1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/IR/DiagnosticInfo.h" 19 #include "llvm/IR/Dominators.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Transforms/Utils/VectorUtils.h" 22 using namespace llvm; 23 24 #define DEBUG_TYPE "loop-vectorize" 25 26 void VectorizationReport::emitAnalysis(VectorizationReport &Message, 27 const Function *TheFunction, 28 const Loop *TheLoop) { 29 DebugLoc DL = TheLoop->getStartLoc(); 30 if (Instruction *I = Message.getInstr()) 31 DL = I->getDebugLoc(); 32 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 33 *TheFunction, DL, Message.str()); 34 } 35 36 Value *llvm::stripIntegerCast(Value *V) { 37 if (CastInst *CI = dyn_cast<CastInst>(V)) 38 if (CI->getOperand(0)->getType()->isIntegerTy()) 39 return CI->getOperand(0); 40 return V; 41 } 42 43 const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE, 44 ValueToValueMap &PtrToStride, 45 Value *Ptr, Value *OrigPtr) { 46 47 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 48 49 // If there is an entry in the map return the SCEV of the pointer with the 50 // symbolic stride replaced by one. 51 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 52 if (SI != PtrToStride.end()) { 53 Value *StrideVal = SI->second; 54 55 // Strip casts. 56 StrideVal = stripIntegerCast(StrideVal); 57 58 // Replace symbolic stride by one. 59 Value *One = ConstantInt::get(StrideVal->getType(), 1); 60 ValueToValueMap RewriteMap; 61 RewriteMap[StrideVal] = One; 62 63 const SCEV *ByOne = 64 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 65 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 66 << "\n"); 67 return ByOne; 68 } 69 70 // Otherwise, just return the SCEV of the original pointer. 71 return SE->getSCEV(Ptr); 72 } 73 74 void LoopAccessAnalysis::RuntimePointerCheck::insert(ScalarEvolution *SE, 75 Loop *Lp, Value *Ptr, 76 bool WritePtr, 77 unsigned DepSetId, 78 unsigned ASId, 79 ValueToValueMap &Strides) { 80 // Get the stride replaced scev. 81 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 82 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 83 assert(AR && "Invalid addrec expression"); 84 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 85 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 86 Pointers.push_back(Ptr); 87 Starts.push_back(AR->getStart()); 88 Ends.push_back(ScEnd); 89 IsWritePtr.push_back(WritePtr); 90 DependencySetId.push_back(DepSetId); 91 AliasSetId.push_back(ASId); 92 } 93 94 namespace { 95 /// \brief Analyses memory accesses in a loop. 96 /// 97 /// Checks whether run time pointer checks are needed and builds sets for data 98 /// dependence checking. 99 class AccessAnalysis { 100 public: 101 /// \brief Read or write access location. 102 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 103 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 104 105 /// \brief Set of potential dependent memory accesses. 106 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 107 108 AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) : 109 DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {} 110 111 /// \brief Register a load and whether it is only read from. 112 void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) { 113 Value *Ptr = const_cast<Value*>(Loc.Ptr); 114 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 115 Accesses.insert(MemAccessInfo(Ptr, false)); 116 if (IsReadOnly) 117 ReadOnlyPtr.insert(Ptr); 118 } 119 120 /// \brief Register a store. 121 void addStore(AliasAnalysis::Location &Loc) { 122 Value *Ptr = const_cast<Value*>(Loc.Ptr); 123 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 124 Accesses.insert(MemAccessInfo(Ptr, true)); 125 } 126 127 /// \brief Check whether we can check the pointers at runtime for 128 /// non-intersection. 129 bool canCheckPtrAtRT(LoopAccessAnalysis::RuntimePointerCheck &RtCheck, 130 unsigned &NumComparisons, 131 ScalarEvolution *SE, Loop *TheLoop, 132 ValueToValueMap &Strides, 133 bool ShouldCheckStride = false); 134 135 /// \brief Goes over all memory accesses, checks whether a RT check is needed 136 /// and builds sets of dependent accesses. 137 void buildDependenceSets() { 138 processMemAccesses(); 139 } 140 141 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 142 143 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 144 void resetDepChecks() { CheckDeps.clear(); } 145 146 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 147 148 private: 149 typedef SetVector<MemAccessInfo> PtrAccessSet; 150 151 /// \brief Go over all memory access and check whether runtime pointer checks 152 /// are needed /// and build sets of dependency check candidates. 153 void processMemAccesses(); 154 155 /// Set of all accesses. 156 PtrAccessSet Accesses; 157 158 /// Set of accesses that need a further dependence check. 159 MemAccessInfoSet CheckDeps; 160 161 /// Set of pointers that are read only. 162 SmallPtrSet<Value*, 16> ReadOnlyPtr; 163 164 const DataLayout *DL; 165 166 /// An alias set tracker to partition the access set by underlying object and 167 //intrinsic property (such as TBAA metadata). 168 AliasSetTracker AST; 169 170 /// Sets of potentially dependent accesses - members of one set share an 171 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 172 /// dependence check. 173 DepCandidates &DepCands; 174 175 bool IsRTCheckNeeded; 176 }; 177 178 } // end anonymous namespace 179 180 /// \brief Check whether a pointer can participate in a runtime bounds check. 181 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, 182 Value *Ptr) { 183 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 184 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 185 if (!AR) 186 return false; 187 188 return AR->isAffine(); 189 } 190 191 /// \brief Check the stride of the pointer and ensure that it does not wrap in 192 /// the address space. 193 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 194 const Loop *Lp, ValueToValueMap &StridesMap); 195 196 bool AccessAnalysis::canCheckPtrAtRT( 197 LoopAccessAnalysis::RuntimePointerCheck &RtCheck, 198 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, 199 ValueToValueMap &StridesMap, bool ShouldCheckStride) { 200 // Find pointers with computable bounds. We are going to use this information 201 // to place a runtime bound check. 202 bool CanDoRT = true; 203 204 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 205 NumComparisons = 0; 206 207 // We assign a consecutive id to access from different alias sets. 208 // Accesses between different groups doesn't need to be checked. 209 unsigned ASId = 1; 210 for (auto &AS : AST) { 211 unsigned NumReadPtrChecks = 0; 212 unsigned NumWritePtrChecks = 0; 213 214 // We assign consecutive id to access from different dependence sets. 215 // Accesses within the same set don't need a runtime check. 216 unsigned RunningDepId = 1; 217 DenseMap<Value *, unsigned> DepSetId; 218 219 for (auto A : AS) { 220 Value *Ptr = A.getValue(); 221 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 222 MemAccessInfo Access(Ptr, IsWrite); 223 224 if (IsWrite) 225 ++NumWritePtrChecks; 226 else 227 ++NumReadPtrChecks; 228 229 if (hasComputableBounds(SE, StridesMap, Ptr) && 230 // When we run after a failing dependency check we have to make sure we 231 // don't have wrapping pointers. 232 (!ShouldCheckStride || 233 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 234 // The id of the dependence set. 235 unsigned DepId; 236 237 if (IsDepCheckNeeded) { 238 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 239 unsigned &LeaderId = DepSetId[Leader]; 240 if (!LeaderId) 241 LeaderId = RunningDepId++; 242 DepId = LeaderId; 243 } else 244 // Each access has its own dependence set. 245 DepId = RunningDepId++; 246 247 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 248 249 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 250 } else { 251 CanDoRT = false; 252 } 253 } 254 255 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 256 NumComparisons += 0; // Only one dependence set. 257 else { 258 NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks + 259 NumWritePtrChecks - 1)); 260 } 261 262 ++ASId; 263 } 264 265 // If the pointers that we would use for the bounds comparison have different 266 // address spaces, assume the values aren't directly comparable, so we can't 267 // use them for the runtime check. We also have to assume they could 268 // overlap. In the future there should be metadata for whether address spaces 269 // are disjoint. 270 unsigned NumPointers = RtCheck.Pointers.size(); 271 for (unsigned i = 0; i < NumPointers; ++i) { 272 for (unsigned j = i + 1; j < NumPointers; ++j) { 273 // Only need to check pointers between two different dependency sets. 274 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 275 continue; 276 // Only need to check pointers in the same alias set. 277 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) 278 continue; 279 280 Value *PtrI = RtCheck.Pointers[i]; 281 Value *PtrJ = RtCheck.Pointers[j]; 282 283 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 284 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 285 if (ASi != ASj) { 286 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 287 " different address spaces\n"); 288 return false; 289 } 290 } 291 } 292 293 return CanDoRT; 294 } 295 296 void AccessAnalysis::processMemAccesses() { 297 // We process the set twice: first we process read-write pointers, last we 298 // process read-only pointers. This allows us to skip dependence tests for 299 // read-only pointers. 300 301 DEBUG(dbgs() << "LV: Processing memory accesses...\n"); 302 DEBUG(dbgs() << " AST: "; AST.dump()); 303 DEBUG(dbgs() << "LV: Accesses:\n"); 304 DEBUG({ 305 for (auto A : Accesses) 306 dbgs() << "\t" << *A.getPointer() << " (" << 307 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 308 "read-only" : "read")) << ")\n"; 309 }); 310 311 // The AliasSetTracker has nicely partitioned our pointers by metadata 312 // compatibility and potential for underlying-object overlap. As a result, we 313 // only need to check for potential pointer dependencies within each alias 314 // set. 315 for (auto &AS : AST) { 316 // Note that both the alias-set tracker and the alias sets themselves used 317 // linked lists internally and so the iteration order here is deterministic 318 // (matching the original instruction order within each set). 319 320 bool SetHasWrite = false; 321 322 // Map of pointers to last access encountered. 323 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 324 UnderlyingObjToAccessMap ObjToLastAccess; 325 326 // Set of access to check after all writes have been processed. 327 PtrAccessSet DeferredAccesses; 328 329 // Iterate over each alias set twice, once to process read/write pointers, 330 // and then to process read-only pointers. 331 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 332 bool UseDeferred = SetIteration > 0; 333 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 334 335 for (auto AV : AS) { 336 Value *Ptr = AV.getValue(); 337 338 // For a single memory access in AliasSetTracker, Accesses may contain 339 // both read and write, and they both need to be handled for CheckDeps. 340 for (auto AC : S) { 341 if (AC.getPointer() != Ptr) 342 continue; 343 344 bool IsWrite = AC.getInt(); 345 346 // If we're using the deferred access set, then it contains only 347 // reads. 348 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 349 if (UseDeferred && !IsReadOnlyPtr) 350 continue; 351 // Otherwise, the pointer must be in the PtrAccessSet, either as a 352 // read or a write. 353 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 354 S.count(MemAccessInfo(Ptr, false))) && 355 "Alias-set pointer not in the access set?"); 356 357 MemAccessInfo Access(Ptr, IsWrite); 358 DepCands.insert(Access); 359 360 // Memorize read-only pointers for later processing and skip them in 361 // the first round (they need to be checked after we have seen all 362 // write pointers). Note: we also mark pointer that are not 363 // consecutive as "read-only" pointers (so that we check 364 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 365 if (!UseDeferred && IsReadOnlyPtr) { 366 DeferredAccesses.insert(Access); 367 continue; 368 } 369 370 // If this is a write - check other reads and writes for conflicts. If 371 // this is a read only check other writes for conflicts (but only if 372 // there is no other write to the ptr - this is an optimization to 373 // catch "a[i] = a[i] + " without having to do a dependence check). 374 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 375 CheckDeps.insert(Access); 376 IsRTCheckNeeded = true; 377 } 378 379 if (IsWrite) 380 SetHasWrite = true; 381 382 // Create sets of pointers connected by a shared alias set and 383 // underlying object. 384 typedef SmallVector<Value *, 16> ValueVector; 385 ValueVector TempObjects; 386 GetUnderlyingObjects(Ptr, TempObjects, DL); 387 for (Value *UnderlyingObj : TempObjects) { 388 UnderlyingObjToAccessMap::iterator Prev = 389 ObjToLastAccess.find(UnderlyingObj); 390 if (Prev != ObjToLastAccess.end()) 391 DepCands.unionSets(Access, Prev->second); 392 393 ObjToLastAccess[UnderlyingObj] = Access; 394 } 395 } 396 } 397 } 398 } 399 } 400 401 namespace { 402 /// \brief Checks memory dependences among accesses to the same underlying 403 /// object to determine whether there vectorization is legal or not (and at 404 /// which vectorization factor). 405 /// 406 /// This class works under the assumption that we already checked that memory 407 /// locations with different underlying pointers are "must-not alias". 408 /// We use the ScalarEvolution framework to symbolically evalutate access 409 /// functions pairs. Since we currently don't restructure the loop we can rely 410 /// on the program order of memory accesses to determine their safety. 411 /// At the moment we will only deem accesses as safe for: 412 /// * A negative constant distance assuming program order. 413 /// 414 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 415 /// a[i] = tmp; y = a[i]; 416 /// 417 /// The latter case is safe because later checks guarantuee that there can't 418 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 419 /// the same variable: a header phi can only be an induction or a reduction, a 420 /// reduction can't have a memory sink, an induction can't have a memory 421 /// source). This is important and must not be violated (or we have to 422 /// resort to checking for cycles through memory). 423 /// 424 /// * A positive constant distance assuming program order that is bigger 425 /// than the biggest memory access. 426 /// 427 /// tmp = a[i] OR b[i] = x 428 /// a[i+2] = tmp y = b[i+2]; 429 /// 430 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 431 /// 432 /// * Zero distances and all accesses have the same size. 433 /// 434 class MemoryDepChecker { 435 public: 436 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 437 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 438 439 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L, 440 const LoopAccessAnalysis::VectorizerParams &VectParams) 441 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 442 ShouldRetryWithRuntimeCheck(false), VectParams(VectParams) {} 443 444 /// \brief Register the location (instructions are given increasing numbers) 445 /// of a write access. 446 void addAccess(StoreInst *SI) { 447 Value *Ptr = SI->getPointerOperand(); 448 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 449 InstMap.push_back(SI); 450 ++AccessIdx; 451 } 452 453 /// \brief Register the location (instructions are given increasing numbers) 454 /// of a write access. 455 void addAccess(LoadInst *LI) { 456 Value *Ptr = LI->getPointerOperand(); 457 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 458 InstMap.push_back(LI); 459 ++AccessIdx; 460 } 461 462 /// \brief Check whether the dependencies between the accesses are safe. 463 /// 464 /// Only checks sets with elements in \p CheckDeps. 465 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 466 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); 467 468 /// \brief The maximum number of bytes of a vector register we can vectorize 469 /// the accesses safely with. 470 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 471 472 /// \brief In same cases when the dependency check fails we can still 473 /// vectorize the loop with a dynamic array access check. 474 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 475 476 private: 477 ScalarEvolution *SE; 478 const DataLayout *DL; 479 const Loop *InnermostLoop; 480 481 /// \brief Maps access locations (ptr, read/write) to program order. 482 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 483 484 /// \brief Memory access instructions in program order. 485 SmallVector<Instruction *, 16> InstMap; 486 487 /// \brief The program order index to be used for the next instruction. 488 unsigned AccessIdx; 489 490 // We can access this many bytes in parallel safely. 491 unsigned MaxSafeDepDistBytes; 492 493 /// \brief If we see a non-constant dependence distance we can still try to 494 /// vectorize this loop with runtime checks. 495 bool ShouldRetryWithRuntimeCheck; 496 497 /// \brief Vectorizer parameters used by the analysis. 498 LoopAccessAnalysis::VectorizerParams VectParams; 499 500 /// \brief Check whether there is a plausible dependence between the two 501 /// accesses. 502 /// 503 /// Access \p A must happen before \p B in program order. The two indices 504 /// identify the index into the program order map. 505 /// 506 /// This function checks whether there is a plausible dependence (or the 507 /// absence of such can't be proved) between the two accesses. If there is a 508 /// plausible dependence but the dependence distance is bigger than one 509 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 510 /// distance is smaller than any other distance encountered so far). 511 /// Otherwise, this function returns true signaling a possible dependence. 512 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 513 const MemAccessInfo &B, unsigned BIdx, 514 ValueToValueMap &Strides); 515 516 /// \brief Check whether the data dependence could prevent store-load 517 /// forwarding. 518 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 519 }; 520 521 } // end anonymous namespace 522 523 static bool isInBoundsGep(Value *Ptr) { 524 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 525 return GEP->isInBounds(); 526 return false; 527 } 528 529 /// \brief Check whether the access through \p Ptr has a constant stride. 530 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 531 const Loop *Lp, ValueToValueMap &StridesMap) { 532 const Type *Ty = Ptr->getType(); 533 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 534 535 // Make sure that the pointer does not point to aggregate types. 536 const PointerType *PtrTy = cast<PointerType>(Ty); 537 if (PtrTy->getElementType()->isAggregateType()) { 538 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 539 "\n"); 540 return 0; 541 } 542 543 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 544 545 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 546 if (!AR) { 547 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 548 << *Ptr << " SCEV: " << *PtrScev << "\n"); 549 return 0; 550 } 551 552 // The accesss function must stride over the innermost loop. 553 if (Lp != AR->getLoop()) { 554 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 555 *Ptr << " SCEV: " << *PtrScev << "\n"); 556 } 557 558 // The address calculation must not wrap. Otherwise, a dependence could be 559 // inverted. 560 // An inbounds getelementptr that is a AddRec with a unit stride 561 // cannot wrap per definition. The unit stride requirement is checked later. 562 // An getelementptr without an inbounds attribute and unit stride would have 563 // to access the pointer value "0" which is undefined behavior in address 564 // space 0, therefore we can also vectorize this case. 565 bool IsInBoundsGEP = isInBoundsGep(Ptr); 566 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 567 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 568 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 569 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 570 << *Ptr << " SCEV: " << *PtrScev << "\n"); 571 return 0; 572 } 573 574 // Check the step is constant. 575 const SCEV *Step = AR->getStepRecurrence(*SE); 576 577 // Calculate the pointer stride and check if it is consecutive. 578 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 579 if (!C) { 580 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 581 " SCEV: " << *PtrScev << "\n"); 582 return 0; 583 } 584 585 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 586 const APInt &APStepVal = C->getValue()->getValue(); 587 588 // Huge step value - give up. 589 if (APStepVal.getBitWidth() > 64) 590 return 0; 591 592 int64_t StepVal = APStepVal.getSExtValue(); 593 594 // Strided access. 595 int64_t Stride = StepVal / Size; 596 int64_t Rem = StepVal % Size; 597 if (Rem) 598 return 0; 599 600 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 601 // know we can't "wrap around the address space". In case of address space 602 // zero we know that this won't happen without triggering undefined behavior. 603 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 604 Stride != 1 && Stride != -1) 605 return 0; 606 607 return Stride; 608 } 609 610 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 611 unsigned TypeByteSize) { 612 // If loads occur at a distance that is not a multiple of a feasible vector 613 // factor store-load forwarding does not take place. 614 // Positive dependences might cause troubles because vectorizing them might 615 // prevent store-load forwarding making vectorized code run a lot slower. 616 // a[i] = a[i-3] ^ a[i-8]; 617 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 618 // hence on your typical architecture store-load forwarding does not take 619 // place. Vectorizing in such cases does not make sense. 620 // Store-load forwarding distance. 621 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 622 // Maximum vector factor. 623 unsigned MaxVFWithoutSLForwardIssues = VectParams.MaxVectorWidth*TypeByteSize; 624 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 625 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 626 627 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 628 vf *= 2) { 629 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 630 MaxVFWithoutSLForwardIssues = (vf >>=1); 631 break; 632 } 633 } 634 635 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 636 DEBUG(dbgs() << "LV: Distance " << Distance << 637 " that could cause a store-load forwarding conflict\n"); 638 return true; 639 } 640 641 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 642 MaxVFWithoutSLForwardIssues != VectParams.MaxVectorWidth*TypeByteSize) 643 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 644 return false; 645 } 646 647 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 648 const MemAccessInfo &B, unsigned BIdx, 649 ValueToValueMap &Strides) { 650 assert (AIdx < BIdx && "Must pass arguments in program order"); 651 652 Value *APtr = A.getPointer(); 653 Value *BPtr = B.getPointer(); 654 bool AIsWrite = A.getInt(); 655 bool BIsWrite = B.getInt(); 656 657 // Two reads are independent. 658 if (!AIsWrite && !BIsWrite) 659 return false; 660 661 // We cannot check pointers in different address spaces. 662 if (APtr->getType()->getPointerAddressSpace() != 663 BPtr->getType()->getPointerAddressSpace()) 664 return true; 665 666 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 667 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 668 669 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 670 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 671 672 const SCEV *Src = AScev; 673 const SCEV *Sink = BScev; 674 675 // If the induction step is negative we have to invert source and sink of the 676 // dependence. 677 if (StrideAPtr < 0) { 678 //Src = BScev; 679 //Sink = AScev; 680 std::swap(APtr, BPtr); 681 std::swap(Src, Sink); 682 std::swap(AIsWrite, BIsWrite); 683 std::swap(AIdx, BIdx); 684 std::swap(StrideAPtr, StrideBPtr); 685 } 686 687 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 688 689 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 690 << "(Induction step: " << StrideAPtr << ")\n"); 691 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 692 << *InstMap[BIdx] << ": " << *Dist << "\n"); 693 694 // Need consecutive accesses. We don't want to vectorize 695 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 696 // the address space. 697 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 698 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 699 return true; 700 } 701 702 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 703 if (!C) { 704 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); 705 ShouldRetryWithRuntimeCheck = true; 706 return true; 707 } 708 709 Type *ATy = APtr->getType()->getPointerElementType(); 710 Type *BTy = BPtr->getType()->getPointerElementType(); 711 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 712 713 // Negative distances are not plausible dependencies. 714 const APInt &Val = C->getValue()->getValue(); 715 if (Val.isNegative()) { 716 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 717 if (IsTrueDataDependence && 718 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 719 ATy != BTy)) 720 return true; 721 722 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 723 return false; 724 } 725 726 // Write to the same location with the same size. 727 // Could be improved to assert type sizes are the same (i32 == float, etc). 728 if (Val == 0) { 729 if (ATy == BTy) 730 return false; 731 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 732 return true; 733 } 734 735 assert(Val.isStrictlyPositive() && "Expect a positive value"); 736 737 // Positive distance bigger than max vectorization factor. 738 if (ATy != BTy) { 739 DEBUG(dbgs() << 740 "LV: ReadWrite-Write positive dependency with different types\n"); 741 return false; 742 } 743 744 unsigned Distance = (unsigned) Val.getZExtValue(); 745 746 // Bail out early if passed-in parameters make vectorization not feasible. 747 unsigned ForcedFactor = (VectParams.VectorizationFactor ? 748 VectParams.VectorizationFactor : 1); 749 unsigned ForcedUnroll = (VectParams.VectorizationInterleave ? 750 VectParams.VectorizationInterleave : 1); 751 752 // The distance must be bigger than the size needed for a vectorized version 753 // of the operation and the size of the vectorized operation must not be 754 // bigger than the currrent maximum size. 755 if (Distance < 2*TypeByteSize || 756 2*TypeByteSize > MaxSafeDepDistBytes || 757 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 758 DEBUG(dbgs() << "LV: Failure because of Positive distance " 759 << Val.getSExtValue() << '\n'); 760 return true; 761 } 762 763 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 764 Distance : MaxSafeDepDistBytes; 765 766 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 767 if (IsTrueDataDependence && 768 couldPreventStoreLoadForward(Distance, TypeByteSize)) 769 return true; 770 771 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 772 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 773 774 return false; 775 } 776 777 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 778 MemAccessInfoSet &CheckDeps, 779 ValueToValueMap &Strides) { 780 781 MaxSafeDepDistBytes = -1U; 782 while (!CheckDeps.empty()) { 783 MemAccessInfo CurAccess = *CheckDeps.begin(); 784 785 // Get the relevant memory access set. 786 EquivalenceClasses<MemAccessInfo>::iterator I = 787 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 788 789 // Check accesses within this set. 790 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 791 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 792 793 // Check every access pair. 794 while (AI != AE) { 795 CheckDeps.erase(*AI); 796 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 797 while (OI != AE) { 798 // Check every accessing instruction pair in program order. 799 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 800 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 801 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 802 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 803 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 804 return false; 805 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 806 return false; 807 } 808 ++OI; 809 } 810 AI++; 811 } 812 } 813 return true; 814 } 815 816 bool LoopAccessAnalysis::canVectorizeMemory(ValueToValueMap &Strides) { 817 818 typedef SmallVector<Value*, 16> ValueVector; 819 typedef SmallPtrSet<Value*, 16> ValueSet; 820 821 // Holds the Load and Store *instructions*. 822 ValueVector Loads; 823 ValueVector Stores; 824 825 // Holds all the different accesses in the loop. 826 unsigned NumReads = 0; 827 unsigned NumReadWrites = 0; 828 829 PtrRtCheck.Pointers.clear(); 830 PtrRtCheck.Need = false; 831 832 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 833 MemoryDepChecker DepChecker(SE, DL, TheLoop, VectParams); 834 835 // For each block. 836 for (Loop::block_iterator bb = TheLoop->block_begin(), 837 be = TheLoop->block_end(); bb != be; ++bb) { 838 839 // Scan the BB and collect legal loads and stores. 840 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 841 ++it) { 842 843 // If this is a load, save it. If this instruction can read from memory 844 // but is not a load, then we quit. Notice that we don't handle function 845 // calls that read or write. 846 if (it->mayReadFromMemory()) { 847 // Many math library functions read the rounding mode. We will only 848 // vectorize a loop if it contains known function calls that don't set 849 // the flag. Therefore, it is safe to ignore this read from memory. 850 CallInst *Call = dyn_cast<CallInst>(it); 851 if (Call && getIntrinsicIDForCall(Call, TLI)) 852 continue; 853 854 LoadInst *Ld = dyn_cast<LoadInst>(it); 855 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 856 emitAnalysis(VectorizationReport(Ld) 857 << "read with atomic ordering or volatile read"); 858 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 859 return false; 860 } 861 NumLoads++; 862 Loads.push_back(Ld); 863 DepChecker.addAccess(Ld); 864 continue; 865 } 866 867 // Save 'store' instructions. Abort if other instructions write to memory. 868 if (it->mayWriteToMemory()) { 869 StoreInst *St = dyn_cast<StoreInst>(it); 870 if (!St) { 871 emitAnalysis(VectorizationReport(it) << 872 "instruction cannot be vectorized"); 873 return false; 874 } 875 if (!St->isSimple() && !IsAnnotatedParallel) { 876 emitAnalysis(VectorizationReport(St) 877 << "write with atomic ordering or volatile write"); 878 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 879 return false; 880 } 881 NumStores++; 882 Stores.push_back(St); 883 DepChecker.addAccess(St); 884 } 885 } // Next instr. 886 } // Next block. 887 888 // Now we have two lists that hold the loads and the stores. 889 // Next, we find the pointers that they use. 890 891 // Check if we see any stores. If there are no stores, then we don't 892 // care if the pointers are *restrict*. 893 if (!Stores.size()) { 894 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 895 return true; 896 } 897 898 AccessAnalysis::DepCandidates DependentAccesses; 899 AccessAnalysis Accesses(DL, AA, DependentAccesses); 900 901 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 902 // multiple times on the same object. If the ptr is accessed twice, once 903 // for read and once for write, it will only appear once (on the write 904 // list). This is okay, since we are going to check for conflicts between 905 // writes and between reads and writes, but not between reads and reads. 906 ValueSet Seen; 907 908 ValueVector::iterator I, IE; 909 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 910 StoreInst *ST = cast<StoreInst>(*I); 911 Value* Ptr = ST->getPointerOperand(); 912 913 if (isUniform(Ptr)) { 914 emitAnalysis( 915 VectorizationReport(ST) 916 << "write to a loop invariant address could not be vectorized"); 917 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 918 return false; 919 } 920 921 // If we did *not* see this pointer before, insert it to the read-write 922 // list. At this phase it is only a 'write' list. 923 if (Seen.insert(Ptr).second) { 924 ++NumReadWrites; 925 926 AliasAnalysis::Location Loc = AA->getLocation(ST); 927 // The TBAA metadata could have a control dependency on the predication 928 // condition, so we cannot rely on it when determining whether or not we 929 // need runtime pointer checks. 930 if (blockNeedsPredication(ST->getParent())) 931 Loc.AATags.TBAA = nullptr; 932 933 Accesses.addStore(Loc); 934 } 935 } 936 937 if (IsAnnotatedParallel) { 938 DEBUG(dbgs() 939 << "LV: A loop annotated parallel, ignore memory dependency " 940 << "checks.\n"); 941 return true; 942 } 943 944 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 945 LoadInst *LD = cast<LoadInst>(*I); 946 Value* Ptr = LD->getPointerOperand(); 947 // If we did *not* see this pointer before, insert it to the 948 // read list. If we *did* see it before, then it is already in 949 // the read-write list. This allows us to vectorize expressions 950 // such as A[i] += x; Because the address of A[i] is a read-write 951 // pointer. This only works if the index of A[i] is consecutive. 952 // If the address of i is unknown (for example A[B[i]]) then we may 953 // read a few words, modify, and write a few words, and some of the 954 // words may be written to the same address. 955 bool IsReadOnlyPtr = false; 956 if (Seen.insert(Ptr).second || 957 !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 958 ++NumReads; 959 IsReadOnlyPtr = true; 960 } 961 962 AliasAnalysis::Location Loc = AA->getLocation(LD); 963 // The TBAA metadata could have a control dependency on the predication 964 // condition, so we cannot rely on it when determining whether or not we 965 // need runtime pointer checks. 966 if (blockNeedsPredication(LD->getParent())) 967 Loc.AATags.TBAA = nullptr; 968 969 Accesses.addLoad(Loc, IsReadOnlyPtr); 970 } 971 972 // If we write (or read-write) to a single destination and there are no 973 // other reads in this loop then is it safe to vectorize. 974 if (NumReadWrites == 1 && NumReads == 0) { 975 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 976 return true; 977 } 978 979 // Build dependence sets and check whether we need a runtime pointer bounds 980 // check. 981 Accesses.buildDependenceSets(); 982 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 983 984 // Find pointers with computable bounds. We are going to use this information 985 // to place a runtime bound check. 986 unsigned NumComparisons = 0; 987 bool CanDoRT = false; 988 if (NeedRTCheck) 989 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 990 Strides); 991 992 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 993 " pointer comparisons.\n"); 994 995 // If we only have one set of dependences to check pointers among we don't 996 // need a runtime check. 997 if (NumComparisons == 0 && NeedRTCheck) 998 NeedRTCheck = false; 999 1000 // Check that we did not collect too many pointers or found an unsizeable 1001 // pointer. 1002 if (!CanDoRT || NumComparisons > VectParams.RuntimeMemoryCheckThreshold) { 1003 PtrRtCheck.reset(); 1004 CanDoRT = false; 1005 } 1006 1007 if (CanDoRT) { 1008 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 1009 } 1010 1011 if (NeedRTCheck && !CanDoRT) { 1012 emitAnalysis(VectorizationReport() << "cannot identify array bounds"); 1013 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 1014 "the array bounds.\n"); 1015 PtrRtCheck.reset(); 1016 return false; 1017 } 1018 1019 PtrRtCheck.Need = NeedRTCheck; 1020 1021 bool CanVecMem = true; 1022 if (Accesses.isDependencyCheckNeeded()) { 1023 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 1024 CanVecMem = DepChecker.areDepsSafe( 1025 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 1026 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 1027 1028 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 1029 DEBUG(dbgs() << "LV: Retrying with memory checks\n"); 1030 NeedRTCheck = true; 1031 1032 // Clear the dependency checks. We assume they are not needed. 1033 Accesses.resetDepChecks(); 1034 1035 PtrRtCheck.reset(); 1036 PtrRtCheck.Need = true; 1037 1038 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 1039 TheLoop, Strides, true); 1040 // Check that we did not collect too many pointers or found an unsizeable 1041 // pointer. 1042 if (!CanDoRT || NumComparisons > VectParams.RuntimeMemoryCheckThreshold) { 1043 if (!CanDoRT && NumComparisons > 0) 1044 emitAnalysis(VectorizationReport() 1045 << "cannot check memory dependencies at runtime"); 1046 else 1047 emitAnalysis(VectorizationReport() 1048 << NumComparisons << " exceeds limit of " 1049 << VectParams.RuntimeMemoryCheckThreshold 1050 << " dependent memory operations checked at runtime"); 1051 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); 1052 PtrRtCheck.reset(); 1053 return false; 1054 } 1055 1056 CanVecMem = true; 1057 } 1058 } 1059 1060 if (!CanVecMem) 1061 emitAnalysis(VectorizationReport() << 1062 "unsafe dependent memory operations in loop"); 1063 1064 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 1065 " need a runtime memory check.\n"); 1066 1067 return CanVecMem; 1068 } 1069 1070 bool LoopAccessAnalysis::blockNeedsPredication(BasicBlock *BB) { 1071 assert(TheLoop->contains(BB) && "Unknown block used"); 1072 1073 // Blocks that do not dominate the latch need predication. 1074 BasicBlock* Latch = TheLoop->getLoopLatch(); 1075 return !DT->dominates(BB, Latch); 1076 } 1077 1078 void LoopAccessAnalysis::emitAnalysis(VectorizationReport &Message) { 1079 VectorizationReport::emitAnalysis(Message, TheFunction, TheLoop); 1080 } 1081 1082 bool LoopAccessAnalysis::isUniform(Value *V) { 1083 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1084 } 1085