NumPointers = PtrRtCheck.Pointers.size(); 1236 SmallVector<TrackingVH<Value> , 2> Starts; 1237 SmallVector<TrackingVH<Value> , 2> Ends; 1238 1239 LLVMContext &Ctx = Loc->getContext(); 1240 SCEVExpander Exp(*SE, DL, "induction"); 1241 Instruction *FirstInst = nullptr; 1242 1243 for (unsigned i = 0; i < NumPointers; ++i) { 1244 Value *Ptr = PtrRtCheck.Pointers[i]; 1245 const SCEV *Sc = SE->getSCEV(Ptr); 1246 1247 if (SE->isLoopInvariant(Sc, TheLoop)) { 1248 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << 1249 *Ptr <<"\n"); 1250 Starts.push_back(Ptr); 1251 Ends.push_back(Ptr); 1252 } else { 1253 DEBUG(dbgs() << "LAA: Adding RT check for range:" << *Ptr << '\n'); 1254 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1255 1256 // Use this type for pointer arithmetic. 1257 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1258 1259 Value *Start = Exp.expandCodeFor(PtrRtCheck.Starts[i], PtrArithTy, Loc); 1260 Value *End = Exp.expandCodeFor(PtrRtCheck.Ends[i], PtrArithTy, Loc); 1261 Starts.push_back(Start); 1262 Ends.push_back(End); 1263 } 1264 } 1265 1266 IRBuilder<> ChkBuilder(Loc); 1267 // Our instructions might fold to a constant. 1268 Value *MemoryRuntimeCheck = nullptr; 1269 for (unsigned i = 0; i < NumPointers; ++i) { 1270 for (unsigned j = i+1; j < NumPointers; ++j) { 1271 if (!PtrRtCheck.needsChecking(i, j, PtrPartition)) 1272 continue; 1273 1274 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 1275 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 1276 1277 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 1278 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 1279 "Trying to bounds check pointers with different address spaces"); 1280 1281 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1282 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1283 1284 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 1285 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 1286 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 1287 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 1288 1289 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1290 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1291 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1292 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1293 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1294 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1295 if (MemoryRuntimeCheck) { 1296 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 1297 "conflict.rdx"); 1298 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1299 } 1300 MemoryRuntimeCheck = IsConflict; 1301 } 1302 } 1303 1304 if (!MemoryRuntimeCheck) 1305 return std::make_pair(nullptr, nullptr); 1306 1307 // We have to do this trickery because the IRBuilder might fold the check to a 1308 // constant expression in which case there is no Instruction anchored in a 1309 // the block. 1310 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1311 ConstantInt::getTrue(Ctx)); 1312 ChkBuilder.Insert(Check, "memcheck.conflict"); 1313 FirstInst = getFirstInst(FirstInst, Check, Loc); 1314 return std::make_pair(FirstInst, Check); 1315 } 1316 1317 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 1318 const DataLayout &DL, 1319 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1320 DominatorTree *DT, LoopInfo *LI, 1321 const ValueToValueMap &Strides) 1322 : DepChecker(SE, L), NumComparisons(0), TheLoop(L), SE(SE), DL(DL), 1323 TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0), 1324 MaxSafeDepDistBytes(-1U), CanVecMem(false), 1325 StoreToLoopInvariantAddress(false) { 1326 if (canAnalyzeLoop()) 1327 analyzeLoop(Strides); 1328 } 1329 1330 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1331 if (CanVecMem) { 1332 if (PtrRtCheck.Need) 1333 OS.indent(Depth) << "Memory dependences are safe with run-time checks\n"; 1334 else 1335 OS.indent(Depth) << "Memory dependences are safe\n"; 1336 } 1337 1338 if (Report) 1339 OS.indent(Depth) << "Report: " << Report->str() << "\n"; 1340 1341 if (auto *InterestingDependences = DepChecker.getInterestingDependences()) { 1342 OS.indent(Depth) << "Interesting Dependences:\n"; 1343 for (auto &Dep : *InterestingDependences) { 1344 Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions()); 1345 OS << "\n"; 1346 } 1347 } else 1348 OS.indent(Depth) << "Too many interesting dependences, not recorded\n"; 1349 1350 // List the pair of accesses need run-time checks to prove independence. 1351 PtrRtCheck.print(OS, Depth); 1352 OS << "\n"; 1353 1354 OS.indent(Depth) << "Store to invariant address was " 1355 << (StoreToLoopInvariantAddress ? "" : "not ") 1356 << "found in loop.\n"; 1357 } 1358 1359 const LoopAccessInfo & 1360 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) { 1361 auto &LAI = LoopAccessInfoMap[L]; 1362 1363 #ifndef NDEBUG 1364 assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) && 1365 "Symbolic strides changed for loop"); 1366 #endif 1367 1368 if (!LAI) { 1369 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1370 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, 1371 Strides); 1372 #ifndef NDEBUG 1373 LAI->NumSymbolicStrides = Strides.size(); 1374 #endif 1375 } 1376 return *LAI.get(); 1377 } 1378 1379 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const { 1380 LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this); 1381 1382 ValueToValueMap NoSymbolicStrides; 1383 1384 for (Loop *TopLevelLoop : *LI) 1385 for (Loop *L : depth_first(TopLevelLoop)) { 1386 OS.indent(2) << L->getHeader()->getName() << ":\n"; 1387 auto &LAI = LAA.getInfo(L, NoSymbolicStrides); 1388 LAI.print(OS, 4); 1389 } 1390 } 1391 1392 bool LoopAccessAnalysis::runOnFunction(Function &F) { 1393 SE = &getAnalysis<ScalarEvolution>(); 1394 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1395 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1396 AA = &getAnalysis<AliasAnalysis>(); 1397 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1398 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1399 1400 return false; 1401 } 1402 1403 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 1404 AU.addRequired<ScalarEvolution>(); 1405 AU.addRequired<AliasAnalysis>(); 1406 AU.addRequired<DominatorTreeWrapperPass>(); 1407 AU.addRequired<LoopInfoWrapperPass>(); 1408 1409 AU.setPreservesAll(); 1410 } 1411 1412 char LoopAccessAnalysis::ID = 0; 1413 static const char laa_name[] = "Loop Access Analysis"; 1414 #define LAA_NAME "loop-accesses" 1415 1416 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1417 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 1418 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 1419 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1420 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1421 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1422 1423 namespace llvm { 1424 Pass *createLAAPass() { 1425 return new LoopAccessAnalysis(); 1426 } 1427 } 1428