1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The implementation for the loop memory dependence that was originally
11 // developed for the loop vectorizer.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/LoopAccessAnalysis.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/ScalarEvolutionExpander.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "loop-accesses"
29 
30 static cl::opt<unsigned, true>
31 VectorizationFactor("force-vector-width", cl::Hidden,
32                     cl::desc("Sets the SIMD width. Zero is autoselect."),
33                     cl::location(VectorizerParams::VectorizationFactor));
34 unsigned VectorizerParams::VectorizationFactor;
35 
36 static cl::opt<unsigned, true>
37 VectorizationInterleave("force-vector-interleave", cl::Hidden,
38                         cl::desc("Sets the vectorization interleave count. "
39                                  "Zero is autoselect."),
40                         cl::location(
41                             VectorizerParams::VectorizationInterleave));
42 unsigned VectorizerParams::VectorizationInterleave;
43 
44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
45     "runtime-memory-check-threshold", cl::Hidden,
46     cl::desc("When performing memory disambiguation checks at runtime do not "
47              "generate more than this number of comparisons (default = 8)."),
48     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
50 
51 /// \brief The maximum iterations used to merge memory checks
52 static cl::opt<unsigned> MemoryCheckMergeThreshold(
53     "memory-check-merge-threshold", cl::Hidden,
54     cl::desc("Maximum number of comparisons done when trying to merge "
55              "runtime memory checks. (default = 100)"),
56     cl::init(100));
57 
58 /// Maximum SIMD width.
59 const unsigned VectorizerParams::MaxVectorWidth = 64;
60 
61 /// \brief We collect interesting dependences up to this threshold.
62 static cl::opt<unsigned> MaxInterestingDependence(
63     "max-interesting-dependences", cl::Hidden,
64     cl::desc("Maximum number of interesting dependences collected by "
65              "loop-access analysis (default = 100)"),
66     cl::init(100));
67 
68 bool VectorizerParams::isInterleaveForced() {
69   return ::VectorizationInterleave.getNumOccurrences() > 0;
70 }
71 
72 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
73                                     const Function *TheFunction,
74                                     const Loop *TheLoop,
75                                     const char *PassName) {
76   DebugLoc DL = TheLoop->getStartLoc();
77   if (const Instruction *I = Message.getInstr())
78     DL = I->getDebugLoc();
79   emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
80                                  *TheFunction, DL, Message.str());
81 }
82 
83 Value *llvm::stripIntegerCast(Value *V) {
84   if (CastInst *CI = dyn_cast<CastInst>(V))
85     if (CI->getOperand(0)->getType()->isIntegerTy())
86       return CI->getOperand(0);
87   return V;
88 }
89 
90 const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE,
91                                             const ValueToValueMap &PtrToStride,
92                                             SCEVUnionPredicate &Preds,
93                                             Value *Ptr, Value *OrigPtr) {
94   const SCEV *OrigSCEV = SE->getSCEV(Ptr);
95 
96   // If there is an entry in the map return the SCEV of the pointer with the
97   // symbolic stride replaced by one.
98   ValueToValueMap::const_iterator SI =
99       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
100   if (SI != PtrToStride.end()) {
101     Value *StrideVal = SI->second;
102 
103     // Strip casts.
104     StrideVal = stripIntegerCast(StrideVal);
105 
106     // Replace symbolic stride by one.
107     Value *One = ConstantInt::get(StrideVal->getType(), 1);
108     ValueToValueMap RewriteMap;
109     RewriteMap[StrideVal] = One;
110 
111     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
112     const auto *CT =
113         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
114 
115     Preds.add(SE->getEqualPredicate(U, CT));
116 
117     const SCEV *ByOne = SE->rewriteUsingPredicate(OrigSCEV, Preds);
118     DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
119                  << "\n");
120     return ByOne;
121   }
122 
123   // Otherwise, just return the SCEV of the original pointer.
124   return OrigSCEV;
125 }
126 
127 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
128                                     unsigned DepSetId, unsigned ASId,
129                                     const ValueToValueMap &Strides,
130                                     SCEVUnionPredicate &Preds) {
131   // Get the stride replaced scev.
132   const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Preds, Ptr);
133   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
134   assert(AR && "Invalid addrec expression");
135   const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
136 
137   const SCEV *ScStart = AR->getStart();
138   const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
139   const SCEV *Step = AR->getStepRecurrence(*SE);
140 
141   // For expressions with negative step, the upper bound is ScStart and the
142   // lower bound is ScEnd.
143   if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) {
144     if (CStep->getValue()->isNegative())
145       std::swap(ScStart, ScEnd);
146   } else {
147     // Fallback case: the step is not constant, but the we can still
148     // get the upper and lower bounds of the interval by using min/max
149     // expressions.
150     ScStart = SE->getUMinExpr(ScStart, ScEnd);
151     ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
152   }
153 
154   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
155 }
156 
157 SmallVector<RuntimePointerChecking::PointerCheck, 4>
158 RuntimePointerChecking::generateChecks() const {
159   SmallVector<PointerCheck, 4> Checks;
160 
161   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
162     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
163       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
164       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
165 
166       if (needsChecking(CGI, CGJ))
167         Checks.push_back(std::make_pair(&CGI, &CGJ));
168     }
169   }
170   return Checks;
171 }
172 
173 void RuntimePointerChecking::generateChecks(
174     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
175   assert(Checks.empty() && "Checks is not empty");
176   groupChecks(DepCands, UseDependencies);
177   Checks = generateChecks();
178 }
179 
180 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
181                                            const CheckingPtrGroup &N) const {
182   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
183     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
184       if (needsChecking(M.Members[I], N.Members[J]))
185         return true;
186   return false;
187 }
188 
189 /// Compare \p I and \p J and return the minimum.
190 /// Return nullptr in case we couldn't find an answer.
191 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
192                                    ScalarEvolution *SE) {
193   const SCEV *Diff = SE->getMinusSCEV(J, I);
194   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
195 
196   if (!C)
197     return nullptr;
198   if (C->getValue()->isNegative())
199     return J;
200   return I;
201 }
202 
203 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
204   const SCEV *Start = RtCheck.Pointers[Index].Start;
205   const SCEV *End = RtCheck.Pointers[Index].End;
206 
207   // Compare the starts and ends with the known minimum and maximum
208   // of this set. We need to know how we compare against the min/max
209   // of the set in order to be able to emit memchecks.
210   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
211   if (!Min0)
212     return false;
213 
214   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
215   if (!Min1)
216     return false;
217 
218   // Update the low bound  expression if we've found a new min value.
219   if (Min0 == Start)
220     Low = Start;
221 
222   // Update the high bound expression if we've found a new max value.
223   if (Min1 != End)
224     High = End;
225 
226   Members.push_back(Index);
227   return true;
228 }
229 
230 void RuntimePointerChecking::groupChecks(
231     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
232   // We build the groups from dependency candidates equivalence classes
233   // because:
234   //    - We know that pointers in the same equivalence class share
235   //      the same underlying object and therefore there is a chance
236   //      that we can compare pointers
237   //    - We wouldn't be able to merge two pointers for which we need
238   //      to emit a memcheck. The classes in DepCands are already
239   //      conveniently built such that no two pointers in the same
240   //      class need checking against each other.
241 
242   // We use the following (greedy) algorithm to construct the groups
243   // For every pointer in the equivalence class:
244   //   For each existing group:
245   //   - if the difference between this pointer and the min/max bounds
246   //     of the group is a constant, then make the pointer part of the
247   //     group and update the min/max bounds of that group as required.
248 
249   CheckingGroups.clear();
250 
251   // If we need to check two pointers to the same underlying object
252   // with a non-constant difference, we shouldn't perform any pointer
253   // grouping with those pointers. This is because we can easily get
254   // into cases where the resulting check would return false, even when
255   // the accesses are safe.
256   //
257   // The following example shows this:
258   // for (i = 0; i < 1000; ++i)
259   //   a[5000 + i * m] = a[i] + a[i + 9000]
260   //
261   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
262   // (0, 10000) which is always false. However, if m is 1, there is no
263   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
264   // us to perform an accurate check in this case.
265   //
266   // The above case requires that we have an UnknownDependence between
267   // accesses to the same underlying object. This cannot happen unless
268   // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
269   // is also false. In this case we will use the fallback path and create
270   // separate checking groups for all pointers.
271 
272   // If we don't have the dependency partitions, construct a new
273   // checking pointer group for each pointer. This is also required
274   // for correctness, because in this case we can have checking between
275   // pointers to the same underlying object.
276   if (!UseDependencies) {
277     for (unsigned I = 0; I < Pointers.size(); ++I)
278       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
279     return;
280   }
281 
282   unsigned TotalComparisons = 0;
283 
284   DenseMap<Value *, unsigned> PositionMap;
285   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
286     PositionMap[Pointers[Index].PointerValue] = Index;
287 
288   // We need to keep track of what pointers we've already seen so we
289   // don't process them twice.
290   SmallSet<unsigned, 2> Seen;
291 
292   // Go through all equivalence classes, get the the "pointer check groups"
293   // and add them to the overall solution. We use the order in which accesses
294   // appear in 'Pointers' to enforce determinism.
295   for (unsigned I = 0; I < Pointers.size(); ++I) {
296     // We've seen this pointer before, and therefore already processed
297     // its equivalence class.
298     if (Seen.count(I))
299       continue;
300 
301     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
302                                            Pointers[I].IsWritePtr);
303 
304     SmallVector<CheckingPtrGroup, 2> Groups;
305     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
306 
307     // Because DepCands is constructed by visiting accesses in the order in
308     // which they appear in alias sets (which is deterministic) and the
309     // iteration order within an equivalence class member is only dependent on
310     // the order in which unions and insertions are performed on the
311     // equivalence class, the iteration order is deterministic.
312     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
313          MI != ME; ++MI) {
314       unsigned Pointer = PositionMap[MI->getPointer()];
315       bool Merged = false;
316       // Mark this pointer as seen.
317       Seen.insert(Pointer);
318 
319       // Go through all the existing sets and see if we can find one
320       // which can include this pointer.
321       for (CheckingPtrGroup &Group : Groups) {
322         // Don't perform more than a certain amount of comparisons.
323         // This should limit the cost of grouping the pointers to something
324         // reasonable.  If we do end up hitting this threshold, the algorithm
325         // will create separate groups for all remaining pointers.
326         if (TotalComparisons > MemoryCheckMergeThreshold)
327           break;
328 
329         TotalComparisons++;
330 
331         if (Group.addPointer(Pointer)) {
332           Merged = true;
333           break;
334         }
335       }
336 
337       if (!Merged)
338         // We couldn't add this pointer to any existing set or the threshold
339         // for the number of comparisons has been reached. Create a new group
340         // to hold the current pointer.
341         Groups.push_back(CheckingPtrGroup(Pointer, *this));
342     }
343 
344     // We've computed the grouped checks for this partition.
345     // Save the results and continue with the next one.
346     std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
347   }
348 }
349 
350 bool RuntimePointerChecking::arePointersInSamePartition(
351     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
352     unsigned PtrIdx2) {
353   return (PtrToPartition[PtrIdx1] != -1 &&
354           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
355 }
356 
357 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
358   const PointerInfo &PointerI = Pointers[I];
359   const PointerInfo &PointerJ = Pointers[J];
360 
361   // No need to check if two readonly pointers intersect.
362   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
363     return false;
364 
365   // Only need to check pointers between two different dependency sets.
366   if (PointerI.DependencySetId == PointerJ.DependencySetId)
367     return false;
368 
369   // Only need to check pointers in the same alias set.
370   if (PointerI.AliasSetId != PointerJ.AliasSetId)
371     return false;
372 
373   return true;
374 }
375 
376 void RuntimePointerChecking::printChecks(
377     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
378     unsigned Depth) const {
379   unsigned N = 0;
380   for (const auto &Check : Checks) {
381     const auto &First = Check.first->Members, &Second = Check.second->Members;
382 
383     OS.indent(Depth) << "Check " << N++ << ":\n";
384 
385     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
386     for (unsigned K = 0; K < First.size(); ++K)
387       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
388 
389     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
390     for (unsigned K = 0; K < Second.size(); ++K)
391       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
392   }
393 }
394 
395 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
396 
397   OS.indent(Depth) << "Run-time memory checks:\n";
398   printChecks(OS, Checks, Depth);
399 
400   OS.indent(Depth) << "Grouped accesses:\n";
401   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
402     const auto &CG = CheckingGroups[I];
403 
404     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
405     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
406                          << ")\n";
407     for (unsigned J = 0; J < CG.Members.size(); ++J) {
408       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
409                            << "\n";
410     }
411   }
412 }
413 
414 namespace {
415 /// \brief Analyses memory accesses in a loop.
416 ///
417 /// Checks whether run time pointer checks are needed and builds sets for data
418 /// dependence checking.
419 class AccessAnalysis {
420 public:
421   /// \brief Read or write access location.
422   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
423   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
424 
425   AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
426                  MemoryDepChecker::DepCandidates &DA, SCEVUnionPredicate &Preds)
427       : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
428         Preds(Preds) {}
429 
430   /// \brief Register a load  and whether it is only read from.
431   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
432     Value *Ptr = const_cast<Value*>(Loc.Ptr);
433     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
434     Accesses.insert(MemAccessInfo(Ptr, false));
435     if (IsReadOnly)
436       ReadOnlyPtr.insert(Ptr);
437   }
438 
439   /// \brief Register a store.
440   void addStore(MemoryLocation &Loc) {
441     Value *Ptr = const_cast<Value*>(Loc.Ptr);
442     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
443     Accesses.insert(MemAccessInfo(Ptr, true));
444   }
445 
446   /// \brief Check whether we can check the pointers at runtime for
447   /// non-intersection.
448   ///
449   /// Returns true if we need no check or if we do and we can generate them
450   /// (i.e. the pointers have computable bounds).
451   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
452                        Loop *TheLoop, const ValueToValueMap &Strides,
453                        bool ShouldCheckStride = false);
454 
455   /// \brief Goes over all memory accesses, checks whether a RT check is needed
456   /// and builds sets of dependent accesses.
457   void buildDependenceSets() {
458     processMemAccesses();
459   }
460 
461   /// \brief Initial processing of memory accesses determined that we need to
462   /// perform dependency checking.
463   ///
464   /// Note that this can later be cleared if we retry memcheck analysis without
465   /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
466   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
467 
468   /// We decided that no dependence analysis would be used.  Reset the state.
469   void resetDepChecks(MemoryDepChecker &DepChecker) {
470     CheckDeps.clear();
471     DepChecker.clearInterestingDependences();
472   }
473 
474   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
475 
476 private:
477   typedef SetVector<MemAccessInfo> PtrAccessSet;
478 
479   /// \brief Go over all memory access and check whether runtime pointer checks
480   /// are needed and build sets of dependency check candidates.
481   void processMemAccesses();
482 
483   /// Set of all accesses.
484   PtrAccessSet Accesses;
485 
486   const DataLayout &DL;
487 
488   /// Set of accesses that need a further dependence check.
489   MemAccessInfoSet CheckDeps;
490 
491   /// Set of pointers that are read only.
492   SmallPtrSet<Value*, 16> ReadOnlyPtr;
493 
494   /// An alias set tracker to partition the access set by underlying object and
495   //intrinsic property (such as TBAA metadata).
496   AliasSetTracker AST;
497 
498   LoopInfo *LI;
499 
500   /// Sets of potentially dependent accesses - members of one set share an
501   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
502   /// dependence check.
503   MemoryDepChecker::DepCandidates &DepCands;
504 
505   /// \brief Initial processing of memory accesses determined that we may need
506   /// to add memchecks.  Perform the analysis to determine the necessary checks.
507   ///
508   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
509   /// memcheck analysis without dependency checking
510   /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
511   /// while this remains set if we have potentially dependent accesses.
512   bool IsRTCheckAnalysisNeeded;
513 
514   /// The SCEV predicate containing all the SCEV-related assumptions.
515   SCEVUnionPredicate &Preds;
516 };
517 
518 } // end anonymous namespace
519 
520 /// \brief Check whether a pointer can participate in a runtime bounds check.
521 static bool hasComputableBounds(ScalarEvolution *SE,
522                                 const ValueToValueMap &Strides, Value *Ptr,
523                                 Loop *L, SCEVUnionPredicate &Preds) {
524   const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Preds, Ptr);
525   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
526   if (!AR)
527     return false;
528 
529   return AR->isAffine();
530 }
531 
532 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
533                                      ScalarEvolution *SE, Loop *TheLoop,
534                                      const ValueToValueMap &StridesMap,
535                                      bool ShouldCheckStride) {
536   // Find pointers with computable bounds. We are going to use this information
537   // to place a runtime bound check.
538   bool CanDoRT = true;
539 
540   bool NeedRTCheck = false;
541   if (!IsRTCheckAnalysisNeeded) return true;
542 
543   bool IsDepCheckNeeded = isDependencyCheckNeeded();
544 
545   // We assign a consecutive id to access from different alias sets.
546   // Accesses between different groups doesn't need to be checked.
547   unsigned ASId = 1;
548   for (auto &AS : AST) {
549     int NumReadPtrChecks = 0;
550     int NumWritePtrChecks = 0;
551 
552     // We assign consecutive id to access from different dependence sets.
553     // Accesses within the same set don't need a runtime check.
554     unsigned RunningDepId = 1;
555     DenseMap<Value *, unsigned> DepSetId;
556 
557     for (auto A : AS) {
558       Value *Ptr = A.getValue();
559       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
560       MemAccessInfo Access(Ptr, IsWrite);
561 
562       if (IsWrite)
563         ++NumWritePtrChecks;
564       else
565         ++NumReadPtrChecks;
566 
567       if (hasComputableBounds(SE, StridesMap, Ptr, TheLoop, Preds) &&
568           // When we run after a failing dependency check we have to make sure
569           // we don't have wrapping pointers.
570           (!ShouldCheckStride ||
571            isStridedPtr(SE, Ptr, TheLoop, StridesMap, Preds) == 1)) {
572         // The id of the dependence set.
573         unsigned DepId;
574 
575         if (IsDepCheckNeeded) {
576           Value *Leader = DepCands.getLeaderValue(Access).getPointer();
577           unsigned &LeaderId = DepSetId[Leader];
578           if (!LeaderId)
579             LeaderId = RunningDepId++;
580           DepId = LeaderId;
581         } else
582           // Each access has its own dependence set.
583           DepId = RunningDepId++;
584 
585         RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, Preds);
586 
587         DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
588       } else {
589         DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
590         CanDoRT = false;
591       }
592     }
593 
594     // If we have at least two writes or one write and a read then we need to
595     // check them.  But there is no need to checks if there is only one
596     // dependence set for this alias set.
597     //
598     // Note that this function computes CanDoRT and NeedRTCheck independently.
599     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
600     // for which we couldn't find the bounds but we don't actually need to emit
601     // any checks so it does not matter.
602     if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
603       NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
604                                                  NumWritePtrChecks >= 1));
605 
606     ++ASId;
607   }
608 
609   // If the pointers that we would use for the bounds comparison have different
610   // address spaces, assume the values aren't directly comparable, so we can't
611   // use them for the runtime check. We also have to assume they could
612   // overlap. In the future there should be metadata for whether address spaces
613   // are disjoint.
614   unsigned NumPointers = RtCheck.Pointers.size();
615   for (unsigned i = 0; i < NumPointers; ++i) {
616     for (unsigned j = i + 1; j < NumPointers; ++j) {
617       // Only need to check pointers between two different dependency sets.
618       if (RtCheck.Pointers[i].DependencySetId ==
619           RtCheck.Pointers[j].DependencySetId)
620        continue;
621       // Only need to check pointers in the same alias set.
622       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
623         continue;
624 
625       Value *PtrI = RtCheck.Pointers[i].PointerValue;
626       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
627 
628       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
629       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
630       if (ASi != ASj) {
631         DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
632                        " different address spaces\n");
633         return false;
634       }
635     }
636   }
637 
638   if (NeedRTCheck && CanDoRT)
639     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
640 
641   DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
642                << " pointer comparisons.\n");
643 
644   RtCheck.Need = NeedRTCheck;
645 
646   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
647   if (!CanDoRTIfNeeded)
648     RtCheck.reset();
649   return CanDoRTIfNeeded;
650 }
651 
652 void AccessAnalysis::processMemAccesses() {
653   // We process the set twice: first we process read-write pointers, last we
654   // process read-only pointers. This allows us to skip dependence tests for
655   // read-only pointers.
656 
657   DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
658   DEBUG(dbgs() << "  AST: "; AST.dump());
659   DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
660   DEBUG({
661     for (auto A : Accesses)
662       dbgs() << "\t" << *A.getPointer() << " (" <<
663                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
664                                          "read-only" : "read")) << ")\n";
665   });
666 
667   // The AliasSetTracker has nicely partitioned our pointers by metadata
668   // compatibility and potential for underlying-object overlap. As a result, we
669   // only need to check for potential pointer dependencies within each alias
670   // set.
671   for (auto &AS : AST) {
672     // Note that both the alias-set tracker and the alias sets themselves used
673     // linked lists internally and so the iteration order here is deterministic
674     // (matching the original instruction order within each set).
675 
676     bool SetHasWrite = false;
677 
678     // Map of pointers to last access encountered.
679     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
680     UnderlyingObjToAccessMap ObjToLastAccess;
681 
682     // Set of access to check after all writes have been processed.
683     PtrAccessSet DeferredAccesses;
684 
685     // Iterate over each alias set twice, once to process read/write pointers,
686     // and then to process read-only pointers.
687     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
688       bool UseDeferred = SetIteration > 0;
689       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
690 
691       for (auto AV : AS) {
692         Value *Ptr = AV.getValue();
693 
694         // For a single memory access in AliasSetTracker, Accesses may contain
695         // both read and write, and they both need to be handled for CheckDeps.
696         for (auto AC : S) {
697           if (AC.getPointer() != Ptr)
698             continue;
699 
700           bool IsWrite = AC.getInt();
701 
702           // If we're using the deferred access set, then it contains only
703           // reads.
704           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
705           if (UseDeferred && !IsReadOnlyPtr)
706             continue;
707           // Otherwise, the pointer must be in the PtrAccessSet, either as a
708           // read or a write.
709           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
710                   S.count(MemAccessInfo(Ptr, false))) &&
711                  "Alias-set pointer not in the access set?");
712 
713           MemAccessInfo Access(Ptr, IsWrite);
714           DepCands.insert(Access);
715 
716           // Memorize read-only pointers for later processing and skip them in
717           // the first round (they need to be checked after we have seen all
718           // write pointers). Note: we also mark pointer that are not
719           // consecutive as "read-only" pointers (so that we check
720           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
721           if (!UseDeferred && IsReadOnlyPtr) {
722             DeferredAccesses.insert(Access);
723             continue;
724           }
725 
726           // If this is a write - check other reads and writes for conflicts. If
727           // this is a read only check other writes for conflicts (but only if
728           // there is no other write to the ptr - this is an optimization to
729           // catch "a[i] = a[i] + " without having to do a dependence check).
730           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
731             CheckDeps.insert(Access);
732             IsRTCheckAnalysisNeeded = true;
733           }
734 
735           if (IsWrite)
736             SetHasWrite = true;
737 
738           // Create sets of pointers connected by a shared alias set and
739           // underlying object.
740           typedef SmallVector<Value *, 16> ValueVector;
741           ValueVector TempObjects;
742 
743           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
744           DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
745           for (Value *UnderlyingObj : TempObjects) {
746             UnderlyingObjToAccessMap::iterator Prev =
747                 ObjToLastAccess.find(UnderlyingObj);
748             if (Prev != ObjToLastAccess.end())
749               DepCands.unionSets(Access, Prev->second);
750 
751             ObjToLastAccess[UnderlyingObj] = Access;
752             DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
753           }
754         }
755       }
756     }
757   }
758 }
759 
760 static bool isInBoundsGep(Value *Ptr) {
761   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
762     return GEP->isInBounds();
763   return false;
764 }
765 
766 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
767 /// i.e. monotonically increasing/decreasing.
768 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
769                            ScalarEvolution *SE, const Loop *L) {
770   // FIXME: This should probably only return true for NUW.
771   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
772     return true;
773 
774   // Scalar evolution does not propagate the non-wrapping flags to values that
775   // are derived from a non-wrapping induction variable because non-wrapping
776   // could be flow-sensitive.
777   //
778   // Look through the potentially overflowing instruction to try to prove
779   // non-wrapping for the *specific* value of Ptr.
780 
781   // The arithmetic implied by an inbounds GEP can't overflow.
782   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
783   if (!GEP || !GEP->isInBounds())
784     return false;
785 
786   // Make sure there is only one non-const index and analyze that.
787   Value *NonConstIndex = nullptr;
788   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
789     if (!isa<ConstantInt>(*Index)) {
790       if (NonConstIndex)
791         return false;
792       NonConstIndex = *Index;
793     }
794   if (!NonConstIndex)
795     // The recurrence is on the pointer, ignore for now.
796     return false;
797 
798   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
799   // AddRec using a NSW operation.
800   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
801     if (OBO->hasNoSignedWrap() &&
802         // Assume constant for other the operand so that the AddRec can be
803         // easily found.
804         isa<ConstantInt>(OBO->getOperand(1))) {
805       auto *OpScev = SE->getSCEV(OBO->getOperand(0));
806 
807       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
808         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
809     }
810 
811   return false;
812 }
813 
814 /// \brief Check whether the access through \p Ptr has a constant stride.
815 int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp,
816                        const ValueToValueMap &StridesMap,
817                        SCEVUnionPredicate &Preds) {
818   Type *Ty = Ptr->getType();
819   assert(Ty->isPointerTy() && "Unexpected non-ptr");
820 
821   // Make sure that the pointer does not point to aggregate types.
822   auto *PtrTy = cast<PointerType>(Ty);
823   if (PtrTy->getElementType()->isAggregateType()) {
824     DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
825           << *Ptr << "\n");
826     return 0;
827   }
828 
829   const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Preds, Ptr);
830 
831   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
832   if (!AR) {
833     DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer "
834           << *Ptr << " SCEV: " << *PtrScev << "\n");
835     return 0;
836   }
837 
838   // The accesss function must stride over the innermost loop.
839   if (Lp != AR->getLoop()) {
840     DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
841           *Ptr << " SCEV: " << *PtrScev << "\n");
842   }
843 
844   // The address calculation must not wrap. Otherwise, a dependence could be
845   // inverted.
846   // An inbounds getelementptr that is a AddRec with a unit stride
847   // cannot wrap per definition. The unit stride requirement is checked later.
848   // An getelementptr without an inbounds attribute and unit stride would have
849   // to access the pointer value "0" which is undefined behavior in address
850   // space 0, therefore we can also vectorize this case.
851   bool IsInBoundsGEP = isInBoundsGep(Ptr);
852   bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, SE, Lp);
853   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
854   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
855     DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
856           << *Ptr << " SCEV: " << *PtrScev << "\n");
857     return 0;
858   }
859 
860   // Check the step is constant.
861   const SCEV *Step = AR->getStepRecurrence(*SE);
862 
863   // Calculate the pointer stride and check if it is constant.
864   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
865   if (!C) {
866     DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
867           " SCEV: " << *PtrScev << "\n");
868     return 0;
869   }
870 
871   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
872   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
873   const APInt &APStepVal = C->getValue()->getValue();
874 
875   // Huge step value - give up.
876   if (APStepVal.getBitWidth() > 64)
877     return 0;
878 
879   int64_t StepVal = APStepVal.getSExtValue();
880 
881   // Strided access.
882   int64_t Stride = StepVal / Size;
883   int64_t Rem = StepVal % Size;
884   if (Rem)
885     return 0;
886 
887   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
888   // know we can't "wrap around the address space". In case of address space
889   // zero we know that this won't happen without triggering undefined behavior.
890   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
891       Stride != 1 && Stride != -1)
892     return 0;
893 
894   return Stride;
895 }
896 
897 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
898   switch (Type) {
899   case NoDep:
900   case Forward:
901   case BackwardVectorizable:
902     return true;
903 
904   case Unknown:
905   case ForwardButPreventsForwarding:
906   case Backward:
907   case BackwardVectorizableButPreventsForwarding:
908     return false;
909   }
910   llvm_unreachable("unexpected DepType!");
911 }
912 
913 bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) {
914   switch (Type) {
915   case NoDep:
916   case Forward:
917     return false;
918 
919   case BackwardVectorizable:
920   case Unknown:
921   case ForwardButPreventsForwarding:
922   case Backward:
923   case BackwardVectorizableButPreventsForwarding:
924     return true;
925   }
926   llvm_unreachable("unexpected DepType!");
927 }
928 
929 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
930   switch (Type) {
931   case NoDep:
932   case Forward:
933   case ForwardButPreventsForwarding:
934     return false;
935 
936   case Unknown:
937   case BackwardVectorizable:
938   case Backward:
939   case BackwardVectorizableButPreventsForwarding:
940     return true;
941   }
942   llvm_unreachable("unexpected DepType!");
943 }
944 
945 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
946                                                     unsigned TypeByteSize) {
947   // If loads occur at a distance that is not a multiple of a feasible vector
948   // factor store-load forwarding does not take place.
949   // Positive dependences might cause troubles because vectorizing them might
950   // prevent store-load forwarding making vectorized code run a lot slower.
951   //   a[i] = a[i-3] ^ a[i-8];
952   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
953   //   hence on your typical architecture store-load forwarding does not take
954   //   place. Vectorizing in such cases does not make sense.
955   // Store-load forwarding distance.
956   const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
957   // Maximum vector factor.
958   unsigned MaxVFWithoutSLForwardIssues =
959     VectorizerParams::MaxVectorWidth * TypeByteSize;
960   if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
961     MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
962 
963   for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
964        vf *= 2) {
965     if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
966       MaxVFWithoutSLForwardIssues = (vf >>=1);
967       break;
968     }
969   }
970 
971   if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
972     DEBUG(dbgs() << "LAA: Distance " << Distance <<
973           " that could cause a store-load forwarding conflict\n");
974     return true;
975   }
976 
977   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
978       MaxVFWithoutSLForwardIssues !=
979       VectorizerParams::MaxVectorWidth * TypeByteSize)
980     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
981   return false;
982 }
983 
984 /// \brief Check the dependence for two accesses with the same stride \p Stride.
985 /// \p Distance is the positive distance and \p TypeByteSize is type size in
986 /// bytes.
987 ///
988 /// \returns true if they are independent.
989 static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
990                                           unsigned TypeByteSize) {
991   assert(Stride > 1 && "The stride must be greater than 1");
992   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
993   assert(Distance > 0 && "The distance must be non-zero");
994 
995   // Skip if the distance is not multiple of type byte size.
996   if (Distance % TypeByteSize)
997     return false;
998 
999   unsigned ScaledDist = Distance / TypeByteSize;
1000 
1001   // No dependence if the scaled distance is not multiple of the stride.
1002   // E.g.
1003   //      for (i = 0; i < 1024 ; i += 4)
1004   //        A[i+2] = A[i] + 1;
1005   //
1006   // Two accesses in memory (scaled distance is 2, stride is 4):
1007   //     | A[0] |      |      |      | A[4] |      |      |      |
1008   //     |      |      | A[2] |      |      |      | A[6] |      |
1009   //
1010   // E.g.
1011   //      for (i = 0; i < 1024 ; i += 3)
1012   //        A[i+4] = A[i] + 1;
1013   //
1014   // Two accesses in memory (scaled distance is 4, stride is 3):
1015   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1016   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1017   return ScaledDist % Stride;
1018 }
1019 
1020 MemoryDepChecker::Dependence::DepType
1021 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1022                               const MemAccessInfo &B, unsigned BIdx,
1023                               const ValueToValueMap &Strides) {
1024   assert (AIdx < BIdx && "Must pass arguments in program order");
1025 
1026   Value *APtr = A.getPointer();
1027   Value *BPtr = B.getPointer();
1028   bool AIsWrite = A.getInt();
1029   bool BIsWrite = B.getInt();
1030 
1031   // Two reads are independent.
1032   if (!AIsWrite && !BIsWrite)
1033     return Dependence::NoDep;
1034 
1035   // We cannot check pointers in different address spaces.
1036   if (APtr->getType()->getPointerAddressSpace() !=
1037       BPtr->getType()->getPointerAddressSpace())
1038     return Dependence::Unknown;
1039 
1040   const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, Preds, APtr);
1041   const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, Preds, BPtr);
1042 
1043   int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides, Preds);
1044   int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides, Preds);
1045 
1046   const SCEV *Src = AScev;
1047   const SCEV *Sink = BScev;
1048 
1049   // If the induction step is negative we have to invert source and sink of the
1050   // dependence.
1051   if (StrideAPtr < 0) {
1052     //Src = BScev;
1053     //Sink = AScev;
1054     std::swap(APtr, BPtr);
1055     std::swap(Src, Sink);
1056     std::swap(AIsWrite, BIsWrite);
1057     std::swap(AIdx, BIdx);
1058     std::swap(StrideAPtr, StrideBPtr);
1059   }
1060 
1061   const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
1062 
1063   DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1064         << "(Induction step: " << StrideAPtr <<  ")\n");
1065   DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1066         << *InstMap[BIdx] << ": " << *Dist << "\n");
1067 
1068   // Need accesses with constant stride. We don't want to vectorize
1069   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1070   // the address space.
1071   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1072     DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1073     return Dependence::Unknown;
1074   }
1075 
1076   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1077   if (!C) {
1078     DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1079     ShouldRetryWithRuntimeCheck = true;
1080     return Dependence::Unknown;
1081   }
1082 
1083   Type *ATy = APtr->getType()->getPointerElementType();
1084   Type *BTy = BPtr->getType()->getPointerElementType();
1085   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1086   unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
1087 
1088   // Negative distances are not plausible dependencies.
1089   const APInt &Val = C->getValue()->getValue();
1090   if (Val.isNegative()) {
1091     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1092     if (IsTrueDataDependence &&
1093         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1094          ATy != BTy))
1095       return Dependence::ForwardButPreventsForwarding;
1096 
1097     DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n");
1098     return Dependence::Forward;
1099   }
1100 
1101   // Write to the same location with the same size.
1102   // Could be improved to assert type sizes are the same (i32 == float, etc).
1103   if (Val == 0) {
1104     if (ATy == BTy)
1105       return Dependence::NoDep;
1106     DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
1107     return Dependence::Unknown;
1108   }
1109 
1110   assert(Val.isStrictlyPositive() && "Expect a positive value");
1111 
1112   if (ATy != BTy) {
1113     DEBUG(dbgs() <<
1114           "LAA: ReadWrite-Write positive dependency with different types\n");
1115     return Dependence::Unknown;
1116   }
1117 
1118   unsigned Distance = (unsigned) Val.getZExtValue();
1119 
1120   unsigned Stride = std::abs(StrideAPtr);
1121   if (Stride > 1 &&
1122       areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) {
1123     DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1124     return Dependence::NoDep;
1125   }
1126 
1127   // Bail out early if passed-in parameters make vectorization not feasible.
1128   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1129                            VectorizerParams::VectorizationFactor : 1);
1130   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1131                            VectorizerParams::VectorizationInterleave : 1);
1132   // The minimum number of iterations for a vectorized/unrolled version.
1133   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1134 
1135   // It's not vectorizable if the distance is smaller than the minimum distance
1136   // needed for a vectroized/unrolled version. Vectorizing one iteration in
1137   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1138   // TypeByteSize (No need to plus the last gap distance).
1139   //
1140   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1141   //      foo(int *A) {
1142   //        int *B = (int *)((char *)A + 14);
1143   //        for (i = 0 ; i < 1024 ; i += 2)
1144   //          B[i] = A[i] + 1;
1145   //      }
1146   //
1147   // Two accesses in memory (stride is 2):
1148   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1149   //                              | B[0] |      | B[2] |      | B[4] |
1150   //
1151   // Distance needs for vectorizing iterations except the last iteration:
1152   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1153   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1154   //
1155   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1156   // 12, which is less than distance.
1157   //
1158   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1159   // the minimum distance needed is 28, which is greater than distance. It is
1160   // not safe to do vectorization.
1161   unsigned MinDistanceNeeded =
1162       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1163   if (MinDistanceNeeded > Distance) {
1164     DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1165                  << '\n');
1166     return Dependence::Backward;
1167   }
1168 
1169   // Unsafe if the minimum distance needed is greater than max safe distance.
1170   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1171     DEBUG(dbgs() << "LAA: Failure because it needs at least "
1172                  << MinDistanceNeeded << " size in bytes");
1173     return Dependence::Backward;
1174   }
1175 
1176   // Positive distance bigger than max vectorization factor.
1177   // FIXME: Should use max factor instead of max distance in bytes, which could
1178   // not handle different types.
1179   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1180   //      void foo (int *A, char *B) {
1181   //        for (unsigned i = 0; i < 1024; i++) {
1182   //          A[i+2] = A[i] + 1;
1183   //          B[i+2] = B[i] + 1;
1184   //        }
1185   //      }
1186   //
1187   // This case is currently unsafe according to the max safe distance. If we
1188   // analyze the two accesses on array B, the max safe dependence distance
1189   // is 2. Then we analyze the accesses on array A, the minimum distance needed
1190   // is 8, which is less than 2 and forbidden vectorization, But actually
1191   // both A and B could be vectorized by 2 iterations.
1192   MaxSafeDepDistBytes =
1193       Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
1194 
1195   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1196   if (IsTrueDataDependence &&
1197       couldPreventStoreLoadForward(Distance, TypeByteSize))
1198     return Dependence::BackwardVectorizableButPreventsForwarding;
1199 
1200   DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1201                << " with max VF = "
1202                << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
1203 
1204   return Dependence::BackwardVectorizable;
1205 }
1206 
1207 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1208                                    MemAccessInfoSet &CheckDeps,
1209                                    const ValueToValueMap &Strides) {
1210 
1211   MaxSafeDepDistBytes = -1U;
1212   while (!CheckDeps.empty()) {
1213     MemAccessInfo CurAccess = *CheckDeps.begin();
1214 
1215     // Get the relevant memory access set.
1216     EquivalenceClasses<MemAccessInfo>::iterator I =
1217       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1218 
1219     // Check accesses within this set.
1220     EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
1221     AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
1222 
1223     // Check every access pair.
1224     while (AI != AE) {
1225       CheckDeps.erase(*AI);
1226       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1227       while (OI != AE) {
1228         // Check every accessing instruction pair in program order.
1229         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1230              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1231           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1232                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
1233             auto A = std::make_pair(&*AI, *I1);
1234             auto B = std::make_pair(&*OI, *I2);
1235 
1236             assert(*I1 != *I2);
1237             if (*I1 > *I2)
1238               std::swap(A, B);
1239 
1240             Dependence::DepType Type =
1241                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1242             SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1243 
1244             // Gather dependences unless we accumulated MaxInterestingDependence
1245             // dependences.  In that case return as soon as we find the first
1246             // unsafe dependence.  This puts a limit on this quadratic
1247             // algorithm.
1248             if (RecordInterestingDependences) {
1249               if (Dependence::isInterestingDependence(Type))
1250                 InterestingDependences.push_back(
1251                     Dependence(A.second, B.second, Type));
1252 
1253               if (InterestingDependences.size() >= MaxInterestingDependence) {
1254                 RecordInterestingDependences = false;
1255                 InterestingDependences.clear();
1256                 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1257               }
1258             }
1259             if (!RecordInterestingDependences && !SafeForVectorization)
1260               return false;
1261           }
1262         ++OI;
1263       }
1264       AI++;
1265     }
1266   }
1267 
1268   DEBUG(dbgs() << "Total Interesting Dependences: "
1269                << InterestingDependences.size() << "\n");
1270   return SafeForVectorization;
1271 }
1272 
1273 SmallVector<Instruction *, 4>
1274 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1275   MemAccessInfo Access(Ptr, isWrite);
1276   auto &IndexVector = Accesses.find(Access)->second;
1277 
1278   SmallVector<Instruction *, 4> Insts;
1279   std::transform(IndexVector.begin(), IndexVector.end(),
1280                  std::back_inserter(Insts),
1281                  [&](unsigned Idx) { return this->InstMap[Idx]; });
1282   return Insts;
1283 }
1284 
1285 const char *MemoryDepChecker::Dependence::DepName[] = {
1286     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1287     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1288 
1289 void MemoryDepChecker::Dependence::print(
1290     raw_ostream &OS, unsigned Depth,
1291     const SmallVectorImpl<Instruction *> &Instrs) const {
1292   OS.indent(Depth) << DepName[Type] << ":\n";
1293   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1294   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1295 }
1296 
1297 bool LoopAccessInfo::canAnalyzeLoop() {
1298   // We need to have a loop header.
1299   DEBUG(dbgs() << "LAA: Found a loop: " <<
1300         TheLoop->getHeader()->getName() << '\n');
1301 
1302     // We can only analyze innermost loops.
1303   if (!TheLoop->empty()) {
1304     DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1305     emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
1306     return false;
1307   }
1308 
1309   // We must have a single backedge.
1310   if (TheLoop->getNumBackEdges() != 1) {
1311     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1312     emitAnalysis(
1313         LoopAccessReport() <<
1314         "loop control flow is not understood by analyzer");
1315     return false;
1316   }
1317 
1318   // We must have a single exiting block.
1319   if (!TheLoop->getExitingBlock()) {
1320     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1321     emitAnalysis(
1322         LoopAccessReport() <<
1323         "loop control flow is not understood by analyzer");
1324     return false;
1325   }
1326 
1327   // We only handle bottom-tested loops, i.e. loop in which the condition is
1328   // checked at the end of each iteration. With that we can assume that all
1329   // instructions in the loop are executed the same number of times.
1330   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1331     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1332     emitAnalysis(
1333         LoopAccessReport() <<
1334         "loop control flow is not understood by analyzer");
1335     return false;
1336   }
1337 
1338   // ScalarEvolution needs to be able to find the exit count.
1339   const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
1340   if (ExitCount == SE->getCouldNotCompute()) {
1341     emitAnalysis(LoopAccessReport() <<
1342                  "could not determine number of loop iterations");
1343     DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1344     return false;
1345   }
1346 
1347   return true;
1348 }
1349 
1350 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
1351 
1352   typedef SmallVector<Value*, 16> ValueVector;
1353   typedef SmallPtrSet<Value*, 16> ValueSet;
1354 
1355   // Holds the Load and Store *instructions*.
1356   ValueVector Loads;
1357   ValueVector Stores;
1358 
1359   // Holds all the different accesses in the loop.
1360   unsigned NumReads = 0;
1361   unsigned NumReadWrites = 0;
1362 
1363   PtrRtChecking.Pointers.clear();
1364   PtrRtChecking.Need = false;
1365 
1366   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1367 
1368   // For each block.
1369   for (Loop::block_iterator bb = TheLoop->block_begin(),
1370        be = TheLoop->block_end(); bb != be; ++bb) {
1371 
1372     // Scan the BB and collect legal loads and stores.
1373     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1374          ++it) {
1375 
1376       // If this is a load, save it. If this instruction can read from memory
1377       // but is not a load, then we quit. Notice that we don't handle function
1378       // calls that read or write.
1379       if (it->mayReadFromMemory()) {
1380         // Many math library functions read the rounding mode. We will only
1381         // vectorize a loop if it contains known function calls that don't set
1382         // the flag. Therefore, it is safe to ignore this read from memory.
1383         CallInst *Call = dyn_cast<CallInst>(it);
1384         if (Call && getIntrinsicIDForCall(Call, TLI))
1385           continue;
1386 
1387         // If the function has an explicit vectorized counterpart, we can safely
1388         // assume that it can be vectorized.
1389         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1390             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1391           continue;
1392 
1393         LoadInst *Ld = dyn_cast<LoadInst>(it);
1394         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
1395           emitAnalysis(LoopAccessReport(Ld)
1396                        << "read with atomic ordering or volatile read");
1397           DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1398           CanVecMem = false;
1399           return;
1400         }
1401         NumLoads++;
1402         Loads.push_back(Ld);
1403         DepChecker.addAccess(Ld);
1404         continue;
1405       }
1406 
1407       // Save 'store' instructions. Abort if other instructions write to memory.
1408       if (it->mayWriteToMemory()) {
1409         StoreInst *St = dyn_cast<StoreInst>(it);
1410         if (!St) {
1411           emitAnalysis(LoopAccessReport(&*it) <<
1412                        "instruction cannot be vectorized");
1413           CanVecMem = false;
1414           return;
1415         }
1416         if (!St->isSimple() && !IsAnnotatedParallel) {
1417           emitAnalysis(LoopAccessReport(St)
1418                        << "write with atomic ordering or volatile write");
1419           DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1420           CanVecMem = false;
1421           return;
1422         }
1423         NumStores++;
1424         Stores.push_back(St);
1425         DepChecker.addAccess(St);
1426       }
1427     } // Next instr.
1428   } // Next block.
1429 
1430   // Now we have two lists that hold the loads and the stores.
1431   // Next, we find the pointers that they use.
1432 
1433   // Check if we see any stores. If there are no stores, then we don't
1434   // care if the pointers are *restrict*.
1435   if (!Stores.size()) {
1436     DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1437     CanVecMem = true;
1438     return;
1439   }
1440 
1441   MemoryDepChecker::DepCandidates DependentAccesses;
1442   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1443                           AA, LI, DependentAccesses, Preds);
1444 
1445   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1446   // multiple times on the same object. If the ptr is accessed twice, once
1447   // for read and once for write, it will only appear once (on the write
1448   // list). This is okay, since we are going to check for conflicts between
1449   // writes and between reads and writes, but not between reads and reads.
1450   ValueSet Seen;
1451 
1452   ValueVector::iterator I, IE;
1453   for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
1454     StoreInst *ST = cast<StoreInst>(*I);
1455     Value* Ptr = ST->getPointerOperand();
1456     // Check for store to loop invariant address.
1457     StoreToLoopInvariantAddress |= isUniform(Ptr);
1458     // If we did *not* see this pointer before, insert it to  the read-write
1459     // list. At this phase it is only a 'write' list.
1460     if (Seen.insert(Ptr).second) {
1461       ++NumReadWrites;
1462 
1463       MemoryLocation Loc = MemoryLocation::get(ST);
1464       // The TBAA metadata could have a control dependency on the predication
1465       // condition, so we cannot rely on it when determining whether or not we
1466       // need runtime pointer checks.
1467       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1468         Loc.AATags.TBAA = nullptr;
1469 
1470       Accesses.addStore(Loc);
1471     }
1472   }
1473 
1474   if (IsAnnotatedParallel) {
1475     DEBUG(dbgs()
1476           << "LAA: A loop annotated parallel, ignore memory dependency "
1477           << "checks.\n");
1478     CanVecMem = true;
1479     return;
1480   }
1481 
1482   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
1483     LoadInst *LD = cast<LoadInst>(*I);
1484     Value* Ptr = LD->getPointerOperand();
1485     // If we did *not* see this pointer before, insert it to the
1486     // read list. If we *did* see it before, then it is already in
1487     // the read-write list. This allows us to vectorize expressions
1488     // such as A[i] += x;  Because the address of A[i] is a read-write
1489     // pointer. This only works if the index of A[i] is consecutive.
1490     // If the address of i is unknown (for example A[B[i]]) then we may
1491     // read a few words, modify, and write a few words, and some of the
1492     // words may be written to the same address.
1493     bool IsReadOnlyPtr = false;
1494     if (Seen.insert(Ptr).second ||
1495         !isStridedPtr(SE, Ptr, TheLoop, Strides, Preds)) {
1496       ++NumReads;
1497       IsReadOnlyPtr = true;
1498     }
1499 
1500     MemoryLocation Loc = MemoryLocation::get(LD);
1501     // The TBAA metadata could have a control dependency on the predication
1502     // condition, so we cannot rely on it when determining whether or not we
1503     // need runtime pointer checks.
1504     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1505       Loc.AATags.TBAA = nullptr;
1506 
1507     Accesses.addLoad(Loc, IsReadOnlyPtr);
1508   }
1509 
1510   // If we write (or read-write) to a single destination and there are no
1511   // other reads in this loop then is it safe to vectorize.
1512   if (NumReadWrites == 1 && NumReads == 0) {
1513     DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1514     CanVecMem = true;
1515     return;
1516   }
1517 
1518   // Build dependence sets and check whether we need a runtime pointer bounds
1519   // check.
1520   Accesses.buildDependenceSets();
1521 
1522   // Find pointers with computable bounds. We are going to use this information
1523   // to place a runtime bound check.
1524   bool CanDoRTIfNeeded =
1525       Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides);
1526   if (!CanDoRTIfNeeded) {
1527     emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
1528     DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1529                  << "the array bounds.\n");
1530     CanVecMem = false;
1531     return;
1532   }
1533 
1534   DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
1535 
1536   CanVecMem = true;
1537   if (Accesses.isDependencyCheckNeeded()) {
1538     DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1539     CanVecMem = DepChecker.areDepsSafe(
1540         DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
1541     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
1542 
1543     if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
1544       DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
1545 
1546       // Clear the dependency checks. We assume they are not needed.
1547       Accesses.resetDepChecks(DepChecker);
1548 
1549       PtrRtChecking.reset();
1550       PtrRtChecking.Need = true;
1551 
1552       CanDoRTIfNeeded =
1553           Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true);
1554 
1555       // Check that we found the bounds for the pointer.
1556       if (!CanDoRTIfNeeded) {
1557         emitAnalysis(LoopAccessReport()
1558                      << "cannot check memory dependencies at runtime");
1559         DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1560         CanVecMem = false;
1561         return;
1562       }
1563 
1564       CanVecMem = true;
1565     }
1566   }
1567 
1568   if (CanVecMem)
1569     DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
1570                  << (PtrRtChecking.Need ? "" : " don't")
1571                  << " need runtime memory checks.\n");
1572   else {
1573     emitAnalysis(LoopAccessReport() <<
1574                  "unsafe dependent memory operations in loop");
1575     DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1576   }
1577 }
1578 
1579 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1580                                            DominatorTree *DT)  {
1581   assert(TheLoop->contains(BB) && "Unknown block used");
1582 
1583   // Blocks that do not dominate the latch need predication.
1584   BasicBlock* Latch = TheLoop->getLoopLatch();
1585   return !DT->dominates(BB, Latch);
1586 }
1587 
1588 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
1589   assert(!Report && "Multiple reports generated");
1590   Report = Message;
1591 }
1592 
1593 bool LoopAccessInfo::isUniform(Value *V) const {
1594   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1595 }
1596 
1597 // FIXME: this function is currently a duplicate of the one in
1598 // LoopVectorize.cpp.
1599 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1600                                  Instruction *Loc) {
1601   if (FirstInst)
1602     return FirstInst;
1603   if (Instruction *I = dyn_cast<Instruction>(V))
1604     return I->getParent() == Loc->getParent() ? I : nullptr;
1605   return nullptr;
1606 }
1607 
1608 namespace {
1609 /// \brief IR Values for the lower and upper bounds of a pointer evolution.  We
1610 /// need to use value-handles because SCEV expansion can invalidate previously
1611 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1612 /// a previous one.
1613 struct PointerBounds {
1614   TrackingVH<Value> Start;
1615   TrackingVH<Value> End;
1616 };
1617 } // end anonymous namespace
1618 
1619 /// \brief Expand code for the lower and upper bound of the pointer group \p CG
1620 /// in \p TheLoop.  \return the values for the bounds.
1621 static PointerBounds
1622 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1623              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1624              const RuntimePointerChecking &PtrRtChecking) {
1625   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1626   const SCEV *Sc = SE->getSCEV(Ptr);
1627 
1628   if (SE->isLoopInvariant(Sc, TheLoop)) {
1629     DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1630                  << "\n");
1631     return {Ptr, Ptr};
1632   } else {
1633     unsigned AS = Ptr->getType()->getPointerAddressSpace();
1634     LLVMContext &Ctx = Loc->getContext();
1635 
1636     // Use this type for pointer arithmetic.
1637     Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1638     Value *Start = nullptr, *End = nullptr;
1639 
1640     DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1641     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1642     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1643     DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1644     return {Start, End};
1645   }
1646 }
1647 
1648 /// \brief Turns a collection of checks into a collection of expanded upper and
1649 /// lower bounds for both pointers in the check.
1650 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1651     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1652     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1653     const RuntimePointerChecking &PtrRtChecking) {
1654   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1655 
1656   // Here we're relying on the SCEV Expander's cache to only emit code for the
1657   // same bounds once.
1658   std::transform(
1659       PointerChecks.begin(), PointerChecks.end(),
1660       std::back_inserter(ChecksWithBounds),
1661       [&](const RuntimePointerChecking::PointerCheck &Check) {
1662         PointerBounds
1663           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1664           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1665         return std::make_pair(First, Second);
1666       });
1667 
1668   return ChecksWithBounds;
1669 }
1670 
1671 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
1672     Instruction *Loc,
1673     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1674     const {
1675 
1676   SCEVExpander Exp(*SE, DL, "induction");
1677   auto ExpandedChecks =
1678       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking);
1679 
1680   LLVMContext &Ctx = Loc->getContext();
1681   Instruction *FirstInst = nullptr;
1682   IRBuilder<> ChkBuilder(Loc);
1683   // Our instructions might fold to a constant.
1684   Value *MemoryRuntimeCheck = nullptr;
1685 
1686   for (const auto &Check : ExpandedChecks) {
1687     const PointerBounds &A = Check.first, &B = Check.second;
1688     // Check if two pointers (A and B) conflict where conflict is computed as:
1689     // start(A) <= end(B) && start(B) <= end(A)
1690     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1691     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1692 
1693     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1694            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1695            "Trying to bounds check pointers with different address spaces");
1696 
1697     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1698     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1699 
1700     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1701     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1702     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
1703     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
1704 
1705     Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1706     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1707     Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1708     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1709     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1710     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1711     if (MemoryRuntimeCheck) {
1712       IsConflict =
1713           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1714       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1715     }
1716     MemoryRuntimeCheck = IsConflict;
1717   }
1718 
1719   if (!MemoryRuntimeCheck)
1720     return std::make_pair(nullptr, nullptr);
1721 
1722   // We have to do this trickery because the IRBuilder might fold the check to a
1723   // constant expression in which case there is no Instruction anchored in a
1724   // the block.
1725   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1726                                                  ConstantInt::getTrue(Ctx));
1727   ChkBuilder.Insert(Check, "memcheck.conflict");
1728   FirstInst = getFirstInst(FirstInst, Check, Loc);
1729   return std::make_pair(FirstInst, Check);
1730 }
1731 
1732 std::pair<Instruction *, Instruction *>
1733 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
1734   if (!PtrRtChecking.Need)
1735     return std::make_pair(nullptr, nullptr);
1736 
1737   return addRuntimeChecks(Loc, PtrRtChecking.getChecks());
1738 }
1739 
1740 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
1741                                const DataLayout &DL,
1742                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
1743                                DominatorTree *DT, LoopInfo *LI,
1744                                const ValueToValueMap &Strides)
1745     : PtrRtChecking(SE), DepChecker(SE, L, Preds), TheLoop(L), SE(SE), DL(DL),
1746       TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
1747       MaxSafeDepDistBytes(-1U), CanVecMem(false),
1748       StoreToLoopInvariantAddress(false) {
1749   if (canAnalyzeLoop())
1750     analyzeLoop(Strides);
1751 }
1752 
1753 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1754   if (CanVecMem) {
1755     if (PtrRtChecking.Need)
1756       OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
1757     else
1758       OS.indent(Depth) << "Memory dependences are safe\n";
1759   }
1760 
1761   if (Report)
1762     OS.indent(Depth) << "Report: " << Report->str() << "\n";
1763 
1764   if (auto *InterestingDependences = DepChecker.getInterestingDependences()) {
1765     OS.indent(Depth) << "Interesting Dependences:\n";
1766     for (auto &Dep : *InterestingDependences) {
1767       Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
1768       OS << "\n";
1769     }
1770   } else
1771     OS.indent(Depth) << "Too many interesting dependences, not recorded\n";
1772 
1773   // List the pair of accesses need run-time checks to prove independence.
1774   PtrRtChecking.print(OS, Depth);
1775   OS << "\n";
1776 
1777   OS.indent(Depth) << "Store to invariant address was "
1778                    << (StoreToLoopInvariantAddress ? "" : "not ")
1779                    << "found in loop.\n";
1780 
1781   OS.indent(Depth) << "SCEV assumptions:\n";
1782   Preds.print(OS, Depth);
1783 }
1784 
1785 const LoopAccessInfo &
1786 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
1787   auto &LAI = LoopAccessInfoMap[L];
1788 
1789 #ifndef NDEBUG
1790   assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
1791          "Symbolic strides changed for loop");
1792 #endif
1793 
1794   if (!LAI) {
1795     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1796     LAI =
1797         llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, Strides);
1798 #ifndef NDEBUG
1799     LAI->NumSymbolicStrides = Strides.size();
1800 #endif
1801   }
1802   return *LAI.get();
1803 }
1804 
1805 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
1806   LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
1807 
1808   ValueToValueMap NoSymbolicStrides;
1809 
1810   for (Loop *TopLevelLoop : *LI)
1811     for (Loop *L : depth_first(TopLevelLoop)) {
1812       OS.indent(2) << L->getHeader()->getName() << ":\n";
1813       auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
1814       LAI.print(OS, 4);
1815     }
1816 }
1817 
1818 bool LoopAccessAnalysis::runOnFunction(Function &F) {
1819   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1820   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1821   TLI = TLIP ? &TLIP->getTLI() : nullptr;
1822   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1823   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1824   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1825 
1826   return false;
1827 }
1828 
1829 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1830     AU.addRequired<ScalarEvolutionWrapperPass>();
1831     AU.addRequired<AAResultsWrapperPass>();
1832     AU.addRequired<DominatorTreeWrapperPass>();
1833     AU.addRequired<LoopInfoWrapperPass>();
1834 
1835     AU.setPreservesAll();
1836 }
1837 
1838 char LoopAccessAnalysis::ID = 0;
1839 static const char laa_name[] = "Loop Access Analysis";
1840 #define LAA_NAME "loop-accesses"
1841 
1842 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1843 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1844 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1845 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1846 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1847 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1848 
1849 namespace llvm {
1850   Pass *createLAAPass() {
1851     return new LoopAccessAnalysis();
1852   }
1853 }
1854