1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The implementation for the loop memory dependence that was originally
11 // developed for the loop vectorizer.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/LoopAccessAnalysis.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/ScalarEvolutionExpander.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "loop-accesses"
29 
30 static cl::opt<unsigned, true>
31 VectorizationFactor("force-vector-width", cl::Hidden,
32                     cl::desc("Sets the SIMD width. Zero is autoselect."),
33                     cl::location(VectorizerParams::VectorizationFactor));
34 unsigned VectorizerParams::VectorizationFactor;
35 
36 static cl::opt<unsigned, true>
37 VectorizationInterleave("force-vector-interleave", cl::Hidden,
38                         cl::desc("Sets the vectorization interleave count. "
39                                  "Zero is autoselect."),
40                         cl::location(
41                             VectorizerParams::VectorizationInterleave));
42 unsigned VectorizerParams::VectorizationInterleave;
43 
44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
45     "runtime-memory-check-threshold", cl::Hidden,
46     cl::desc("When performing memory disambiguation checks at runtime do not "
47              "generate more than this number of comparisons (default = 8)."),
48     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
50 
51 /// \brief The maximum iterations used to merge memory checks
52 static cl::opt<unsigned> MemoryCheckMergeThreshold(
53     "memory-check-merge-threshold", cl::Hidden,
54     cl::desc("Maximum number of comparisons done when trying to merge "
55              "runtime memory checks. (default = 100)"),
56     cl::init(100));
57 
58 /// Maximum SIMD width.
59 const unsigned VectorizerParams::MaxVectorWidth = 64;
60 
61 /// \brief We collect dependences up to this threshold.
62 static cl::opt<unsigned>
63     MaxDependences("max-dependences", cl::Hidden,
64                    cl::desc("Maximum number of dependences collected by "
65                             "loop-access analysis (default = 100)"),
66                    cl::init(100));
67 
68 /// This enables versioning on the strides of symbolically striding memory
69 /// accesses in code like the following.
70 ///   for (i = 0; i < N; ++i)
71 ///     A[i * Stride1] += B[i * Stride2] ...
72 ///
73 /// Will be roughly translated to
74 ///    if (Stride1 == 1 && Stride2 == 1) {
75 ///      for (i = 0; i < N; i+=4)
76 ///       A[i:i+3] += ...
77 ///    } else
78 ///      ...
79 static cl::opt<bool> EnableMemAccessVersioning(
80     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
81     cl::desc("Enable symbolic stride memory access versioning"));
82 
83 /// \brief Enable store-to-load forwarding conflict detection. This option can
84 /// be disabled for correctness testing.
85 static cl::opt<bool> EnableForwardingConflictDetection(
86     "store-to-load-forwarding-conflict-detection", cl::Hidden,
87     cl::desc("Enable conflict detection in loop-access analysis"),
88     cl::init(true));
89 
90 bool VectorizerParams::isInterleaveForced() {
91   return ::VectorizationInterleave.getNumOccurrences() > 0;
92 }
93 
94 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
95                                     const Function *TheFunction,
96                                     const Loop *TheLoop,
97                                     const char *PassName) {
98   DebugLoc DL = TheLoop->getStartLoc();
99   if (const Instruction *I = Message.getInstr())
100     DL = I->getDebugLoc();
101   emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
102                                  *TheFunction, DL, Message.str());
103 }
104 
105 Value *llvm::stripIntegerCast(Value *V) {
106   if (CastInst *CI = dyn_cast<CastInst>(V))
107     if (CI->getOperand(0)->getType()->isIntegerTy())
108       return CI->getOperand(0);
109   return V;
110 }
111 
112 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
113                                             const ValueToValueMap &PtrToStride,
114                                             Value *Ptr, Value *OrigPtr) {
115   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
116 
117   // If there is an entry in the map return the SCEV of the pointer with the
118   // symbolic stride replaced by one.
119   ValueToValueMap::const_iterator SI =
120       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
121   if (SI != PtrToStride.end()) {
122     Value *StrideVal = SI->second;
123 
124     // Strip casts.
125     StrideVal = stripIntegerCast(StrideVal);
126 
127     // Replace symbolic stride by one.
128     Value *One = ConstantInt::get(StrideVal->getType(), 1);
129     ValueToValueMap RewriteMap;
130     RewriteMap[StrideVal] = One;
131 
132     ScalarEvolution *SE = PSE.getSE();
133     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
134     const auto *CT =
135         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
136 
137     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
138     auto *Expr = PSE.getSCEV(Ptr);
139 
140     DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
141                  << "\n");
142     return Expr;
143   }
144 
145   // Otherwise, just return the SCEV of the original pointer.
146   return OrigSCEV;
147 }
148 
149 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
150                                     unsigned DepSetId, unsigned ASId,
151                                     const ValueToValueMap &Strides,
152                                     PredicatedScalarEvolution &PSE) {
153   // Get the stride replaced scev.
154   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
155   ScalarEvolution *SE = PSE.getSE();
156 
157   const SCEV *ScStart;
158   const SCEV *ScEnd;
159 
160   if (SE->isLoopInvariant(Sc, Lp))
161     ScStart = ScEnd = Sc;
162   else {
163     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
164     assert(AR && "Invalid addrec expression");
165     const SCEV *Ex = PSE.getBackedgeTakenCount();
166 
167     ScStart = AR->getStart();
168     ScEnd = AR->evaluateAtIteration(Ex, *SE);
169     const SCEV *Step = AR->getStepRecurrence(*SE);
170 
171     // For expressions with negative step, the upper bound is ScStart and the
172     // lower bound is ScEnd.
173     if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) {
174       if (CStep->getValue()->isNegative())
175         std::swap(ScStart, ScEnd);
176     } else {
177       // Fallback case: the step is not constant, but the we can still
178       // get the upper and lower bounds of the interval by using min/max
179       // expressions.
180       ScStart = SE->getUMinExpr(ScStart, ScEnd);
181       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
182     }
183   }
184 
185   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
186 }
187 
188 SmallVector<RuntimePointerChecking::PointerCheck, 4>
189 RuntimePointerChecking::generateChecks() const {
190   SmallVector<PointerCheck, 4> Checks;
191 
192   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
193     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
194       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
195       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
196 
197       if (needsChecking(CGI, CGJ))
198         Checks.push_back(std::make_pair(&CGI, &CGJ));
199     }
200   }
201   return Checks;
202 }
203 
204 void RuntimePointerChecking::generateChecks(
205     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
206   assert(Checks.empty() && "Checks is not empty");
207   groupChecks(DepCands, UseDependencies);
208   Checks = generateChecks();
209 }
210 
211 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
212                                            const CheckingPtrGroup &N) const {
213   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
214     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
215       if (needsChecking(M.Members[I], N.Members[J]))
216         return true;
217   return false;
218 }
219 
220 /// Compare \p I and \p J and return the minimum.
221 /// Return nullptr in case we couldn't find an answer.
222 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
223                                    ScalarEvolution *SE) {
224   const SCEV *Diff = SE->getMinusSCEV(J, I);
225   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
226 
227   if (!C)
228     return nullptr;
229   if (C->getValue()->isNegative())
230     return J;
231   return I;
232 }
233 
234 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
235   const SCEV *Start = RtCheck.Pointers[Index].Start;
236   const SCEV *End = RtCheck.Pointers[Index].End;
237 
238   // Compare the starts and ends with the known minimum and maximum
239   // of this set. We need to know how we compare against the min/max
240   // of the set in order to be able to emit memchecks.
241   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
242   if (!Min0)
243     return false;
244 
245   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
246   if (!Min1)
247     return false;
248 
249   // Update the low bound  expression if we've found a new min value.
250   if (Min0 == Start)
251     Low = Start;
252 
253   // Update the high bound expression if we've found a new max value.
254   if (Min1 != End)
255     High = End;
256 
257   Members.push_back(Index);
258   return true;
259 }
260 
261 void RuntimePointerChecking::groupChecks(
262     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
263   // We build the groups from dependency candidates equivalence classes
264   // because:
265   //    - We know that pointers in the same equivalence class share
266   //      the same underlying object and therefore there is a chance
267   //      that we can compare pointers
268   //    - We wouldn't be able to merge two pointers for which we need
269   //      to emit a memcheck. The classes in DepCands are already
270   //      conveniently built such that no two pointers in the same
271   //      class need checking against each other.
272 
273   // We use the following (greedy) algorithm to construct the groups
274   // For every pointer in the equivalence class:
275   //   For each existing group:
276   //   - if the difference between this pointer and the min/max bounds
277   //     of the group is a constant, then make the pointer part of the
278   //     group and update the min/max bounds of that group as required.
279 
280   CheckingGroups.clear();
281 
282   // If we need to check two pointers to the same underlying object
283   // with a non-constant difference, we shouldn't perform any pointer
284   // grouping with those pointers. This is because we can easily get
285   // into cases where the resulting check would return false, even when
286   // the accesses are safe.
287   //
288   // The following example shows this:
289   // for (i = 0; i < 1000; ++i)
290   //   a[5000 + i * m] = a[i] + a[i + 9000]
291   //
292   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
293   // (0, 10000) which is always false. However, if m is 1, there is no
294   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
295   // us to perform an accurate check in this case.
296   //
297   // The above case requires that we have an UnknownDependence between
298   // accesses to the same underlying object. This cannot happen unless
299   // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
300   // is also false. In this case we will use the fallback path and create
301   // separate checking groups for all pointers.
302 
303   // If we don't have the dependency partitions, construct a new
304   // checking pointer group for each pointer. This is also required
305   // for correctness, because in this case we can have checking between
306   // pointers to the same underlying object.
307   if (!UseDependencies) {
308     for (unsigned I = 0; I < Pointers.size(); ++I)
309       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
310     return;
311   }
312 
313   unsigned TotalComparisons = 0;
314 
315   DenseMap<Value *, unsigned> PositionMap;
316   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
317     PositionMap[Pointers[Index].PointerValue] = Index;
318 
319   // We need to keep track of what pointers we've already seen so we
320   // don't process them twice.
321   SmallSet<unsigned, 2> Seen;
322 
323   // Go through all equivalence classes, get the "pointer check groups"
324   // and add them to the overall solution. We use the order in which accesses
325   // appear in 'Pointers' to enforce determinism.
326   for (unsigned I = 0; I < Pointers.size(); ++I) {
327     // We've seen this pointer before, and therefore already processed
328     // its equivalence class.
329     if (Seen.count(I))
330       continue;
331 
332     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
333                                            Pointers[I].IsWritePtr);
334 
335     SmallVector<CheckingPtrGroup, 2> Groups;
336     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
337 
338     // Because DepCands is constructed by visiting accesses in the order in
339     // which they appear in alias sets (which is deterministic) and the
340     // iteration order within an equivalence class member is only dependent on
341     // the order in which unions and insertions are performed on the
342     // equivalence class, the iteration order is deterministic.
343     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
344          MI != ME; ++MI) {
345       unsigned Pointer = PositionMap[MI->getPointer()];
346       bool Merged = false;
347       // Mark this pointer as seen.
348       Seen.insert(Pointer);
349 
350       // Go through all the existing sets and see if we can find one
351       // which can include this pointer.
352       for (CheckingPtrGroup &Group : Groups) {
353         // Don't perform more than a certain amount of comparisons.
354         // This should limit the cost of grouping the pointers to something
355         // reasonable.  If we do end up hitting this threshold, the algorithm
356         // will create separate groups for all remaining pointers.
357         if (TotalComparisons > MemoryCheckMergeThreshold)
358           break;
359 
360         TotalComparisons++;
361 
362         if (Group.addPointer(Pointer)) {
363           Merged = true;
364           break;
365         }
366       }
367 
368       if (!Merged)
369         // We couldn't add this pointer to any existing set or the threshold
370         // for the number of comparisons has been reached. Create a new group
371         // to hold the current pointer.
372         Groups.push_back(CheckingPtrGroup(Pointer, *this));
373     }
374 
375     // We've computed the grouped checks for this partition.
376     // Save the results and continue with the next one.
377     std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
378   }
379 }
380 
381 bool RuntimePointerChecking::arePointersInSamePartition(
382     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
383     unsigned PtrIdx2) {
384   return (PtrToPartition[PtrIdx1] != -1 &&
385           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
386 }
387 
388 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
389   const PointerInfo &PointerI = Pointers[I];
390   const PointerInfo &PointerJ = Pointers[J];
391 
392   // No need to check if two readonly pointers intersect.
393   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
394     return false;
395 
396   // Only need to check pointers between two different dependency sets.
397   if (PointerI.DependencySetId == PointerJ.DependencySetId)
398     return false;
399 
400   // Only need to check pointers in the same alias set.
401   if (PointerI.AliasSetId != PointerJ.AliasSetId)
402     return false;
403 
404   return true;
405 }
406 
407 void RuntimePointerChecking::printChecks(
408     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
409     unsigned Depth) const {
410   unsigned N = 0;
411   for (const auto &Check : Checks) {
412     const auto &First = Check.first->Members, &Second = Check.second->Members;
413 
414     OS.indent(Depth) << "Check " << N++ << ":\n";
415 
416     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
417     for (unsigned K = 0; K < First.size(); ++K)
418       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
419 
420     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
421     for (unsigned K = 0; K < Second.size(); ++K)
422       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
423   }
424 }
425 
426 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
427 
428   OS.indent(Depth) << "Run-time memory checks:\n";
429   printChecks(OS, Checks, Depth);
430 
431   OS.indent(Depth) << "Grouped accesses:\n";
432   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
433     const auto &CG = CheckingGroups[I];
434 
435     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
436     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
437                          << ")\n";
438     for (unsigned J = 0; J < CG.Members.size(); ++J) {
439       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
440                            << "\n";
441     }
442   }
443 }
444 
445 namespace {
446 /// \brief Analyses memory accesses in a loop.
447 ///
448 /// Checks whether run time pointer checks are needed and builds sets for data
449 /// dependence checking.
450 class AccessAnalysis {
451 public:
452   /// \brief Read or write access location.
453   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
454   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
455 
456   AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
457                  MemoryDepChecker::DepCandidates &DA,
458                  PredicatedScalarEvolution &PSE)
459       : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
460         PSE(PSE) {}
461 
462   /// \brief Register a load  and whether it is only read from.
463   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
464     Value *Ptr = const_cast<Value*>(Loc.Ptr);
465     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
466     Accesses.insert(MemAccessInfo(Ptr, false));
467     if (IsReadOnly)
468       ReadOnlyPtr.insert(Ptr);
469   }
470 
471   /// \brief Register a store.
472   void addStore(MemoryLocation &Loc) {
473     Value *Ptr = const_cast<Value*>(Loc.Ptr);
474     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
475     Accesses.insert(MemAccessInfo(Ptr, true));
476   }
477 
478   /// \brief Check whether we can check the pointers at runtime for
479   /// non-intersection.
480   ///
481   /// Returns true if we need no check or if we do and we can generate them
482   /// (i.e. the pointers have computable bounds).
483   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
484                        Loop *TheLoop, const ValueToValueMap &Strides,
485                        bool ShouldCheckWrap = false);
486 
487   /// \brief Goes over all memory accesses, checks whether a RT check is needed
488   /// and builds sets of dependent accesses.
489   void buildDependenceSets() {
490     processMemAccesses();
491   }
492 
493   /// \brief Initial processing of memory accesses determined that we need to
494   /// perform dependency checking.
495   ///
496   /// Note that this can later be cleared if we retry memcheck analysis without
497   /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
498   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
499 
500   /// We decided that no dependence analysis would be used.  Reset the state.
501   void resetDepChecks(MemoryDepChecker &DepChecker) {
502     CheckDeps.clear();
503     DepChecker.clearDependences();
504   }
505 
506   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
507 
508 private:
509   typedef SetVector<MemAccessInfo> PtrAccessSet;
510 
511   /// \brief Go over all memory access and check whether runtime pointer checks
512   /// are needed and build sets of dependency check candidates.
513   void processMemAccesses();
514 
515   /// Set of all accesses.
516   PtrAccessSet Accesses;
517 
518   const DataLayout &DL;
519 
520   /// Set of accesses that need a further dependence check.
521   MemAccessInfoSet CheckDeps;
522 
523   /// Set of pointers that are read only.
524   SmallPtrSet<Value*, 16> ReadOnlyPtr;
525 
526   /// An alias set tracker to partition the access set by underlying object and
527   //intrinsic property (such as TBAA metadata).
528   AliasSetTracker AST;
529 
530   LoopInfo *LI;
531 
532   /// Sets of potentially dependent accesses - members of one set share an
533   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
534   /// dependence check.
535   MemoryDepChecker::DepCandidates &DepCands;
536 
537   /// \brief Initial processing of memory accesses determined that we may need
538   /// to add memchecks.  Perform the analysis to determine the necessary checks.
539   ///
540   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
541   /// memcheck analysis without dependency checking
542   /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
543   /// while this remains set if we have potentially dependent accesses.
544   bool IsRTCheckAnalysisNeeded;
545 
546   /// The SCEV predicate containing all the SCEV-related assumptions.
547   PredicatedScalarEvolution &PSE;
548 };
549 
550 } // end anonymous namespace
551 
552 /// \brief Check whether a pointer can participate in a runtime bounds check.
553 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
554                                 const ValueToValueMap &Strides, Value *Ptr,
555                                 Loop *L) {
556   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
557 
558   // The bounds for loop-invariant pointer is trivial.
559   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
560     return true;
561 
562   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
563   if (!AR)
564     return false;
565 
566   return AR->isAffine();
567 }
568 
569 /// \brief Check whether a pointer address cannot wrap.
570 static bool isNoWrap(PredicatedScalarEvolution &PSE,
571                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
572   const SCEV *PtrScev = PSE.getSCEV(Ptr);
573   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
574     return true;
575 
576   int Stride = getPtrStride(PSE, Ptr, L, Strides);
577   return Stride == 1;
578 }
579 
580 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
581                                      ScalarEvolution *SE, Loop *TheLoop,
582                                      const ValueToValueMap &StridesMap,
583                                      bool ShouldCheckWrap) {
584   // Find pointers with computable bounds. We are going to use this information
585   // to place a runtime bound check.
586   bool CanDoRT = true;
587 
588   bool NeedRTCheck = false;
589   if (!IsRTCheckAnalysisNeeded) return true;
590 
591   bool IsDepCheckNeeded = isDependencyCheckNeeded();
592 
593   // We assign a consecutive id to access from different alias sets.
594   // Accesses between different groups doesn't need to be checked.
595   unsigned ASId = 1;
596   for (auto &AS : AST) {
597     int NumReadPtrChecks = 0;
598     int NumWritePtrChecks = 0;
599 
600     // We assign consecutive id to access from different dependence sets.
601     // Accesses within the same set don't need a runtime check.
602     unsigned RunningDepId = 1;
603     DenseMap<Value *, unsigned> DepSetId;
604 
605     for (auto A : AS) {
606       Value *Ptr = A.getValue();
607       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
608       MemAccessInfo Access(Ptr, IsWrite);
609 
610       if (IsWrite)
611         ++NumWritePtrChecks;
612       else
613         ++NumReadPtrChecks;
614 
615       if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
616           // When we run after a failing dependency check we have to make sure
617           // we don't have wrapping pointers.
618           (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) {
619         // The id of the dependence set.
620         unsigned DepId;
621 
622         if (IsDepCheckNeeded) {
623           Value *Leader = DepCands.getLeaderValue(Access).getPointer();
624           unsigned &LeaderId = DepSetId[Leader];
625           if (!LeaderId)
626             LeaderId = RunningDepId++;
627           DepId = LeaderId;
628         } else
629           // Each access has its own dependence set.
630           DepId = RunningDepId++;
631 
632         RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
633 
634         DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
635       } else {
636         DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
637         CanDoRT = false;
638       }
639     }
640 
641     // If we have at least two writes or one write and a read then we need to
642     // check them.  But there is no need to checks if there is only one
643     // dependence set for this alias set.
644     //
645     // Note that this function computes CanDoRT and NeedRTCheck independently.
646     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
647     // for which we couldn't find the bounds but we don't actually need to emit
648     // any checks so it does not matter.
649     if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
650       NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
651                                                  NumWritePtrChecks >= 1));
652 
653     ++ASId;
654   }
655 
656   // If the pointers that we would use for the bounds comparison have different
657   // address spaces, assume the values aren't directly comparable, so we can't
658   // use them for the runtime check. We also have to assume they could
659   // overlap. In the future there should be metadata for whether address spaces
660   // are disjoint.
661   unsigned NumPointers = RtCheck.Pointers.size();
662   for (unsigned i = 0; i < NumPointers; ++i) {
663     for (unsigned j = i + 1; j < NumPointers; ++j) {
664       // Only need to check pointers between two different dependency sets.
665       if (RtCheck.Pointers[i].DependencySetId ==
666           RtCheck.Pointers[j].DependencySetId)
667        continue;
668       // Only need to check pointers in the same alias set.
669       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
670         continue;
671 
672       Value *PtrI = RtCheck.Pointers[i].PointerValue;
673       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
674 
675       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
676       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
677       if (ASi != ASj) {
678         DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
679                        " different address spaces\n");
680         return false;
681       }
682     }
683   }
684 
685   if (NeedRTCheck && CanDoRT)
686     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
687 
688   DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
689                << " pointer comparisons.\n");
690 
691   RtCheck.Need = NeedRTCheck;
692 
693   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
694   if (!CanDoRTIfNeeded)
695     RtCheck.reset();
696   return CanDoRTIfNeeded;
697 }
698 
699 void AccessAnalysis::processMemAccesses() {
700   // We process the set twice: first we process read-write pointers, last we
701   // process read-only pointers. This allows us to skip dependence tests for
702   // read-only pointers.
703 
704   DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
705   DEBUG(dbgs() << "  AST: "; AST.dump());
706   DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
707   DEBUG({
708     for (auto A : Accesses)
709       dbgs() << "\t" << *A.getPointer() << " (" <<
710                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
711                                          "read-only" : "read")) << ")\n";
712   });
713 
714   // The AliasSetTracker has nicely partitioned our pointers by metadata
715   // compatibility and potential for underlying-object overlap. As a result, we
716   // only need to check for potential pointer dependencies within each alias
717   // set.
718   for (auto &AS : AST) {
719     // Note that both the alias-set tracker and the alias sets themselves used
720     // linked lists internally and so the iteration order here is deterministic
721     // (matching the original instruction order within each set).
722 
723     bool SetHasWrite = false;
724 
725     // Map of pointers to last access encountered.
726     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
727     UnderlyingObjToAccessMap ObjToLastAccess;
728 
729     // Set of access to check after all writes have been processed.
730     PtrAccessSet DeferredAccesses;
731 
732     // Iterate over each alias set twice, once to process read/write pointers,
733     // and then to process read-only pointers.
734     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
735       bool UseDeferred = SetIteration > 0;
736       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
737 
738       for (auto AV : AS) {
739         Value *Ptr = AV.getValue();
740 
741         // For a single memory access in AliasSetTracker, Accesses may contain
742         // both read and write, and they both need to be handled for CheckDeps.
743         for (auto AC : S) {
744           if (AC.getPointer() != Ptr)
745             continue;
746 
747           bool IsWrite = AC.getInt();
748 
749           // If we're using the deferred access set, then it contains only
750           // reads.
751           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
752           if (UseDeferred && !IsReadOnlyPtr)
753             continue;
754           // Otherwise, the pointer must be in the PtrAccessSet, either as a
755           // read or a write.
756           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
757                   S.count(MemAccessInfo(Ptr, false))) &&
758                  "Alias-set pointer not in the access set?");
759 
760           MemAccessInfo Access(Ptr, IsWrite);
761           DepCands.insert(Access);
762 
763           // Memorize read-only pointers for later processing and skip them in
764           // the first round (they need to be checked after we have seen all
765           // write pointers). Note: we also mark pointer that are not
766           // consecutive as "read-only" pointers (so that we check
767           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
768           if (!UseDeferred && IsReadOnlyPtr) {
769             DeferredAccesses.insert(Access);
770             continue;
771           }
772 
773           // If this is a write - check other reads and writes for conflicts. If
774           // this is a read only check other writes for conflicts (but only if
775           // there is no other write to the ptr - this is an optimization to
776           // catch "a[i] = a[i] + " without having to do a dependence check).
777           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
778             CheckDeps.insert(Access);
779             IsRTCheckAnalysisNeeded = true;
780           }
781 
782           if (IsWrite)
783             SetHasWrite = true;
784 
785           // Create sets of pointers connected by a shared alias set and
786           // underlying object.
787           typedef SmallVector<Value *, 16> ValueVector;
788           ValueVector TempObjects;
789 
790           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
791           DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
792           for (Value *UnderlyingObj : TempObjects) {
793             // nullptr never alias, don't join sets for pointer that have "null"
794             // in their UnderlyingObjects list.
795             if (isa<ConstantPointerNull>(UnderlyingObj))
796               continue;
797 
798             UnderlyingObjToAccessMap::iterator Prev =
799                 ObjToLastAccess.find(UnderlyingObj);
800             if (Prev != ObjToLastAccess.end())
801               DepCands.unionSets(Access, Prev->second);
802 
803             ObjToLastAccess[UnderlyingObj] = Access;
804             DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
805           }
806         }
807       }
808     }
809   }
810 }
811 
812 static bool isInBoundsGep(Value *Ptr) {
813   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
814     return GEP->isInBounds();
815   return false;
816 }
817 
818 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
819 /// i.e. monotonically increasing/decreasing.
820 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
821                            PredicatedScalarEvolution &PSE, const Loop *L) {
822   // FIXME: This should probably only return true for NUW.
823   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
824     return true;
825 
826   // Scalar evolution does not propagate the non-wrapping flags to values that
827   // are derived from a non-wrapping induction variable because non-wrapping
828   // could be flow-sensitive.
829   //
830   // Look through the potentially overflowing instruction to try to prove
831   // non-wrapping for the *specific* value of Ptr.
832 
833   // The arithmetic implied by an inbounds GEP can't overflow.
834   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
835   if (!GEP || !GEP->isInBounds())
836     return false;
837 
838   // Make sure there is only one non-const index and analyze that.
839   Value *NonConstIndex = nullptr;
840   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
841     if (!isa<ConstantInt>(*Index)) {
842       if (NonConstIndex)
843         return false;
844       NonConstIndex = *Index;
845     }
846   if (!NonConstIndex)
847     // The recurrence is on the pointer, ignore for now.
848     return false;
849 
850   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
851   // AddRec using a NSW operation.
852   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
853     if (OBO->hasNoSignedWrap() &&
854         // Assume constant for other the operand so that the AddRec can be
855         // easily found.
856         isa<ConstantInt>(OBO->getOperand(1))) {
857       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
858 
859       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
860         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
861     }
862 
863   return false;
864 }
865 
866 /// \brief Check whether the access through \p Ptr has a constant stride.
867 int llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
868                        const Loop *Lp, const ValueToValueMap &StridesMap,
869                        bool Assume) {
870   Type *Ty = Ptr->getType();
871   assert(Ty->isPointerTy() && "Unexpected non-ptr");
872 
873   // Make sure that the pointer does not point to aggregate types.
874   auto *PtrTy = cast<PointerType>(Ty);
875   if (PtrTy->getElementType()->isAggregateType()) {
876     DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
877                  << "\n");
878     return 0;
879   }
880 
881   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
882 
883   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
884   if (Assume && !AR)
885     AR = PSE.getAsAddRec(Ptr);
886 
887   if (!AR) {
888     DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
889                  << " SCEV: " << *PtrScev << "\n");
890     return 0;
891   }
892 
893   // The accesss function must stride over the innermost loop.
894   if (Lp != AR->getLoop()) {
895     DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
896           *Ptr << " SCEV: " << *AR << "\n");
897     return 0;
898   }
899 
900   // The address calculation must not wrap. Otherwise, a dependence could be
901   // inverted.
902   // An inbounds getelementptr that is a AddRec with a unit stride
903   // cannot wrap per definition. The unit stride requirement is checked later.
904   // An getelementptr without an inbounds attribute and unit stride would have
905   // to access the pointer value "0" which is undefined behavior in address
906   // space 0, therefore we can also vectorize this case.
907   bool IsInBoundsGEP = isInBoundsGep(Ptr);
908   bool IsNoWrapAddRec =
909       PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
910       isNoWrapAddRec(Ptr, AR, PSE, Lp);
911   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
912   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
913     if (Assume) {
914       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
915       IsNoWrapAddRec = true;
916       DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
917                    << "LAA:   Pointer: " << *Ptr << "\n"
918                    << "LAA:   SCEV: " << *AR << "\n"
919                    << "LAA:   Added an overflow assumption\n");
920     } else {
921       DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
922                    << *Ptr << " SCEV: " << *AR << "\n");
923       return 0;
924     }
925   }
926 
927   // Check the step is constant.
928   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
929 
930   // Calculate the pointer stride and check if it is constant.
931   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
932   if (!C) {
933     DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
934           " SCEV: " << *AR << "\n");
935     return 0;
936   }
937 
938   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
939   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
940   const APInt &APStepVal = C->getAPInt();
941 
942   // Huge step value - give up.
943   if (APStepVal.getBitWidth() > 64)
944     return 0;
945 
946   int64_t StepVal = APStepVal.getSExtValue();
947 
948   // Strided access.
949   int64_t Stride = StepVal / Size;
950   int64_t Rem = StepVal % Size;
951   if (Rem)
952     return 0;
953 
954   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
955   // know we can't "wrap around the address space". In case of address space
956   // zero we know that this won't happen without triggering undefined behavior.
957   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
958       Stride != 1 && Stride != -1) {
959     if (Assume) {
960       // We can avoid this case by adding a run-time check.
961       DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
962                    << "inbouds or in address space 0 may wrap:\n"
963                    << "LAA:   Pointer: " << *Ptr << "\n"
964                    << "LAA:   SCEV: " << *AR << "\n"
965                    << "LAA:   Added an overflow assumption\n");
966       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
967     } else
968       return 0;
969   }
970 
971   return Stride;
972 }
973 
974 /// Take the pointer operand from the Load/Store instruction.
975 /// Returns NULL if this is not a valid Load/Store instruction.
976 static Value *getPointerOperand(Value *I) {
977   if (LoadInst *LI = dyn_cast<LoadInst>(I))
978     return LI->getPointerOperand();
979   if (StoreInst *SI = dyn_cast<StoreInst>(I))
980     return SI->getPointerOperand();
981   return nullptr;
982 }
983 
984 /// Take the address space operand from the Load/Store instruction.
985 /// Returns -1 if this is not a valid Load/Store instruction.
986 static unsigned getAddressSpaceOperand(Value *I) {
987   if (LoadInst *L = dyn_cast<LoadInst>(I))
988     return L->getPointerAddressSpace();
989   if (StoreInst *S = dyn_cast<StoreInst>(I))
990     return S->getPointerAddressSpace();
991   return -1;
992 }
993 
994 /// Returns true if the memory operations \p A and \p B are consecutive.
995 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
996                                ScalarEvolution &SE, bool CheckType) {
997   Value *PtrA = getPointerOperand(A);
998   Value *PtrB = getPointerOperand(B);
999   unsigned ASA = getAddressSpaceOperand(A);
1000   unsigned ASB = getAddressSpaceOperand(B);
1001 
1002   // Check that the address spaces match and that the pointers are valid.
1003   if (!PtrA || !PtrB || (ASA != ASB))
1004     return false;
1005 
1006   // Make sure that A and B are different pointers.
1007   if (PtrA == PtrB)
1008     return false;
1009 
1010   // Make sure that A and B have the same type if required.
1011   if(CheckType && PtrA->getType() != PtrB->getType())
1012       return false;
1013 
1014   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1015   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1016   APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1017 
1018   APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1019   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1020   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1021 
1022   //  OffsetDelta = OffsetB - OffsetA;
1023   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1024   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1025   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1026   const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1027   const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1028   // Check if they are based on the same pointer. That makes the offsets
1029   // sufficient.
1030   if (PtrA == PtrB)
1031     return OffsetDelta == Size;
1032 
1033   // Compute the necessary base pointer delta to have the necessary final delta
1034   // equal to the size.
1035   // BaseDelta = Size - OffsetDelta;
1036   const SCEV *SizeSCEV = SE.getConstant(Size);
1037   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1038 
1039   // Otherwise compute the distance with SCEV between the base pointers.
1040   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1041   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1042   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1043   return X == PtrSCEVB;
1044 }
1045 
1046 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1047   switch (Type) {
1048   case NoDep:
1049   case Forward:
1050   case BackwardVectorizable:
1051     return true;
1052 
1053   case Unknown:
1054   case ForwardButPreventsForwarding:
1055   case Backward:
1056   case BackwardVectorizableButPreventsForwarding:
1057     return false;
1058   }
1059   llvm_unreachable("unexpected DepType!");
1060 }
1061 
1062 bool MemoryDepChecker::Dependence::isBackward() const {
1063   switch (Type) {
1064   case NoDep:
1065   case Forward:
1066   case ForwardButPreventsForwarding:
1067   case Unknown:
1068     return false;
1069 
1070   case BackwardVectorizable:
1071   case Backward:
1072   case BackwardVectorizableButPreventsForwarding:
1073     return true;
1074   }
1075   llvm_unreachable("unexpected DepType!");
1076 }
1077 
1078 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1079   return isBackward() || Type == Unknown;
1080 }
1081 
1082 bool MemoryDepChecker::Dependence::isForward() const {
1083   switch (Type) {
1084   case Forward:
1085   case ForwardButPreventsForwarding:
1086     return true;
1087 
1088   case NoDep:
1089   case Unknown:
1090   case BackwardVectorizable:
1091   case Backward:
1092   case BackwardVectorizableButPreventsForwarding:
1093     return false;
1094   }
1095   llvm_unreachable("unexpected DepType!");
1096 }
1097 
1098 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
1099                                                     unsigned TypeByteSize) {
1100   // If loads occur at a distance that is not a multiple of a feasible vector
1101   // factor store-load forwarding does not take place.
1102   // Positive dependences might cause troubles because vectorizing them might
1103   // prevent store-load forwarding making vectorized code run a lot slower.
1104   //   a[i] = a[i-3] ^ a[i-8];
1105   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1106   //   hence on your typical architecture store-load forwarding does not take
1107   //   place. Vectorizing in such cases does not make sense.
1108   // Store-load forwarding distance.
1109 
1110   // After this many iterations store-to-load forwarding conflicts should not
1111   // cause any slowdowns.
1112   const unsigned NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1113   // Maximum vector factor.
1114   unsigned MaxVFWithoutSLForwardIssues = std::min(
1115       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1116 
1117   // Compute the smallest VF at which the store and load would be misaligned.
1118   for (unsigned VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1119        VF *= 2) {
1120     // If the number of vector iteration between the store and the load are
1121     // small we could incur conflicts.
1122     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1123       MaxVFWithoutSLForwardIssues = (VF >>= 1);
1124       break;
1125     }
1126   }
1127 
1128   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1129     DEBUG(dbgs() << "LAA: Distance " << Distance
1130                  << " that could cause a store-load forwarding conflict\n");
1131     return true;
1132   }
1133 
1134   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1135       MaxVFWithoutSLForwardIssues !=
1136           VectorizerParams::MaxVectorWidth * TypeByteSize)
1137     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1138   return false;
1139 }
1140 
1141 /// \brief Check the dependence for two accesses with the same stride \p Stride.
1142 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1143 /// bytes.
1144 ///
1145 /// \returns true if they are independent.
1146 static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
1147                                           unsigned TypeByteSize) {
1148   assert(Stride > 1 && "The stride must be greater than 1");
1149   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1150   assert(Distance > 0 && "The distance must be non-zero");
1151 
1152   // Skip if the distance is not multiple of type byte size.
1153   if (Distance % TypeByteSize)
1154     return false;
1155 
1156   unsigned ScaledDist = Distance / TypeByteSize;
1157 
1158   // No dependence if the scaled distance is not multiple of the stride.
1159   // E.g.
1160   //      for (i = 0; i < 1024 ; i += 4)
1161   //        A[i+2] = A[i] + 1;
1162   //
1163   // Two accesses in memory (scaled distance is 2, stride is 4):
1164   //     | A[0] |      |      |      | A[4] |      |      |      |
1165   //     |      |      | A[2] |      |      |      | A[6] |      |
1166   //
1167   // E.g.
1168   //      for (i = 0; i < 1024 ; i += 3)
1169   //        A[i+4] = A[i] + 1;
1170   //
1171   // Two accesses in memory (scaled distance is 4, stride is 3):
1172   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1173   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1174   return ScaledDist % Stride;
1175 }
1176 
1177 MemoryDepChecker::Dependence::DepType
1178 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1179                               const MemAccessInfo &B, unsigned BIdx,
1180                               const ValueToValueMap &Strides) {
1181   assert (AIdx < BIdx && "Must pass arguments in program order");
1182 
1183   Value *APtr = A.getPointer();
1184   Value *BPtr = B.getPointer();
1185   bool AIsWrite = A.getInt();
1186   bool BIsWrite = B.getInt();
1187 
1188   // Two reads are independent.
1189   if (!AIsWrite && !BIsWrite)
1190     return Dependence::NoDep;
1191 
1192   // We cannot check pointers in different address spaces.
1193   if (APtr->getType()->getPointerAddressSpace() !=
1194       BPtr->getType()->getPointerAddressSpace())
1195     return Dependence::Unknown;
1196 
1197   int StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1198   int StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
1199 
1200   const SCEV *Src = PSE.getSCEV(APtr);
1201   const SCEV *Sink = PSE.getSCEV(BPtr);
1202 
1203   // If the induction step is negative we have to invert source and sink of the
1204   // dependence.
1205   if (StrideAPtr < 0) {
1206     std::swap(APtr, BPtr);
1207     std::swap(Src, Sink);
1208     std::swap(AIsWrite, BIsWrite);
1209     std::swap(AIdx, BIdx);
1210     std::swap(StrideAPtr, StrideBPtr);
1211   }
1212 
1213   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1214 
1215   DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1216                << "(Induction step: " << StrideAPtr << ")\n");
1217   DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1218                << *InstMap[BIdx] << ": " << *Dist << "\n");
1219 
1220   // Need accesses with constant stride. We don't want to vectorize
1221   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1222   // the address space.
1223   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1224     DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1225     return Dependence::Unknown;
1226   }
1227 
1228   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1229   if (!C) {
1230     DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1231     ShouldRetryWithRuntimeCheck = true;
1232     return Dependence::Unknown;
1233   }
1234 
1235   Type *ATy = APtr->getType()->getPointerElementType();
1236   Type *BTy = BPtr->getType()->getPointerElementType();
1237   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1238   unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
1239 
1240   const APInt &Val = C->getAPInt();
1241   int64_t Distance = Val.getSExtValue();
1242   unsigned Stride = std::abs(StrideAPtr);
1243 
1244   // Attempt to prove strided accesses independent.
1245   if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1246       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1247     DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1248     return Dependence::NoDep;
1249   }
1250 
1251   // Negative distances are not plausible dependencies.
1252   if (Val.isNegative()) {
1253     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1254     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1255         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1256          ATy != BTy)) {
1257       DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1258       return Dependence::ForwardButPreventsForwarding;
1259     }
1260 
1261     DEBUG(dbgs() << "LAA: Dependence is negative\n");
1262     return Dependence::Forward;
1263   }
1264 
1265   // Write to the same location with the same size.
1266   // Could be improved to assert type sizes are the same (i32 == float, etc).
1267   if (Val == 0) {
1268     if (ATy == BTy)
1269       return Dependence::Forward;
1270     DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
1271     return Dependence::Unknown;
1272   }
1273 
1274   assert(Val.isStrictlyPositive() && "Expect a positive value");
1275 
1276   if (ATy != BTy) {
1277     DEBUG(dbgs() <<
1278           "LAA: ReadWrite-Write positive dependency with different types\n");
1279     return Dependence::Unknown;
1280   }
1281 
1282   // Bail out early if passed-in parameters make vectorization not feasible.
1283   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1284                            VectorizerParams::VectorizationFactor : 1);
1285   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1286                            VectorizerParams::VectorizationInterleave : 1);
1287   // The minimum number of iterations for a vectorized/unrolled version.
1288   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1289 
1290   // It's not vectorizable if the distance is smaller than the minimum distance
1291   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1292   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1293   // TypeByteSize (No need to plus the last gap distance).
1294   //
1295   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1296   //      foo(int *A) {
1297   //        int *B = (int *)((char *)A + 14);
1298   //        for (i = 0 ; i < 1024 ; i += 2)
1299   //          B[i] = A[i] + 1;
1300   //      }
1301   //
1302   // Two accesses in memory (stride is 2):
1303   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1304   //                              | B[0] |      | B[2] |      | B[4] |
1305   //
1306   // Distance needs for vectorizing iterations except the last iteration:
1307   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1308   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1309   //
1310   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1311   // 12, which is less than distance.
1312   //
1313   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1314   // the minimum distance needed is 28, which is greater than distance. It is
1315   // not safe to do vectorization.
1316   unsigned MinDistanceNeeded =
1317       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1318   if (MinDistanceNeeded > Distance) {
1319     DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1320                  << '\n');
1321     return Dependence::Backward;
1322   }
1323 
1324   // Unsafe if the minimum distance needed is greater than max safe distance.
1325   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1326     DEBUG(dbgs() << "LAA: Failure because it needs at least "
1327                  << MinDistanceNeeded << " size in bytes");
1328     return Dependence::Backward;
1329   }
1330 
1331   // Positive distance bigger than max vectorization factor.
1332   // FIXME: Should use max factor instead of max distance in bytes, which could
1333   // not handle different types.
1334   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1335   //      void foo (int *A, char *B) {
1336   //        for (unsigned i = 0; i < 1024; i++) {
1337   //          A[i+2] = A[i] + 1;
1338   //          B[i+2] = B[i] + 1;
1339   //        }
1340   //      }
1341   //
1342   // This case is currently unsafe according to the max safe distance. If we
1343   // analyze the two accesses on array B, the max safe dependence distance
1344   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1345   // is 8, which is less than 2 and forbidden vectorization, But actually
1346   // both A and B could be vectorized by 2 iterations.
1347   MaxSafeDepDistBytes =
1348       Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
1349 
1350   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1351   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1352       couldPreventStoreLoadForward(Distance, TypeByteSize))
1353     return Dependence::BackwardVectorizableButPreventsForwarding;
1354 
1355   DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1356                << " with max VF = "
1357                << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
1358 
1359   return Dependence::BackwardVectorizable;
1360 }
1361 
1362 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1363                                    MemAccessInfoSet &CheckDeps,
1364                                    const ValueToValueMap &Strides) {
1365 
1366   MaxSafeDepDistBytes = -1U;
1367   while (!CheckDeps.empty()) {
1368     MemAccessInfo CurAccess = *CheckDeps.begin();
1369 
1370     // Get the relevant memory access set.
1371     EquivalenceClasses<MemAccessInfo>::iterator I =
1372       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1373 
1374     // Check accesses within this set.
1375     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1376         AccessSets.member_begin(I);
1377     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1378         AccessSets.member_end();
1379 
1380     // Check every access pair.
1381     while (AI != AE) {
1382       CheckDeps.erase(*AI);
1383       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1384       while (OI != AE) {
1385         // Check every accessing instruction pair in program order.
1386         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1387              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1388           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1389                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
1390             auto A = std::make_pair(&*AI, *I1);
1391             auto B = std::make_pair(&*OI, *I2);
1392 
1393             assert(*I1 != *I2);
1394             if (*I1 > *I2)
1395               std::swap(A, B);
1396 
1397             Dependence::DepType Type =
1398                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1399             SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1400 
1401             // Gather dependences unless we accumulated MaxDependences
1402             // dependences.  In that case return as soon as we find the first
1403             // unsafe dependence.  This puts a limit on this quadratic
1404             // algorithm.
1405             if (RecordDependences) {
1406               if (Type != Dependence::NoDep)
1407                 Dependences.push_back(Dependence(A.second, B.second, Type));
1408 
1409               if (Dependences.size() >= MaxDependences) {
1410                 RecordDependences = false;
1411                 Dependences.clear();
1412                 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1413               }
1414             }
1415             if (!RecordDependences && !SafeForVectorization)
1416               return false;
1417           }
1418         ++OI;
1419       }
1420       AI++;
1421     }
1422   }
1423 
1424   DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1425   return SafeForVectorization;
1426 }
1427 
1428 SmallVector<Instruction *, 4>
1429 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1430   MemAccessInfo Access(Ptr, isWrite);
1431   auto &IndexVector = Accesses.find(Access)->second;
1432 
1433   SmallVector<Instruction *, 4> Insts;
1434   std::transform(IndexVector.begin(), IndexVector.end(),
1435                  std::back_inserter(Insts),
1436                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1437   return Insts;
1438 }
1439 
1440 const char *MemoryDepChecker::Dependence::DepName[] = {
1441     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1442     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1443 
1444 void MemoryDepChecker::Dependence::print(
1445     raw_ostream &OS, unsigned Depth,
1446     const SmallVectorImpl<Instruction *> &Instrs) const {
1447   OS.indent(Depth) << DepName[Type] << ":\n";
1448   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1449   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1450 }
1451 
1452 bool LoopAccessInfo::canAnalyzeLoop() {
1453   // We need to have a loop header.
1454   DEBUG(dbgs() << "LAA: Found a loop in "
1455                << TheLoop->getHeader()->getParent()->getName() << ": "
1456                << TheLoop->getHeader()->getName() << '\n');
1457 
1458   // We can only analyze innermost loops.
1459   if (!TheLoop->empty()) {
1460     DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1461     emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
1462     return false;
1463   }
1464 
1465   // We must have a single backedge.
1466   if (TheLoop->getNumBackEdges() != 1) {
1467     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1468     emitAnalysis(
1469         LoopAccessReport() <<
1470         "loop control flow is not understood by analyzer");
1471     return false;
1472   }
1473 
1474   // We must have a single exiting block.
1475   if (!TheLoop->getExitingBlock()) {
1476     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1477     emitAnalysis(
1478         LoopAccessReport() <<
1479         "loop control flow is not understood by analyzer");
1480     return false;
1481   }
1482 
1483   // We only handle bottom-tested loops, i.e. loop in which the condition is
1484   // checked at the end of each iteration. With that we can assume that all
1485   // instructions in the loop are executed the same number of times.
1486   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1487     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1488     emitAnalysis(
1489         LoopAccessReport() <<
1490         "loop control flow is not understood by analyzer");
1491     return false;
1492   }
1493 
1494   // ScalarEvolution needs to be able to find the exit count.
1495   const SCEV *ExitCount = PSE.getBackedgeTakenCount();
1496   if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
1497     emitAnalysis(LoopAccessReport()
1498                  << "could not determine number of loop iterations");
1499     DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1500     return false;
1501   }
1502 
1503   return true;
1504 }
1505 
1506 void LoopAccessInfo::analyzeLoop() {
1507   typedef SmallPtrSet<Value*, 16> ValueSet;
1508 
1509   // Holds the Load and Store instructions.
1510   SmallVector<LoadInst *, 16> Loads;
1511   SmallVector<StoreInst *, 16> Stores;
1512 
1513   // Holds all the different accesses in the loop.
1514   unsigned NumReads = 0;
1515   unsigned NumReadWrites = 0;
1516 
1517   PtrRtChecking.Pointers.clear();
1518   PtrRtChecking.Need = false;
1519 
1520   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1521 
1522   // For each block.
1523   for (Loop::block_iterator bb = TheLoop->block_begin(),
1524        be = TheLoop->block_end(); bb != be; ++bb) {
1525 
1526     // Scan the BB and collect legal loads and stores.
1527     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1528          ++it) {
1529 
1530       // If this is a load, save it. If this instruction can read from memory
1531       // but is not a load, then we quit. Notice that we don't handle function
1532       // calls that read or write.
1533       if (it->mayReadFromMemory()) {
1534         // Many math library functions read the rounding mode. We will only
1535         // vectorize a loop if it contains known function calls that don't set
1536         // the flag. Therefore, it is safe to ignore this read from memory.
1537         CallInst *Call = dyn_cast<CallInst>(it);
1538         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
1539           continue;
1540 
1541         // If the function has an explicit vectorized counterpart, we can safely
1542         // assume that it can be vectorized.
1543         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1544             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1545           continue;
1546 
1547         LoadInst *Ld = dyn_cast<LoadInst>(it);
1548         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
1549           emitAnalysis(LoopAccessReport(Ld)
1550                        << "read with atomic ordering or volatile read");
1551           DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1552           CanVecMem = false;
1553           return;
1554         }
1555         NumLoads++;
1556         Loads.push_back(Ld);
1557         DepChecker.addAccess(Ld);
1558         if (EnableMemAccessVersioning)
1559           collectStridedAccess(Ld);
1560         continue;
1561       }
1562 
1563       // Save 'store' instructions. Abort if other instructions write to memory.
1564       if (it->mayWriteToMemory()) {
1565         StoreInst *St = dyn_cast<StoreInst>(it);
1566         if (!St) {
1567           emitAnalysis(LoopAccessReport(&*it) <<
1568                        "instruction cannot be vectorized");
1569           CanVecMem = false;
1570           return;
1571         }
1572         if (!St->isSimple() && !IsAnnotatedParallel) {
1573           emitAnalysis(LoopAccessReport(St)
1574                        << "write with atomic ordering or volatile write");
1575           DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1576           CanVecMem = false;
1577           return;
1578         }
1579         NumStores++;
1580         Stores.push_back(St);
1581         DepChecker.addAccess(St);
1582         if (EnableMemAccessVersioning)
1583           collectStridedAccess(St);
1584       }
1585     } // Next instr.
1586   } // Next block.
1587 
1588   // Now we have two lists that hold the loads and the stores.
1589   // Next, we find the pointers that they use.
1590 
1591   // Check if we see any stores. If there are no stores, then we don't
1592   // care if the pointers are *restrict*.
1593   if (!Stores.size()) {
1594     DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1595     CanVecMem = true;
1596     return;
1597   }
1598 
1599   MemoryDepChecker::DepCandidates DependentAccesses;
1600   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1601                           AA, LI, DependentAccesses, PSE);
1602 
1603   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1604   // multiple times on the same object. If the ptr is accessed twice, once
1605   // for read and once for write, it will only appear once (on the write
1606   // list). This is okay, since we are going to check for conflicts between
1607   // writes and between reads and writes, but not between reads and reads.
1608   ValueSet Seen;
1609 
1610   for (StoreInst *ST : Stores) {
1611     Value *Ptr = ST->getPointerOperand();
1612     // Check for store to loop invariant address.
1613     StoreToLoopInvariantAddress |= isUniform(Ptr);
1614     // If we did *not* see this pointer before, insert it to  the read-write
1615     // list. At this phase it is only a 'write' list.
1616     if (Seen.insert(Ptr).second) {
1617       ++NumReadWrites;
1618 
1619       MemoryLocation Loc = MemoryLocation::get(ST);
1620       // The TBAA metadata could have a control dependency on the predication
1621       // condition, so we cannot rely on it when determining whether or not we
1622       // need runtime pointer checks.
1623       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1624         Loc.AATags.TBAA = nullptr;
1625 
1626       Accesses.addStore(Loc);
1627     }
1628   }
1629 
1630   if (IsAnnotatedParallel) {
1631     DEBUG(dbgs()
1632           << "LAA: A loop annotated parallel, ignore memory dependency "
1633           << "checks.\n");
1634     CanVecMem = true;
1635     return;
1636   }
1637 
1638   for (LoadInst *LD : Loads) {
1639     Value *Ptr = LD->getPointerOperand();
1640     // If we did *not* see this pointer before, insert it to the
1641     // read list. If we *did* see it before, then it is already in
1642     // the read-write list. This allows us to vectorize expressions
1643     // such as A[i] += x;  Because the address of A[i] is a read-write
1644     // pointer. This only works if the index of A[i] is consecutive.
1645     // If the address of i is unknown (for example A[B[i]]) then we may
1646     // read a few words, modify, and write a few words, and some of the
1647     // words may be written to the same address.
1648     bool IsReadOnlyPtr = false;
1649     if (Seen.insert(Ptr).second ||
1650         !getPtrStride(PSE, Ptr, TheLoop, SymbolicStrides)) {
1651       ++NumReads;
1652       IsReadOnlyPtr = true;
1653     }
1654 
1655     MemoryLocation Loc = MemoryLocation::get(LD);
1656     // The TBAA metadata could have a control dependency on the predication
1657     // condition, so we cannot rely on it when determining whether or not we
1658     // need runtime pointer checks.
1659     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1660       Loc.AATags.TBAA = nullptr;
1661 
1662     Accesses.addLoad(Loc, IsReadOnlyPtr);
1663   }
1664 
1665   // If we write (or read-write) to a single destination and there are no
1666   // other reads in this loop then is it safe to vectorize.
1667   if (NumReadWrites == 1 && NumReads == 0) {
1668     DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1669     CanVecMem = true;
1670     return;
1671   }
1672 
1673   // Build dependence sets and check whether we need a runtime pointer bounds
1674   // check.
1675   Accesses.buildDependenceSets();
1676 
1677   // Find pointers with computable bounds. We are going to use this information
1678   // to place a runtime bound check.
1679   bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(PtrRtChecking, PSE.getSE(),
1680                                                   TheLoop, SymbolicStrides);
1681   if (!CanDoRTIfNeeded) {
1682     emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
1683     DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1684                  << "the array bounds.\n");
1685     CanVecMem = false;
1686     return;
1687   }
1688 
1689   DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
1690 
1691   CanVecMem = true;
1692   if (Accesses.isDependencyCheckNeeded()) {
1693     DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1694     CanVecMem = DepChecker.areDepsSafe(
1695         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
1696     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
1697 
1698     if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
1699       DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
1700 
1701       // Clear the dependency checks. We assume they are not needed.
1702       Accesses.resetDepChecks(DepChecker);
1703 
1704       PtrRtChecking.reset();
1705       PtrRtChecking.Need = true;
1706 
1707       auto *SE = PSE.getSE();
1708       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop,
1709                                                  SymbolicStrides, true);
1710 
1711       // Check that we found the bounds for the pointer.
1712       if (!CanDoRTIfNeeded) {
1713         emitAnalysis(LoopAccessReport()
1714                      << "cannot check memory dependencies at runtime");
1715         DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1716         CanVecMem = false;
1717         return;
1718       }
1719 
1720       CanVecMem = true;
1721     }
1722   }
1723 
1724   if (CanVecMem)
1725     DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
1726                  << (PtrRtChecking.Need ? "" : " don't")
1727                  << " need runtime memory checks.\n");
1728   else {
1729     emitAnalysis(
1730         LoopAccessReport()
1731         << "unsafe dependent memory operations in loop. Use "
1732            "#pragma loop distribute(enable) to allow loop distribution "
1733            "to attempt to isolate the offending operations into a separate "
1734            "loop");
1735     DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1736   }
1737 }
1738 
1739 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1740                                            DominatorTree *DT)  {
1741   assert(TheLoop->contains(BB) && "Unknown block used");
1742 
1743   // Blocks that do not dominate the latch need predication.
1744   BasicBlock* Latch = TheLoop->getLoopLatch();
1745   return !DT->dominates(BB, Latch);
1746 }
1747 
1748 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
1749   assert(!Report && "Multiple reports generated");
1750   Report = Message;
1751 }
1752 
1753 bool LoopAccessInfo::isUniform(Value *V) const {
1754   return (PSE.getSE()->isLoopInvariant(PSE.getSE()->getSCEV(V), TheLoop));
1755 }
1756 
1757 // FIXME: this function is currently a duplicate of the one in
1758 // LoopVectorize.cpp.
1759 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1760                                  Instruction *Loc) {
1761   if (FirstInst)
1762     return FirstInst;
1763   if (Instruction *I = dyn_cast<Instruction>(V))
1764     return I->getParent() == Loc->getParent() ? I : nullptr;
1765   return nullptr;
1766 }
1767 
1768 namespace {
1769 /// \brief IR Values for the lower and upper bounds of a pointer evolution.  We
1770 /// need to use value-handles because SCEV expansion can invalidate previously
1771 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1772 /// a previous one.
1773 struct PointerBounds {
1774   TrackingVH<Value> Start;
1775   TrackingVH<Value> End;
1776 };
1777 } // end anonymous namespace
1778 
1779 /// \brief Expand code for the lower and upper bound of the pointer group \p CG
1780 /// in \p TheLoop.  \return the values for the bounds.
1781 static PointerBounds
1782 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1783              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1784              const RuntimePointerChecking &PtrRtChecking) {
1785   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1786   const SCEV *Sc = SE->getSCEV(Ptr);
1787 
1788   if (SE->isLoopInvariant(Sc, TheLoop)) {
1789     DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1790                  << "\n");
1791     return {Ptr, Ptr};
1792   } else {
1793     unsigned AS = Ptr->getType()->getPointerAddressSpace();
1794     LLVMContext &Ctx = Loc->getContext();
1795 
1796     // Use this type for pointer arithmetic.
1797     Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1798     Value *Start = nullptr, *End = nullptr;
1799 
1800     DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1801     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1802     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1803     DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1804     return {Start, End};
1805   }
1806 }
1807 
1808 /// \brief Turns a collection of checks into a collection of expanded upper and
1809 /// lower bounds for both pointers in the check.
1810 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1811     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1812     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1813     const RuntimePointerChecking &PtrRtChecking) {
1814   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1815 
1816   // Here we're relying on the SCEV Expander's cache to only emit code for the
1817   // same bounds once.
1818   std::transform(
1819       PointerChecks.begin(), PointerChecks.end(),
1820       std::back_inserter(ChecksWithBounds),
1821       [&](const RuntimePointerChecking::PointerCheck &Check) {
1822         PointerBounds
1823           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1824           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1825         return std::make_pair(First, Second);
1826       });
1827 
1828   return ChecksWithBounds;
1829 }
1830 
1831 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
1832     Instruction *Loc,
1833     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1834     const {
1835   auto *SE = PSE.getSE();
1836   SCEVExpander Exp(*SE, DL, "induction");
1837   auto ExpandedChecks =
1838       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking);
1839 
1840   LLVMContext &Ctx = Loc->getContext();
1841   Instruction *FirstInst = nullptr;
1842   IRBuilder<> ChkBuilder(Loc);
1843   // Our instructions might fold to a constant.
1844   Value *MemoryRuntimeCheck = nullptr;
1845 
1846   for (const auto &Check : ExpandedChecks) {
1847     const PointerBounds &A = Check.first, &B = Check.second;
1848     // Check if two pointers (A and B) conflict where conflict is computed as:
1849     // start(A) <= end(B) && start(B) <= end(A)
1850     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1851     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1852 
1853     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1854            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1855            "Trying to bounds check pointers with different address spaces");
1856 
1857     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1858     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1859 
1860     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1861     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1862     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
1863     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
1864 
1865     Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1866     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1867     Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1868     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1869     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1870     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1871     if (MemoryRuntimeCheck) {
1872       IsConflict =
1873           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1874       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1875     }
1876     MemoryRuntimeCheck = IsConflict;
1877   }
1878 
1879   if (!MemoryRuntimeCheck)
1880     return std::make_pair(nullptr, nullptr);
1881 
1882   // We have to do this trickery because the IRBuilder might fold the check to a
1883   // constant expression in which case there is no Instruction anchored in a
1884   // the block.
1885   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1886                                                  ConstantInt::getTrue(Ctx));
1887   ChkBuilder.Insert(Check, "memcheck.conflict");
1888   FirstInst = getFirstInst(FirstInst, Check, Loc);
1889   return std::make_pair(FirstInst, Check);
1890 }
1891 
1892 std::pair<Instruction *, Instruction *>
1893 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
1894   if (!PtrRtChecking.Need)
1895     return std::make_pair(nullptr, nullptr);
1896 
1897   return addRuntimeChecks(Loc, PtrRtChecking.getChecks());
1898 }
1899 
1900 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
1901   Value *Ptr = nullptr;
1902   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
1903     Ptr = LI->getPointerOperand();
1904   else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
1905     Ptr = SI->getPointerOperand();
1906   else
1907     return;
1908 
1909   Value *Stride = getStrideFromPointer(Ptr, PSE.getSE(), TheLoop);
1910   if (!Stride)
1911     return;
1912 
1913   DEBUG(dbgs() << "LAA: Found a strided access that we can version");
1914   DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
1915   SymbolicStrides[Ptr] = Stride;
1916   StrideSet.insert(Stride);
1917 }
1918 
1919 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
1920                                const DataLayout &DL,
1921                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
1922                                DominatorTree *DT, LoopInfo *LI)
1923     : PSE(*SE, *L), PtrRtChecking(SE), DepChecker(PSE, L), TheLoop(L), DL(DL),
1924       TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
1925       MaxSafeDepDistBytes(-1U), CanVecMem(false),
1926       StoreToLoopInvariantAddress(false) {
1927   if (canAnalyzeLoop())
1928     analyzeLoop();
1929 }
1930 
1931 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1932   if (CanVecMem) {
1933     OS.indent(Depth) << "Memory dependences are safe";
1934     if (MaxSafeDepDistBytes != -1U)
1935       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
1936          << " bytes";
1937     if (PtrRtChecking.Need)
1938       OS << " with run-time checks";
1939     OS << "\n";
1940   }
1941 
1942   if (Report)
1943     OS.indent(Depth) << "Report: " << Report->str() << "\n";
1944 
1945   if (auto *Dependences = DepChecker.getDependences()) {
1946     OS.indent(Depth) << "Dependences:\n";
1947     for (auto &Dep : *Dependences) {
1948       Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
1949       OS << "\n";
1950     }
1951   } else
1952     OS.indent(Depth) << "Too many dependences, not recorded\n";
1953 
1954   // List the pair of accesses need run-time checks to prove independence.
1955   PtrRtChecking.print(OS, Depth);
1956   OS << "\n";
1957 
1958   OS.indent(Depth) << "Store to invariant address was "
1959                    << (StoreToLoopInvariantAddress ? "" : "not ")
1960                    << "found in loop.\n";
1961 
1962   OS.indent(Depth) << "SCEV assumptions:\n";
1963   PSE.getUnionPredicate().print(OS, Depth);
1964 
1965   OS << "\n";
1966 
1967   OS.indent(Depth) << "Expressions re-written:\n";
1968   PSE.print(OS, Depth);
1969 }
1970 
1971 const LoopAccessInfo &LoopAccessAnalysis::getInfo(Loop *L) {
1972   auto &LAI = LoopAccessInfoMap[L];
1973 
1974   if (!LAI) {
1975     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1976     LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI);
1977   }
1978   return *LAI.get();
1979 }
1980 
1981 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
1982   LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
1983 
1984   for (Loop *TopLevelLoop : *LI)
1985     for (Loop *L : depth_first(TopLevelLoop)) {
1986       OS.indent(2) << L->getHeader()->getName() << ":\n";
1987       auto &LAI = LAA.getInfo(L);
1988       LAI.print(OS, 4);
1989     }
1990 }
1991 
1992 bool LoopAccessAnalysis::runOnFunction(Function &F) {
1993   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1994   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1995   TLI = TLIP ? &TLIP->getTLI() : nullptr;
1996   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1997   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1998   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1999 
2000   return false;
2001 }
2002 
2003 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
2004     AU.addRequired<ScalarEvolutionWrapperPass>();
2005     AU.addRequired<AAResultsWrapperPass>();
2006     AU.addRequired<DominatorTreeWrapperPass>();
2007     AU.addRequired<LoopInfoWrapperPass>();
2008 
2009     AU.setPreservesAll();
2010 }
2011 
2012 char LoopAccessAnalysis::ID = 0;
2013 static const char laa_name[] = "Loop Access Analysis";
2014 #define LAA_NAME "loop-accesses"
2015 
2016 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
2017 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2018 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2019 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2020 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2021 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
2022 
2023 namespace llvm {
2024   Pass *createLAAPass() {
2025     return new LoopAccessAnalysis();
2026   }
2027 }
2028