1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/IR/ValueHandle.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <cstdlib> 64 #include <iterator> 65 #include <utility> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "loop-accesses" 71 72 static cl::opt<unsigned, true> 73 VectorizationFactor("force-vector-width", cl::Hidden, 74 cl::desc("Sets the SIMD width. Zero is autoselect."), 75 cl::location(VectorizerParams::VectorizationFactor)); 76 unsigned VectorizerParams::VectorizationFactor; 77 78 static cl::opt<unsigned, true> 79 VectorizationInterleave("force-vector-interleave", cl::Hidden, 80 cl::desc("Sets the vectorization interleave count. " 81 "Zero is autoselect."), 82 cl::location( 83 VectorizerParams::VectorizationInterleave)); 84 unsigned VectorizerParams::VectorizationInterleave; 85 86 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 87 "runtime-memory-check-threshold", cl::Hidden, 88 cl::desc("When performing memory disambiguation checks at runtime do not " 89 "generate more than this number of comparisons (default = 8)."), 90 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 91 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 92 93 /// The maximum iterations used to merge memory checks 94 static cl::opt<unsigned> MemoryCheckMergeThreshold( 95 "memory-check-merge-threshold", cl::Hidden, 96 cl::desc("Maximum number of comparisons done when trying to merge " 97 "runtime memory checks. (default = 100)"), 98 cl::init(100)); 99 100 /// Maximum SIMD width. 101 const unsigned VectorizerParams::MaxVectorWidth = 64; 102 103 /// We collect dependences up to this threshold. 104 static cl::opt<unsigned> 105 MaxDependences("max-dependences", cl::Hidden, 106 cl::desc("Maximum number of dependences collected by " 107 "loop-access analysis (default = 100)"), 108 cl::init(100)); 109 110 /// This enables versioning on the strides of symbolically striding memory 111 /// accesses in code like the following. 112 /// for (i = 0; i < N; ++i) 113 /// A[i * Stride1] += B[i * Stride2] ... 114 /// 115 /// Will be roughly translated to 116 /// if (Stride1 == 1 && Stride2 == 1) { 117 /// for (i = 0; i < N; i+=4) 118 /// A[i:i+3] += ... 119 /// } else 120 /// ... 121 static cl::opt<bool> EnableMemAccessVersioning( 122 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 123 cl::desc("Enable symbolic stride memory access versioning")); 124 125 /// Enable store-to-load forwarding conflict detection. This option can 126 /// be disabled for correctness testing. 127 static cl::opt<bool> EnableForwardingConflictDetection( 128 "store-to-load-forwarding-conflict-detection", cl::Hidden, 129 cl::desc("Enable conflict detection in loop-access analysis"), 130 cl::init(true)); 131 132 bool VectorizerParams::isInterleaveForced() { 133 return ::VectorizationInterleave.getNumOccurrences() > 0; 134 } 135 136 Value *llvm::stripIntegerCast(Value *V) { 137 if (auto *CI = dyn_cast<CastInst>(V)) 138 if (CI->getOperand(0)->getType()->isIntegerTy()) 139 return CI->getOperand(0); 140 return V; 141 } 142 143 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 144 const ValueToValueMap &PtrToStride, 145 Value *Ptr, Value *OrigPtr) { 146 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 147 148 // If there is an entry in the map return the SCEV of the pointer with the 149 // symbolic stride replaced by one. 150 ValueToValueMap::const_iterator SI = 151 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 152 if (SI != PtrToStride.end()) { 153 Value *StrideVal = SI->second; 154 155 // Strip casts. 156 StrideVal = stripIntegerCast(StrideVal); 157 158 ScalarEvolution *SE = PSE.getSE(); 159 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 160 const auto *CT = 161 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 162 163 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 164 auto *Expr = PSE.getSCEV(Ptr); 165 166 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 167 << " by: " << *Expr << "\n"); 168 return Expr; 169 } 170 171 // Otherwise, just return the SCEV of the original pointer. 172 return OrigSCEV; 173 } 174 175 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 176 unsigned Index, RuntimePointerChecking &RtCheck) 177 : RtCheck(RtCheck), High(RtCheck.Pointers[Index].End), 178 Low(RtCheck.Pointers[Index].Start) { 179 Members.push_back(Index); 180 } 181 182 /// Calculate Start and End points of memory access. 183 /// Let's assume A is the first access and B is a memory access on N-th loop 184 /// iteration. Then B is calculated as: 185 /// B = A + Step*N . 186 /// Step value may be positive or negative. 187 /// N is a calculated back-edge taken count: 188 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 189 /// Start and End points are calculated in the following way: 190 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 191 /// where SizeOfElt is the size of single memory access in bytes. 192 /// 193 /// There is no conflict when the intervals are disjoint: 194 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 195 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 196 unsigned DepSetId, unsigned ASId, 197 const ValueToValueMap &Strides, 198 PredicatedScalarEvolution &PSE) { 199 // Get the stride replaced scev. 200 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 201 ScalarEvolution *SE = PSE.getSE(); 202 203 const SCEV *ScStart; 204 const SCEV *ScEnd; 205 206 if (SE->isLoopInvariant(Sc, Lp)) 207 ScStart = ScEnd = Sc; 208 else { 209 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 210 assert(AR && "Invalid addrec expression"); 211 const SCEV *Ex = PSE.getBackedgeTakenCount(); 212 213 ScStart = AR->getStart(); 214 ScEnd = AR->evaluateAtIteration(Ex, *SE); 215 const SCEV *Step = AR->getStepRecurrence(*SE); 216 217 // For expressions with negative step, the upper bound is ScStart and the 218 // lower bound is ScEnd. 219 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 220 if (CStep->getValue()->isNegative()) 221 std::swap(ScStart, ScEnd); 222 } else { 223 // Fallback case: the step is not constant, but we can still 224 // get the upper and lower bounds of the interval by using min/max 225 // expressions. 226 ScStart = SE->getUMinExpr(ScStart, ScEnd); 227 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 228 } 229 // Add the size of the pointed element to ScEnd. 230 unsigned EltSize = 231 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; 232 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); 233 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 234 } 235 236 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 237 } 238 239 SmallVector<RuntimePointerCheck, 4> 240 RuntimePointerChecking::generateChecks() const { 241 SmallVector<RuntimePointerCheck, 4> Checks; 242 243 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 244 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 245 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 246 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 247 248 if (needsChecking(CGI, CGJ)) 249 Checks.push_back(std::make_pair(&CGI, &CGJ)); 250 } 251 } 252 return Checks; 253 } 254 255 void RuntimePointerChecking::generateChecks( 256 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 257 assert(Checks.empty() && "Checks is not empty"); 258 groupChecks(DepCands, UseDependencies); 259 Checks = generateChecks(); 260 } 261 262 bool RuntimePointerChecking::needsChecking( 263 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 264 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 265 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 266 if (needsChecking(M.Members[I], N.Members[J])) 267 return true; 268 return false; 269 } 270 271 /// Compare \p I and \p J and return the minimum. 272 /// Return nullptr in case we couldn't find an answer. 273 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 274 ScalarEvolution *SE) { 275 const SCEV *Diff = SE->getMinusSCEV(J, I); 276 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 277 278 if (!C) 279 return nullptr; 280 if (C->getValue()->isNegative()) 281 return J; 282 return I; 283 } 284 285 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index) { 286 const SCEV *Start = RtCheck.Pointers[Index].Start; 287 const SCEV *End = RtCheck.Pointers[Index].End; 288 289 // Compare the starts and ends with the known minimum and maximum 290 // of this set. We need to know how we compare against the min/max 291 // of the set in order to be able to emit memchecks. 292 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 293 if (!Min0) 294 return false; 295 296 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 297 if (!Min1) 298 return false; 299 300 // Update the low bound expression if we've found a new min value. 301 if (Min0 == Start) 302 Low = Start; 303 304 // Update the high bound expression if we've found a new max value. 305 if (Min1 != End) 306 High = End; 307 308 Members.push_back(Index); 309 return true; 310 } 311 312 void RuntimePointerChecking::groupChecks( 313 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 314 // We build the groups from dependency candidates equivalence classes 315 // because: 316 // - We know that pointers in the same equivalence class share 317 // the same underlying object and therefore there is a chance 318 // that we can compare pointers 319 // - We wouldn't be able to merge two pointers for which we need 320 // to emit a memcheck. The classes in DepCands are already 321 // conveniently built such that no two pointers in the same 322 // class need checking against each other. 323 324 // We use the following (greedy) algorithm to construct the groups 325 // For every pointer in the equivalence class: 326 // For each existing group: 327 // - if the difference between this pointer and the min/max bounds 328 // of the group is a constant, then make the pointer part of the 329 // group and update the min/max bounds of that group as required. 330 331 CheckingGroups.clear(); 332 333 // If we need to check two pointers to the same underlying object 334 // with a non-constant difference, we shouldn't perform any pointer 335 // grouping with those pointers. This is because we can easily get 336 // into cases where the resulting check would return false, even when 337 // the accesses are safe. 338 // 339 // The following example shows this: 340 // for (i = 0; i < 1000; ++i) 341 // a[5000 + i * m] = a[i] + a[i + 9000] 342 // 343 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 344 // (0, 10000) which is always false. However, if m is 1, there is no 345 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 346 // us to perform an accurate check in this case. 347 // 348 // The above case requires that we have an UnknownDependence between 349 // accesses to the same underlying object. This cannot happen unless 350 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 351 // is also false. In this case we will use the fallback path and create 352 // separate checking groups for all pointers. 353 354 // If we don't have the dependency partitions, construct a new 355 // checking pointer group for each pointer. This is also required 356 // for correctness, because in this case we can have checking between 357 // pointers to the same underlying object. 358 if (!UseDependencies) { 359 for (unsigned I = 0; I < Pointers.size(); ++I) 360 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 361 return; 362 } 363 364 unsigned TotalComparisons = 0; 365 366 DenseMap<Value *, unsigned> PositionMap; 367 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 368 PositionMap[Pointers[Index].PointerValue] = Index; 369 370 // We need to keep track of what pointers we've already seen so we 371 // don't process them twice. 372 SmallSet<unsigned, 2> Seen; 373 374 // Go through all equivalence classes, get the "pointer check groups" 375 // and add them to the overall solution. We use the order in which accesses 376 // appear in 'Pointers' to enforce determinism. 377 for (unsigned I = 0; I < Pointers.size(); ++I) { 378 // We've seen this pointer before, and therefore already processed 379 // its equivalence class. 380 if (Seen.count(I)) 381 continue; 382 383 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 384 Pointers[I].IsWritePtr); 385 386 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 387 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 388 389 // Because DepCands is constructed by visiting accesses in the order in 390 // which they appear in alias sets (which is deterministic) and the 391 // iteration order within an equivalence class member is only dependent on 392 // the order in which unions and insertions are performed on the 393 // equivalence class, the iteration order is deterministic. 394 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 395 MI != ME; ++MI) { 396 auto PointerI = PositionMap.find(MI->getPointer()); 397 assert(PointerI != PositionMap.end() && 398 "pointer in equivalence class not found in PositionMap"); 399 unsigned Pointer = PointerI->second; 400 bool Merged = false; 401 // Mark this pointer as seen. 402 Seen.insert(Pointer); 403 404 // Go through all the existing sets and see if we can find one 405 // which can include this pointer. 406 for (RuntimeCheckingPtrGroup &Group : Groups) { 407 // Don't perform more than a certain amount of comparisons. 408 // This should limit the cost of grouping the pointers to something 409 // reasonable. If we do end up hitting this threshold, the algorithm 410 // will create separate groups for all remaining pointers. 411 if (TotalComparisons > MemoryCheckMergeThreshold) 412 break; 413 414 TotalComparisons++; 415 416 if (Group.addPointer(Pointer)) { 417 Merged = true; 418 break; 419 } 420 } 421 422 if (!Merged) 423 // We couldn't add this pointer to any existing set or the threshold 424 // for the number of comparisons has been reached. Create a new group 425 // to hold the current pointer. 426 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 427 } 428 429 // We've computed the grouped checks for this partition. 430 // Save the results and continue with the next one. 431 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 432 } 433 } 434 435 bool RuntimePointerChecking::arePointersInSamePartition( 436 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 437 unsigned PtrIdx2) { 438 return (PtrToPartition[PtrIdx1] != -1 && 439 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 440 } 441 442 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 443 const PointerInfo &PointerI = Pointers[I]; 444 const PointerInfo &PointerJ = Pointers[J]; 445 446 // No need to check if two readonly pointers intersect. 447 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 448 return false; 449 450 // Only need to check pointers between two different dependency sets. 451 if (PointerI.DependencySetId == PointerJ.DependencySetId) 452 return false; 453 454 // Only need to check pointers in the same alias set. 455 if (PointerI.AliasSetId != PointerJ.AliasSetId) 456 return false; 457 458 return true; 459 } 460 461 void RuntimePointerChecking::printChecks( 462 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 463 unsigned Depth) const { 464 unsigned N = 0; 465 for (const auto &Check : Checks) { 466 const auto &First = Check.first->Members, &Second = Check.second->Members; 467 468 OS.indent(Depth) << "Check " << N++ << ":\n"; 469 470 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 471 for (unsigned K = 0; K < First.size(); ++K) 472 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 473 474 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 475 for (unsigned K = 0; K < Second.size(); ++K) 476 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 477 } 478 } 479 480 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 481 482 OS.indent(Depth) << "Run-time memory checks:\n"; 483 printChecks(OS, Checks, Depth); 484 485 OS.indent(Depth) << "Grouped accesses:\n"; 486 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 487 const auto &CG = CheckingGroups[I]; 488 489 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 490 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 491 << ")\n"; 492 for (unsigned J = 0; J < CG.Members.size(); ++J) { 493 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 494 << "\n"; 495 } 496 } 497 } 498 499 namespace { 500 501 /// Analyses memory accesses in a loop. 502 /// 503 /// Checks whether run time pointer checks are needed and builds sets for data 504 /// dependence checking. 505 class AccessAnalysis { 506 public: 507 /// Read or write access location. 508 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 509 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 510 511 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 512 MemoryDepChecker::DepCandidates &DA, 513 PredicatedScalarEvolution &PSE) 514 : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), 515 IsRTCheckAnalysisNeeded(false), PSE(PSE) {} 516 517 /// Register a load and whether it is only read from. 518 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 519 Value *Ptr = const_cast<Value*>(Loc.Ptr); 520 AST.add(Ptr, LocationSize::unknown(), Loc.AATags); 521 Accesses.insert(MemAccessInfo(Ptr, false)); 522 if (IsReadOnly) 523 ReadOnlyPtr.insert(Ptr); 524 } 525 526 /// Register a store. 527 void addStore(MemoryLocation &Loc) { 528 Value *Ptr = const_cast<Value*>(Loc.Ptr); 529 AST.add(Ptr, LocationSize::unknown(), Loc.AATags); 530 Accesses.insert(MemAccessInfo(Ptr, true)); 531 } 532 533 /// Check if we can emit a run-time no-alias check for \p Access. 534 /// 535 /// Returns true if we can emit a run-time no alias check for \p Access. 536 /// If we can check this access, this also adds it to a dependence set and 537 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 538 /// we will attempt to use additional run-time checks in order to get 539 /// the bounds of the pointer. 540 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 541 MemAccessInfo Access, 542 const ValueToValueMap &Strides, 543 DenseMap<Value *, unsigned> &DepSetId, 544 Loop *TheLoop, unsigned &RunningDepId, 545 unsigned ASId, bool ShouldCheckStride, 546 bool Assume); 547 548 /// Check whether we can check the pointers at runtime for 549 /// non-intersection. 550 /// 551 /// Returns true if we need no check or if we do and we can generate them 552 /// (i.e. the pointers have computable bounds). 553 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 554 Loop *TheLoop, const ValueToValueMap &Strides, 555 bool ShouldCheckWrap = false); 556 557 /// Goes over all memory accesses, checks whether a RT check is needed 558 /// and builds sets of dependent accesses. 559 void buildDependenceSets() { 560 processMemAccesses(); 561 } 562 563 /// Initial processing of memory accesses determined that we need to 564 /// perform dependency checking. 565 /// 566 /// Note that this can later be cleared if we retry memcheck analysis without 567 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 568 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 569 570 /// We decided that no dependence analysis would be used. Reset the state. 571 void resetDepChecks(MemoryDepChecker &DepChecker) { 572 CheckDeps.clear(); 573 DepChecker.clearDependences(); 574 } 575 576 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 577 578 private: 579 typedef SetVector<MemAccessInfo> PtrAccessSet; 580 581 /// Go over all memory access and check whether runtime pointer checks 582 /// are needed and build sets of dependency check candidates. 583 void processMemAccesses(); 584 585 /// Set of all accesses. 586 PtrAccessSet Accesses; 587 588 /// The loop being checked. 589 const Loop *TheLoop; 590 591 /// List of accesses that need a further dependence check. 592 MemAccessInfoList CheckDeps; 593 594 /// Set of pointers that are read only. 595 SmallPtrSet<Value*, 16> ReadOnlyPtr; 596 597 /// An alias set tracker to partition the access set by underlying object and 598 //intrinsic property (such as TBAA metadata). 599 AliasSetTracker AST; 600 601 LoopInfo *LI; 602 603 /// Sets of potentially dependent accesses - members of one set share an 604 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 605 /// dependence check. 606 MemoryDepChecker::DepCandidates &DepCands; 607 608 /// Initial processing of memory accesses determined that we may need 609 /// to add memchecks. Perform the analysis to determine the necessary checks. 610 /// 611 /// Note that, this is different from isDependencyCheckNeeded. When we retry 612 /// memcheck analysis without dependency checking 613 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 614 /// cleared while this remains set if we have potentially dependent accesses. 615 bool IsRTCheckAnalysisNeeded; 616 617 /// The SCEV predicate containing all the SCEV-related assumptions. 618 PredicatedScalarEvolution &PSE; 619 }; 620 621 } // end anonymous namespace 622 623 /// Check whether a pointer can participate in a runtime bounds check. 624 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 625 /// by adding run-time checks (overflow checks) if necessary. 626 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 627 const ValueToValueMap &Strides, Value *Ptr, 628 Loop *L, bool Assume) { 629 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 630 631 // The bounds for loop-invariant pointer is trivial. 632 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 633 return true; 634 635 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 636 637 if (!AR && Assume) 638 AR = PSE.getAsAddRec(Ptr); 639 640 if (!AR) 641 return false; 642 643 return AR->isAffine(); 644 } 645 646 /// Check whether a pointer address cannot wrap. 647 static bool isNoWrap(PredicatedScalarEvolution &PSE, 648 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 649 const SCEV *PtrScev = PSE.getSCEV(Ptr); 650 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 651 return true; 652 653 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 654 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 655 return true; 656 657 return false; 658 } 659 660 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 661 MemAccessInfo Access, 662 const ValueToValueMap &StridesMap, 663 DenseMap<Value *, unsigned> &DepSetId, 664 Loop *TheLoop, unsigned &RunningDepId, 665 unsigned ASId, bool ShouldCheckWrap, 666 bool Assume) { 667 Value *Ptr = Access.getPointer(); 668 669 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 670 return false; 671 672 // When we run after a failing dependency check we have to make sure 673 // we don't have wrapping pointers. 674 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { 675 auto *Expr = PSE.getSCEV(Ptr); 676 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 677 return false; 678 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 679 } 680 681 // The id of the dependence set. 682 unsigned DepId; 683 684 if (isDependencyCheckNeeded()) { 685 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 686 unsigned &LeaderId = DepSetId[Leader]; 687 if (!LeaderId) 688 LeaderId = RunningDepId++; 689 DepId = LeaderId; 690 } else 691 // Each access has its own dependence set. 692 DepId = RunningDepId++; 693 694 bool IsWrite = Access.getInt(); 695 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 696 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 697 698 return true; 699 } 700 701 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 702 ScalarEvolution *SE, Loop *TheLoop, 703 const ValueToValueMap &StridesMap, 704 bool ShouldCheckWrap) { 705 // Find pointers with computable bounds. We are going to use this information 706 // to place a runtime bound check. 707 bool CanDoRT = true; 708 709 bool MayNeedRTCheck = false; 710 if (!IsRTCheckAnalysisNeeded) return true; 711 712 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 713 714 // We assign a consecutive id to access from different alias sets. 715 // Accesses between different groups doesn't need to be checked. 716 unsigned ASId = 0; 717 for (auto &AS : AST) { 718 int NumReadPtrChecks = 0; 719 int NumWritePtrChecks = 0; 720 bool CanDoAliasSetRT = true; 721 ++ASId; 722 723 // We assign consecutive id to access from different dependence sets. 724 // Accesses within the same set don't need a runtime check. 725 unsigned RunningDepId = 1; 726 DenseMap<Value *, unsigned> DepSetId; 727 728 SmallVector<MemAccessInfo, 4> Retries; 729 730 // First, count how many write and read accesses are in the alias set. Also 731 // collect MemAccessInfos for later. 732 SmallVector<MemAccessInfo, 4> AccessInfos; 733 for (auto A : AS) { 734 Value *Ptr = A.getValue(); 735 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 736 737 if (IsWrite) 738 ++NumWritePtrChecks; 739 else 740 ++NumReadPtrChecks; 741 AccessInfos.emplace_back(Ptr, IsWrite); 742 } 743 744 // We do not need runtime checks for this alias set, if there are no writes 745 // or a single write and no reads. 746 if (NumWritePtrChecks == 0 || 747 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 748 assert((AS.size() <= 1 || 749 all_of(AS, 750 [this](auto AC) { 751 MemAccessInfo AccessWrite(AC.getValue(), true); 752 return DepCands.findValue(AccessWrite) == DepCands.end(); 753 })) && 754 "Can only skip updating CanDoRT below, if all entries in AS " 755 "are reads or there is at most 1 entry"); 756 continue; 757 } 758 759 for (auto &Access : AccessInfos) { 760 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, 761 RunningDepId, ASId, ShouldCheckWrap, false)) { 762 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 763 << *Access.getPointer() << '\n'); 764 Retries.push_back(Access); 765 CanDoAliasSetRT = false; 766 } 767 } 768 769 // Note that this function computes CanDoRT and MayNeedRTCheck 770 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 771 // we have a pointer for which we couldn't find the bounds but we don't 772 // actually need to emit any checks so it does not matter. 773 // 774 // We need runtime checks for this alias set, if there are at least 2 775 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 776 // any bound checks (because in that case the number of dependence sets is 777 // incomplete). 778 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 779 780 // We need to perform run-time alias checks, but some pointers had bounds 781 // that couldn't be checked. 782 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 783 // Reset the CanDoSetRt flag and retry all accesses that have failed. 784 // We know that we need these checks, so we can now be more aggressive 785 // and add further checks if required (overflow checks). 786 CanDoAliasSetRT = true; 787 for (auto Access : Retries) 788 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, 789 TheLoop, RunningDepId, ASId, 790 ShouldCheckWrap, /*Assume=*/true)) { 791 CanDoAliasSetRT = false; 792 break; 793 } 794 } 795 796 CanDoRT &= CanDoAliasSetRT; 797 MayNeedRTCheck |= NeedsAliasSetRTCheck; 798 ++ASId; 799 } 800 801 // If the pointers that we would use for the bounds comparison have different 802 // address spaces, assume the values aren't directly comparable, so we can't 803 // use them for the runtime check. We also have to assume they could 804 // overlap. In the future there should be metadata for whether address spaces 805 // are disjoint. 806 unsigned NumPointers = RtCheck.Pointers.size(); 807 for (unsigned i = 0; i < NumPointers; ++i) { 808 for (unsigned j = i + 1; j < NumPointers; ++j) { 809 // Only need to check pointers between two different dependency sets. 810 if (RtCheck.Pointers[i].DependencySetId == 811 RtCheck.Pointers[j].DependencySetId) 812 continue; 813 // Only need to check pointers in the same alias set. 814 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 815 continue; 816 817 Value *PtrI = RtCheck.Pointers[i].PointerValue; 818 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 819 820 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 821 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 822 if (ASi != ASj) { 823 LLVM_DEBUG( 824 dbgs() << "LAA: Runtime check would require comparison between" 825 " different address spaces\n"); 826 return false; 827 } 828 } 829 } 830 831 if (MayNeedRTCheck && CanDoRT) 832 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 833 834 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 835 << " pointer comparisons.\n"); 836 837 // If we can do run-time checks, but there are no checks, no runtime checks 838 // are needed. This can happen when all pointers point to the same underlying 839 // object for example. 840 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 841 842 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 843 if (!CanDoRTIfNeeded) 844 RtCheck.reset(); 845 return CanDoRTIfNeeded; 846 } 847 848 void AccessAnalysis::processMemAccesses() { 849 // We process the set twice: first we process read-write pointers, last we 850 // process read-only pointers. This allows us to skip dependence tests for 851 // read-only pointers. 852 853 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 854 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 855 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 856 LLVM_DEBUG({ 857 for (auto A : Accesses) 858 dbgs() << "\t" << *A.getPointer() << " (" << 859 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 860 "read-only" : "read")) << ")\n"; 861 }); 862 863 // The AliasSetTracker has nicely partitioned our pointers by metadata 864 // compatibility and potential for underlying-object overlap. As a result, we 865 // only need to check for potential pointer dependencies within each alias 866 // set. 867 for (auto &AS : AST) { 868 // Note that both the alias-set tracker and the alias sets themselves used 869 // linked lists internally and so the iteration order here is deterministic 870 // (matching the original instruction order within each set). 871 872 bool SetHasWrite = false; 873 874 // Map of pointers to last access encountered. 875 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 876 UnderlyingObjToAccessMap ObjToLastAccess; 877 878 // Set of access to check after all writes have been processed. 879 PtrAccessSet DeferredAccesses; 880 881 // Iterate over each alias set twice, once to process read/write pointers, 882 // and then to process read-only pointers. 883 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 884 bool UseDeferred = SetIteration > 0; 885 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 886 887 for (auto AV : AS) { 888 Value *Ptr = AV.getValue(); 889 890 // For a single memory access in AliasSetTracker, Accesses may contain 891 // both read and write, and they both need to be handled for CheckDeps. 892 for (auto AC : S) { 893 if (AC.getPointer() != Ptr) 894 continue; 895 896 bool IsWrite = AC.getInt(); 897 898 // If we're using the deferred access set, then it contains only 899 // reads. 900 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 901 if (UseDeferred && !IsReadOnlyPtr) 902 continue; 903 // Otherwise, the pointer must be in the PtrAccessSet, either as a 904 // read or a write. 905 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 906 S.count(MemAccessInfo(Ptr, false))) && 907 "Alias-set pointer not in the access set?"); 908 909 MemAccessInfo Access(Ptr, IsWrite); 910 DepCands.insert(Access); 911 912 // Memorize read-only pointers for later processing and skip them in 913 // the first round (they need to be checked after we have seen all 914 // write pointers). Note: we also mark pointer that are not 915 // consecutive as "read-only" pointers (so that we check 916 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 917 if (!UseDeferred && IsReadOnlyPtr) { 918 DeferredAccesses.insert(Access); 919 continue; 920 } 921 922 // If this is a write - check other reads and writes for conflicts. If 923 // this is a read only check other writes for conflicts (but only if 924 // there is no other write to the ptr - this is an optimization to 925 // catch "a[i] = a[i] + " without having to do a dependence check). 926 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 927 CheckDeps.push_back(Access); 928 IsRTCheckAnalysisNeeded = true; 929 } 930 931 if (IsWrite) 932 SetHasWrite = true; 933 934 // Create sets of pointers connected by a shared alias set and 935 // underlying object. 936 typedef SmallVector<const Value *, 16> ValueVector; 937 ValueVector TempObjects; 938 939 getUnderlyingObjects(Ptr, TempObjects, LI); 940 LLVM_DEBUG(dbgs() 941 << "Underlying objects for pointer " << *Ptr << "\n"); 942 for (const Value *UnderlyingObj : TempObjects) { 943 // nullptr never alias, don't join sets for pointer that have "null" 944 // in their UnderlyingObjects list. 945 if (isa<ConstantPointerNull>(UnderlyingObj) && 946 !NullPointerIsDefined( 947 TheLoop->getHeader()->getParent(), 948 UnderlyingObj->getType()->getPointerAddressSpace())) 949 continue; 950 951 UnderlyingObjToAccessMap::iterator Prev = 952 ObjToLastAccess.find(UnderlyingObj); 953 if (Prev != ObjToLastAccess.end()) 954 DepCands.unionSets(Access, Prev->second); 955 956 ObjToLastAccess[UnderlyingObj] = Access; 957 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 958 } 959 } 960 } 961 } 962 } 963 } 964 965 static bool isInBoundsGep(Value *Ptr) { 966 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 967 return GEP->isInBounds(); 968 return false; 969 } 970 971 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 972 /// i.e. monotonically increasing/decreasing. 973 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 974 PredicatedScalarEvolution &PSE, const Loop *L) { 975 // FIXME: This should probably only return true for NUW. 976 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 977 return true; 978 979 // Scalar evolution does not propagate the non-wrapping flags to values that 980 // are derived from a non-wrapping induction variable because non-wrapping 981 // could be flow-sensitive. 982 // 983 // Look through the potentially overflowing instruction to try to prove 984 // non-wrapping for the *specific* value of Ptr. 985 986 // The arithmetic implied by an inbounds GEP can't overflow. 987 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 988 if (!GEP || !GEP->isInBounds()) 989 return false; 990 991 // Make sure there is only one non-const index and analyze that. 992 Value *NonConstIndex = nullptr; 993 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 994 if (!isa<ConstantInt>(Index)) { 995 if (NonConstIndex) 996 return false; 997 NonConstIndex = Index; 998 } 999 if (!NonConstIndex) 1000 // The recurrence is on the pointer, ignore for now. 1001 return false; 1002 1003 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1004 // AddRec using a NSW operation. 1005 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1006 if (OBO->hasNoSignedWrap() && 1007 // Assume constant for other the operand so that the AddRec can be 1008 // easily found. 1009 isa<ConstantInt>(OBO->getOperand(1))) { 1010 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1011 1012 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1013 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1014 } 1015 1016 return false; 1017 } 1018 1019 /// Check whether the access through \p Ptr has a constant stride. 1020 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 1021 const Loop *Lp, const ValueToValueMap &StridesMap, 1022 bool Assume, bool ShouldCheckWrap) { 1023 Type *Ty = Ptr->getType(); 1024 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1025 1026 // Make sure that the pointer does not point to aggregate types. 1027 auto *PtrTy = cast<PointerType>(Ty); 1028 if (PtrTy->getElementType()->isAggregateType()) { 1029 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 1030 << *Ptr << "\n"); 1031 return 0; 1032 } 1033 1034 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1035 1036 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1037 if (Assume && !AR) 1038 AR = PSE.getAsAddRec(Ptr); 1039 1040 if (!AR) { 1041 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1042 << " SCEV: " << *PtrScev << "\n"); 1043 return 0; 1044 } 1045 1046 // The access function must stride over the innermost loop. 1047 if (Lp != AR->getLoop()) { 1048 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1049 << *Ptr << " SCEV: " << *AR << "\n"); 1050 return 0; 1051 } 1052 1053 // The address calculation must not wrap. Otherwise, a dependence could be 1054 // inverted. 1055 // An inbounds getelementptr that is a AddRec with a unit stride 1056 // cannot wrap per definition. The unit stride requirement is checked later. 1057 // An getelementptr without an inbounds attribute and unit stride would have 1058 // to access the pointer value "0" which is undefined behavior in address 1059 // space 0, therefore we can also vectorize this case. 1060 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1061 bool IsNoWrapAddRec = !ShouldCheckWrap || 1062 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1063 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1064 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1065 NullPointerIsDefined(Lp->getHeader()->getParent(), 1066 PtrTy->getAddressSpace())) { 1067 if (Assume) { 1068 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1069 IsNoWrapAddRec = true; 1070 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1071 << "LAA: Pointer: " << *Ptr << "\n" 1072 << "LAA: SCEV: " << *AR << "\n" 1073 << "LAA: Added an overflow assumption\n"); 1074 } else { 1075 LLVM_DEBUG( 1076 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1077 << *Ptr << " SCEV: " << *AR << "\n"); 1078 return 0; 1079 } 1080 } 1081 1082 // Check the step is constant. 1083 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1084 1085 // Calculate the pointer stride and check if it is constant. 1086 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1087 if (!C) { 1088 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1089 << " SCEV: " << *AR << "\n"); 1090 return 0; 1091 } 1092 1093 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1094 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 1095 const APInt &APStepVal = C->getAPInt(); 1096 1097 // Huge step value - give up. 1098 if (APStepVal.getBitWidth() > 64) 1099 return 0; 1100 1101 int64_t StepVal = APStepVal.getSExtValue(); 1102 1103 // Strided access. 1104 int64_t Stride = StepVal / Size; 1105 int64_t Rem = StepVal % Size; 1106 if (Rem) 1107 return 0; 1108 1109 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1110 // know we can't "wrap around the address space". In case of address space 1111 // zero we know that this won't happen without triggering undefined behavior. 1112 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1113 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1114 PtrTy->getAddressSpace()))) { 1115 if (Assume) { 1116 // We can avoid this case by adding a run-time check. 1117 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1118 << "inbounds or in address space 0 may wrap:\n" 1119 << "LAA: Pointer: " << *Ptr << "\n" 1120 << "LAA: SCEV: " << *AR << "\n" 1121 << "LAA: Added an overflow assumption\n"); 1122 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1123 } else 1124 return 0; 1125 } 1126 1127 return Stride; 1128 } 1129 1130 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL, 1131 ScalarEvolution &SE, 1132 SmallVectorImpl<unsigned> &SortedIndices) { 1133 assert(llvm::all_of( 1134 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1135 "Expected list of pointer operands."); 1136 SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs; 1137 OffValPairs.reserve(VL.size()); 1138 1139 // Walk over the pointers, and map each of them to an offset relative to 1140 // first pointer in the array. 1141 Value *Ptr0 = VL[0]; 1142 const SCEV *Scev0 = SE.getSCEV(Ptr0); 1143 Value *Obj0 = getUnderlyingObject(Ptr0); 1144 1145 llvm::SmallSet<int64_t, 4> Offsets; 1146 for (auto *Ptr : VL) { 1147 // TODO: Outline this code as a special, more time consuming, version of 1148 // computeConstantDifference() function. 1149 if (Ptr->getType()->getPointerAddressSpace() != 1150 Ptr0->getType()->getPointerAddressSpace()) 1151 return false; 1152 // If a pointer refers to a different underlying object, bail - the 1153 // pointers are by definition incomparable. 1154 Value *CurrObj = getUnderlyingObject(Ptr); 1155 if (CurrObj != Obj0) 1156 return false; 1157 1158 const SCEV *Scev = SE.getSCEV(Ptr); 1159 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0)); 1160 // The pointers may not have a constant offset from each other, or SCEV 1161 // may just not be smart enough to figure out they do. Regardless, 1162 // there's nothing we can do. 1163 if (!Diff) 1164 return false; 1165 1166 // Check if the pointer with the same offset is found. 1167 int64_t Offset = Diff->getAPInt().getSExtValue(); 1168 if (!Offsets.insert(Offset).second) 1169 return false; 1170 OffValPairs.emplace_back(Offset, Ptr); 1171 } 1172 SortedIndices.clear(); 1173 SortedIndices.resize(VL.size()); 1174 std::iota(SortedIndices.begin(), SortedIndices.end(), 0); 1175 1176 // Sort the memory accesses and keep the order of their uses in UseOrder. 1177 llvm::stable_sort(SortedIndices, [&](unsigned Left, unsigned Right) { 1178 return OffValPairs[Left].first < OffValPairs[Right].first; 1179 }); 1180 1181 // Check if the order is consecutive already. 1182 if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) { 1183 return I == SortedIndices[I]; 1184 })) 1185 SortedIndices.clear(); 1186 1187 return true; 1188 } 1189 1190 /// Take the address space operand from the Load/Store instruction. 1191 /// Returns -1 if this is not a valid Load/Store instruction. 1192 static unsigned getAddressSpaceOperand(Value *I) { 1193 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1194 return L->getPointerAddressSpace(); 1195 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1196 return S->getPointerAddressSpace(); 1197 return -1; 1198 } 1199 1200 /// Returns true if the memory operations \p A and \p B are consecutive. 1201 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1202 ScalarEvolution &SE, bool CheckType) { 1203 Value *PtrA = getLoadStorePointerOperand(A); 1204 Value *PtrB = getLoadStorePointerOperand(B); 1205 unsigned ASA = getAddressSpaceOperand(A); 1206 unsigned ASB = getAddressSpaceOperand(B); 1207 1208 // Check that the address spaces match and that the pointers are valid. 1209 if (!PtrA || !PtrB || (ASA != ASB)) 1210 return false; 1211 1212 // Make sure that A and B are different pointers. 1213 if (PtrA == PtrB) 1214 return false; 1215 1216 // Make sure that A and B have the same type if required. 1217 if (CheckType && PtrA->getType() != PtrB->getType()) 1218 return false; 1219 1220 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1221 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1222 1223 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1224 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1225 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1226 1227 // Retrieve the address space again as pointer stripping now tracks through 1228 // `addrspacecast`. 1229 ASA = cast<PointerType>(PtrA->getType())->getAddressSpace(); 1230 ASB = cast<PointerType>(PtrB->getType())->getAddressSpace(); 1231 // Check that the address spaces match and that the pointers are valid. 1232 if (ASA != ASB) 1233 return false; 1234 1235 IdxWidth = DL.getIndexSizeInBits(ASA); 1236 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1237 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1238 1239 APInt Size(IdxWidth, DL.getTypeStoreSize(Ty)); 1240 1241 // OffsetDelta = OffsetB - OffsetA; 1242 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1243 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1244 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1245 const APInt &OffsetDelta = cast<SCEVConstant>(OffsetDeltaSCEV)->getAPInt(); 1246 1247 // Check if they are based on the same pointer. That makes the offsets 1248 // sufficient. 1249 if (PtrA == PtrB) 1250 return OffsetDelta == Size; 1251 1252 // Compute the necessary base pointer delta to have the necessary final delta 1253 // equal to the size. 1254 // BaseDelta = Size - OffsetDelta; 1255 const SCEV *SizeSCEV = SE.getConstant(Size); 1256 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1257 1258 // Otherwise compute the distance with SCEV between the base pointers. 1259 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1260 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1261 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1262 return X == PtrSCEVB; 1263 } 1264 1265 MemoryDepChecker::VectorizationSafetyStatus 1266 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1267 switch (Type) { 1268 case NoDep: 1269 case Forward: 1270 case BackwardVectorizable: 1271 return VectorizationSafetyStatus::Safe; 1272 1273 case Unknown: 1274 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1275 case ForwardButPreventsForwarding: 1276 case Backward: 1277 case BackwardVectorizableButPreventsForwarding: 1278 return VectorizationSafetyStatus::Unsafe; 1279 } 1280 llvm_unreachable("unexpected DepType!"); 1281 } 1282 1283 bool MemoryDepChecker::Dependence::isBackward() const { 1284 switch (Type) { 1285 case NoDep: 1286 case Forward: 1287 case ForwardButPreventsForwarding: 1288 case Unknown: 1289 return false; 1290 1291 case BackwardVectorizable: 1292 case Backward: 1293 case BackwardVectorizableButPreventsForwarding: 1294 return true; 1295 } 1296 llvm_unreachable("unexpected DepType!"); 1297 } 1298 1299 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1300 return isBackward() || Type == Unknown; 1301 } 1302 1303 bool MemoryDepChecker::Dependence::isForward() const { 1304 switch (Type) { 1305 case Forward: 1306 case ForwardButPreventsForwarding: 1307 return true; 1308 1309 case NoDep: 1310 case Unknown: 1311 case BackwardVectorizable: 1312 case Backward: 1313 case BackwardVectorizableButPreventsForwarding: 1314 return false; 1315 } 1316 llvm_unreachable("unexpected DepType!"); 1317 } 1318 1319 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1320 uint64_t TypeByteSize) { 1321 // If loads occur at a distance that is not a multiple of a feasible vector 1322 // factor store-load forwarding does not take place. 1323 // Positive dependences might cause troubles because vectorizing them might 1324 // prevent store-load forwarding making vectorized code run a lot slower. 1325 // a[i] = a[i-3] ^ a[i-8]; 1326 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1327 // hence on your typical architecture store-load forwarding does not take 1328 // place. Vectorizing in such cases does not make sense. 1329 // Store-load forwarding distance. 1330 1331 // After this many iterations store-to-load forwarding conflicts should not 1332 // cause any slowdowns. 1333 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1334 // Maximum vector factor. 1335 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1336 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1337 1338 // Compute the smallest VF at which the store and load would be misaligned. 1339 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1340 VF *= 2) { 1341 // If the number of vector iteration between the store and the load are 1342 // small we could incur conflicts. 1343 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1344 MaxVFWithoutSLForwardIssues = (VF >>= 1); 1345 break; 1346 } 1347 } 1348 1349 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1350 LLVM_DEBUG( 1351 dbgs() << "LAA: Distance " << Distance 1352 << " that could cause a store-load forwarding conflict\n"); 1353 return true; 1354 } 1355 1356 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1357 MaxVFWithoutSLForwardIssues != 1358 VectorizerParams::MaxVectorWidth * TypeByteSize) 1359 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1360 return false; 1361 } 1362 1363 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1364 if (Status < S) 1365 Status = S; 1366 } 1367 1368 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1369 /// memory accesses, that have the same stride whose absolute value is given 1370 /// in \p Stride, and that have the same type size \p TypeByteSize, 1371 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1372 /// possible to prove statically that the dependence distance is larger 1373 /// than the range that the accesses will travel through the execution of 1374 /// the loop. If so, return true; false otherwise. This is useful for 1375 /// example in loops such as the following (PR31098): 1376 /// for (i = 0; i < D; ++i) { 1377 /// = out[i]; 1378 /// out[i+D] = 1379 /// } 1380 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1381 const SCEV &BackedgeTakenCount, 1382 const SCEV &Dist, uint64_t Stride, 1383 uint64_t TypeByteSize) { 1384 1385 // If we can prove that 1386 // (**) |Dist| > BackedgeTakenCount * Step 1387 // where Step is the absolute stride of the memory accesses in bytes, 1388 // then there is no dependence. 1389 // 1390 // Rationale: 1391 // We basically want to check if the absolute distance (|Dist/Step|) 1392 // is >= the loop iteration count (or > BackedgeTakenCount). 1393 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1394 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1395 // that the dependence distance is >= VF; This is checked elsewhere. 1396 // But in some cases we can prune unknown dependence distances early, and 1397 // even before selecting the VF, and without a runtime test, by comparing 1398 // the distance against the loop iteration count. Since the vectorized code 1399 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1400 // also guarantees that distance >= VF. 1401 // 1402 const uint64_t ByteStride = Stride * TypeByteSize; 1403 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1404 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1405 1406 const SCEV *CastedDist = &Dist; 1407 const SCEV *CastedProduct = Product; 1408 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1409 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1410 1411 // The dependence distance can be positive/negative, so we sign extend Dist; 1412 // The multiplication of the absolute stride in bytes and the 1413 // backedgeTakenCount is non-negative, so we zero extend Product. 1414 if (DistTypeSize > ProductTypeSize) 1415 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1416 else 1417 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1418 1419 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1420 // (If so, then we have proven (**) because |Dist| >= Dist) 1421 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1422 if (SE.isKnownPositive(Minus)) 1423 return true; 1424 1425 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1426 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1427 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1428 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1429 if (SE.isKnownPositive(Minus)) 1430 return true; 1431 1432 return false; 1433 } 1434 1435 /// Check the dependence for two accesses with the same stride \p Stride. 1436 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1437 /// bytes. 1438 /// 1439 /// \returns true if they are independent. 1440 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1441 uint64_t TypeByteSize) { 1442 assert(Stride > 1 && "The stride must be greater than 1"); 1443 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1444 assert(Distance > 0 && "The distance must be non-zero"); 1445 1446 // Skip if the distance is not multiple of type byte size. 1447 if (Distance % TypeByteSize) 1448 return false; 1449 1450 uint64_t ScaledDist = Distance / TypeByteSize; 1451 1452 // No dependence if the scaled distance is not multiple of the stride. 1453 // E.g. 1454 // for (i = 0; i < 1024 ; i += 4) 1455 // A[i+2] = A[i] + 1; 1456 // 1457 // Two accesses in memory (scaled distance is 2, stride is 4): 1458 // | A[0] | | | | A[4] | | | | 1459 // | | | A[2] | | | | A[6] | | 1460 // 1461 // E.g. 1462 // for (i = 0; i < 1024 ; i += 3) 1463 // A[i+4] = A[i] + 1; 1464 // 1465 // Two accesses in memory (scaled distance is 4, stride is 3): 1466 // | A[0] | | | A[3] | | | A[6] | | | 1467 // | | | | | A[4] | | | A[7] | | 1468 return ScaledDist % Stride; 1469 } 1470 1471 MemoryDepChecker::Dependence::DepType 1472 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1473 const MemAccessInfo &B, unsigned BIdx, 1474 const ValueToValueMap &Strides) { 1475 assert (AIdx < BIdx && "Must pass arguments in program order"); 1476 1477 Value *APtr = A.getPointer(); 1478 Value *BPtr = B.getPointer(); 1479 bool AIsWrite = A.getInt(); 1480 bool BIsWrite = B.getInt(); 1481 1482 // Two reads are independent. 1483 if (!AIsWrite && !BIsWrite) 1484 return Dependence::NoDep; 1485 1486 // We cannot check pointers in different address spaces. 1487 if (APtr->getType()->getPointerAddressSpace() != 1488 BPtr->getType()->getPointerAddressSpace()) 1489 return Dependence::Unknown; 1490 1491 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 1492 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 1493 1494 const SCEV *Src = PSE.getSCEV(APtr); 1495 const SCEV *Sink = PSE.getSCEV(BPtr); 1496 1497 // If the induction step is negative we have to invert source and sink of the 1498 // dependence. 1499 if (StrideAPtr < 0) { 1500 std::swap(APtr, BPtr); 1501 std::swap(Src, Sink); 1502 std::swap(AIsWrite, BIsWrite); 1503 std::swap(AIdx, BIdx); 1504 std::swap(StrideAPtr, StrideBPtr); 1505 } 1506 1507 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1508 1509 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1510 << "(Induction step: " << StrideAPtr << ")\n"); 1511 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1512 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1513 1514 // Need accesses with constant stride. We don't want to vectorize 1515 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1516 // the address space. 1517 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1518 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1519 return Dependence::Unknown; 1520 } 1521 1522 Type *ATy = APtr->getType()->getPointerElementType(); 1523 Type *BTy = BPtr->getType()->getPointerElementType(); 1524 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1525 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1526 uint64_t Stride = std::abs(StrideAPtr); 1527 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1528 if (!C) { 1529 if (TypeByteSize == DL.getTypeAllocSize(BTy) && 1530 isSafeDependenceDistance(DL, *(PSE.getSE()), 1531 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1532 TypeByteSize)) 1533 return Dependence::NoDep; 1534 1535 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1536 FoundNonConstantDistanceDependence = true; 1537 return Dependence::Unknown; 1538 } 1539 1540 const APInt &Val = C->getAPInt(); 1541 int64_t Distance = Val.getSExtValue(); 1542 1543 // Attempt to prove strided accesses independent. 1544 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1545 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1546 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1547 return Dependence::NoDep; 1548 } 1549 1550 // Negative distances are not plausible dependencies. 1551 if (Val.isNegative()) { 1552 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1553 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1554 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1555 ATy != BTy)) { 1556 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1557 return Dependence::ForwardButPreventsForwarding; 1558 } 1559 1560 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1561 return Dependence::Forward; 1562 } 1563 1564 // Write to the same location with the same size. 1565 // Could be improved to assert type sizes are the same (i32 == float, etc). 1566 if (Val == 0) { 1567 if (ATy == BTy) 1568 return Dependence::Forward; 1569 LLVM_DEBUG( 1570 dbgs() << "LAA: Zero dependence difference but different types\n"); 1571 return Dependence::Unknown; 1572 } 1573 1574 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1575 1576 if (ATy != BTy) { 1577 LLVM_DEBUG( 1578 dbgs() 1579 << "LAA: ReadWrite-Write positive dependency with different types\n"); 1580 return Dependence::Unknown; 1581 } 1582 1583 // Bail out early if passed-in parameters make vectorization not feasible. 1584 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1585 VectorizerParams::VectorizationFactor : 1); 1586 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1587 VectorizerParams::VectorizationInterleave : 1); 1588 // The minimum number of iterations for a vectorized/unrolled version. 1589 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1590 1591 // It's not vectorizable if the distance is smaller than the minimum distance 1592 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1593 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1594 // TypeByteSize (No need to plus the last gap distance). 1595 // 1596 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1597 // foo(int *A) { 1598 // int *B = (int *)((char *)A + 14); 1599 // for (i = 0 ; i < 1024 ; i += 2) 1600 // B[i] = A[i] + 1; 1601 // } 1602 // 1603 // Two accesses in memory (stride is 2): 1604 // | A[0] | | A[2] | | A[4] | | A[6] | | 1605 // | B[0] | | B[2] | | B[4] | 1606 // 1607 // Distance needs for vectorizing iterations except the last iteration: 1608 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1609 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1610 // 1611 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1612 // 12, which is less than distance. 1613 // 1614 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1615 // the minimum distance needed is 28, which is greater than distance. It is 1616 // not safe to do vectorization. 1617 uint64_t MinDistanceNeeded = 1618 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1619 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1620 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1621 << Distance << '\n'); 1622 return Dependence::Backward; 1623 } 1624 1625 // Unsafe if the minimum distance needed is greater than max safe distance. 1626 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1627 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1628 << MinDistanceNeeded << " size in bytes"); 1629 return Dependence::Backward; 1630 } 1631 1632 // Positive distance bigger than max vectorization factor. 1633 // FIXME: Should use max factor instead of max distance in bytes, which could 1634 // not handle different types. 1635 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1636 // void foo (int *A, char *B) { 1637 // for (unsigned i = 0; i < 1024; i++) { 1638 // A[i+2] = A[i] + 1; 1639 // B[i+2] = B[i] + 1; 1640 // } 1641 // } 1642 // 1643 // This case is currently unsafe according to the max safe distance. If we 1644 // analyze the two accesses on array B, the max safe dependence distance 1645 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1646 // is 8, which is less than 2 and forbidden vectorization, But actually 1647 // both A and B could be vectorized by 2 iterations. 1648 MaxSafeDepDistBytes = 1649 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1650 1651 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1652 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1653 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1654 return Dependence::BackwardVectorizableButPreventsForwarding; 1655 1656 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1657 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1658 << " with max VF = " << MaxVF << '\n'); 1659 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1660 MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits); 1661 return Dependence::BackwardVectorizable; 1662 } 1663 1664 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1665 MemAccessInfoList &CheckDeps, 1666 const ValueToValueMap &Strides) { 1667 1668 MaxSafeDepDistBytes = -1; 1669 SmallPtrSet<MemAccessInfo, 8> Visited; 1670 for (MemAccessInfo CurAccess : CheckDeps) { 1671 if (Visited.count(CurAccess)) 1672 continue; 1673 1674 // Get the relevant memory access set. 1675 EquivalenceClasses<MemAccessInfo>::iterator I = 1676 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1677 1678 // Check accesses within this set. 1679 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1680 AccessSets.member_begin(I); 1681 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1682 AccessSets.member_end(); 1683 1684 // Check every access pair. 1685 while (AI != AE) { 1686 Visited.insert(*AI); 1687 bool AIIsWrite = AI->getInt(); 1688 // Check loads only against next equivalent class, but stores also against 1689 // other stores in the same equivalence class - to the same address. 1690 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1691 (AIIsWrite ? AI : std::next(AI)); 1692 while (OI != AE) { 1693 // Check every accessing instruction pair in program order. 1694 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1695 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1696 // Scan all accesses of another equivalence class, but only the next 1697 // accesses of the same equivalent class. 1698 for (std::vector<unsigned>::iterator 1699 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 1700 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 1701 I2 != I2E; ++I2) { 1702 auto A = std::make_pair(&*AI, *I1); 1703 auto B = std::make_pair(&*OI, *I2); 1704 1705 assert(*I1 != *I2); 1706 if (*I1 > *I2) 1707 std::swap(A, B); 1708 1709 Dependence::DepType Type = 1710 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1711 mergeInStatus(Dependence::isSafeForVectorization(Type)); 1712 1713 // Gather dependences unless we accumulated MaxDependences 1714 // dependences. In that case return as soon as we find the first 1715 // unsafe dependence. This puts a limit on this quadratic 1716 // algorithm. 1717 if (RecordDependences) { 1718 if (Type != Dependence::NoDep) 1719 Dependences.push_back(Dependence(A.second, B.second, Type)); 1720 1721 if (Dependences.size() >= MaxDependences) { 1722 RecordDependences = false; 1723 Dependences.clear(); 1724 LLVM_DEBUG(dbgs() 1725 << "Too many dependences, stopped recording\n"); 1726 } 1727 } 1728 if (!RecordDependences && !isSafeForVectorization()) 1729 return false; 1730 } 1731 ++OI; 1732 } 1733 AI++; 1734 } 1735 } 1736 1737 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1738 return isSafeForVectorization(); 1739 } 1740 1741 SmallVector<Instruction *, 4> 1742 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1743 MemAccessInfo Access(Ptr, isWrite); 1744 auto &IndexVector = Accesses.find(Access)->second; 1745 1746 SmallVector<Instruction *, 4> Insts; 1747 transform(IndexVector, 1748 std::back_inserter(Insts), 1749 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1750 return Insts; 1751 } 1752 1753 const char *MemoryDepChecker::Dependence::DepName[] = { 1754 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1755 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1756 1757 void MemoryDepChecker::Dependence::print( 1758 raw_ostream &OS, unsigned Depth, 1759 const SmallVectorImpl<Instruction *> &Instrs) const { 1760 OS.indent(Depth) << DepName[Type] << ":\n"; 1761 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1762 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1763 } 1764 1765 bool LoopAccessInfo::canAnalyzeLoop() { 1766 // We need to have a loop header. 1767 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1768 << TheLoop->getHeader()->getParent()->getName() << ": " 1769 << TheLoop->getHeader()->getName() << '\n'); 1770 1771 // We can only analyze innermost loops. 1772 if (!TheLoop->empty()) { 1773 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1774 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1775 return false; 1776 } 1777 1778 // We must have a single backedge. 1779 if (TheLoop->getNumBackEdges() != 1) { 1780 LLVM_DEBUG( 1781 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1782 recordAnalysis("CFGNotUnderstood") 1783 << "loop control flow is not understood by analyzer"; 1784 return false; 1785 } 1786 1787 // We must have a single exiting block. 1788 if (!TheLoop->getExitingBlock()) { 1789 LLVM_DEBUG( 1790 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1791 recordAnalysis("CFGNotUnderstood") 1792 << "loop control flow is not understood by analyzer"; 1793 return false; 1794 } 1795 1796 // We only handle bottom-tested loops, i.e. loop in which the condition is 1797 // checked at the end of each iteration. With that we can assume that all 1798 // instructions in the loop are executed the same number of times. 1799 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1800 LLVM_DEBUG( 1801 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1802 recordAnalysis("CFGNotUnderstood") 1803 << "loop control flow is not understood by analyzer"; 1804 return false; 1805 } 1806 1807 // ScalarEvolution needs to be able to find the exit count. 1808 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1809 if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1810 recordAnalysis("CantComputeNumberOfIterations") 1811 << "could not determine number of loop iterations"; 1812 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1813 return false; 1814 } 1815 1816 return true; 1817 } 1818 1819 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 1820 const TargetLibraryInfo *TLI, 1821 DominatorTree *DT) { 1822 typedef SmallPtrSet<Value*, 16> ValueSet; 1823 1824 // Holds the Load and Store instructions. 1825 SmallVector<LoadInst *, 16> Loads; 1826 SmallVector<StoreInst *, 16> Stores; 1827 1828 // Holds all the different accesses in the loop. 1829 unsigned NumReads = 0; 1830 unsigned NumReadWrites = 0; 1831 1832 bool HasComplexMemInst = false; 1833 1834 // A runtime check is only legal to insert if there are no convergent calls. 1835 HasConvergentOp = false; 1836 1837 PtrRtChecking->Pointers.clear(); 1838 PtrRtChecking->Need = false; 1839 1840 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1841 1842 const bool EnableMemAccessVersioningOfLoop = 1843 EnableMemAccessVersioning && 1844 !TheLoop->getHeader()->getParent()->hasOptSize(); 1845 1846 // For each block. 1847 for (BasicBlock *BB : TheLoop->blocks()) { 1848 // Scan the BB and collect legal loads and stores. Also detect any 1849 // convergent instructions. 1850 for (Instruction &I : *BB) { 1851 if (auto *Call = dyn_cast<CallBase>(&I)) { 1852 if (Call->isConvergent()) 1853 HasConvergentOp = true; 1854 } 1855 1856 // With both a non-vectorizable memory instruction and a convergent 1857 // operation, found in this loop, no reason to continue the search. 1858 if (HasComplexMemInst && HasConvergentOp) { 1859 CanVecMem = false; 1860 return; 1861 } 1862 1863 // Avoid hitting recordAnalysis multiple times. 1864 if (HasComplexMemInst) 1865 continue; 1866 1867 // If this is a load, save it. If this instruction can read from memory 1868 // but is not a load, then we quit. Notice that we don't handle function 1869 // calls that read or write. 1870 if (I.mayReadFromMemory()) { 1871 // Many math library functions read the rounding mode. We will only 1872 // vectorize a loop if it contains known function calls that don't set 1873 // the flag. Therefore, it is safe to ignore this read from memory. 1874 auto *Call = dyn_cast<CallInst>(&I); 1875 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1876 continue; 1877 1878 // If the function has an explicit vectorized counterpart, we can safely 1879 // assume that it can be vectorized. 1880 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1881 !VFDatabase::getMappings(*Call).empty()) 1882 continue; 1883 1884 auto *Ld = dyn_cast<LoadInst>(&I); 1885 if (!Ld) { 1886 recordAnalysis("CantVectorizeInstruction", Ld) 1887 << "instruction cannot be vectorized"; 1888 HasComplexMemInst = true; 1889 continue; 1890 } 1891 if (!Ld->isSimple() && !IsAnnotatedParallel) { 1892 recordAnalysis("NonSimpleLoad", Ld) 1893 << "read with atomic ordering or volatile read"; 1894 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1895 HasComplexMemInst = true; 1896 continue; 1897 } 1898 NumLoads++; 1899 Loads.push_back(Ld); 1900 DepChecker->addAccess(Ld); 1901 if (EnableMemAccessVersioningOfLoop) 1902 collectStridedAccess(Ld); 1903 continue; 1904 } 1905 1906 // Save 'store' instructions. Abort if other instructions write to memory. 1907 if (I.mayWriteToMemory()) { 1908 auto *St = dyn_cast<StoreInst>(&I); 1909 if (!St) { 1910 recordAnalysis("CantVectorizeInstruction", St) 1911 << "instruction cannot be vectorized"; 1912 HasComplexMemInst = true; 1913 continue; 1914 } 1915 if (!St->isSimple() && !IsAnnotatedParallel) { 1916 recordAnalysis("NonSimpleStore", St) 1917 << "write with atomic ordering or volatile write"; 1918 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1919 HasComplexMemInst = true; 1920 continue; 1921 } 1922 NumStores++; 1923 Stores.push_back(St); 1924 DepChecker->addAccess(St); 1925 if (EnableMemAccessVersioningOfLoop) 1926 collectStridedAccess(St); 1927 } 1928 } // Next instr. 1929 } // Next block. 1930 1931 if (HasComplexMemInst) { 1932 CanVecMem = false; 1933 return; 1934 } 1935 1936 // Now we have two lists that hold the loads and the stores. 1937 // Next, we find the pointers that they use. 1938 1939 // Check if we see any stores. If there are no stores, then we don't 1940 // care if the pointers are *restrict*. 1941 if (!Stores.size()) { 1942 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1943 CanVecMem = true; 1944 return; 1945 } 1946 1947 MemoryDepChecker::DepCandidates DependentAccesses; 1948 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE); 1949 1950 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 1951 // multiple times on the same object. If the ptr is accessed twice, once 1952 // for read and once for write, it will only appear once (on the write 1953 // list). This is okay, since we are going to check for conflicts between 1954 // writes and between reads and writes, but not between reads and reads. 1955 ValueSet Seen; 1956 1957 // Record uniform store addresses to identify if we have multiple stores 1958 // to the same address. 1959 ValueSet UniformStores; 1960 1961 for (StoreInst *ST : Stores) { 1962 Value *Ptr = ST->getPointerOperand(); 1963 1964 if (isUniform(Ptr)) 1965 HasDependenceInvolvingLoopInvariantAddress |= 1966 !UniformStores.insert(Ptr).second; 1967 1968 // If we did *not* see this pointer before, insert it to the read-write 1969 // list. At this phase it is only a 'write' list. 1970 if (Seen.insert(Ptr).second) { 1971 ++NumReadWrites; 1972 1973 MemoryLocation Loc = MemoryLocation::get(ST); 1974 // The TBAA metadata could have a control dependency on the predication 1975 // condition, so we cannot rely on it when determining whether or not we 1976 // need runtime pointer checks. 1977 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1978 Loc.AATags.TBAA = nullptr; 1979 1980 Accesses.addStore(Loc); 1981 } 1982 } 1983 1984 if (IsAnnotatedParallel) { 1985 LLVM_DEBUG( 1986 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 1987 << "checks.\n"); 1988 CanVecMem = true; 1989 return; 1990 } 1991 1992 for (LoadInst *LD : Loads) { 1993 Value *Ptr = LD->getPointerOperand(); 1994 // If we did *not* see this pointer before, insert it to the 1995 // read list. If we *did* see it before, then it is already in 1996 // the read-write list. This allows us to vectorize expressions 1997 // such as A[i] += x; Because the address of A[i] is a read-write 1998 // pointer. This only works if the index of A[i] is consecutive. 1999 // If the address of i is unknown (for example A[B[i]]) then we may 2000 // read a few words, modify, and write a few words, and some of the 2001 // words may be written to the same address. 2002 bool IsReadOnlyPtr = false; 2003 if (Seen.insert(Ptr).second || 2004 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 2005 ++NumReads; 2006 IsReadOnlyPtr = true; 2007 } 2008 2009 // See if there is an unsafe dependency between a load to a uniform address and 2010 // store to the same uniform address. 2011 if (UniformStores.count(Ptr)) { 2012 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2013 "load and uniform store to the same address!\n"); 2014 HasDependenceInvolvingLoopInvariantAddress = true; 2015 } 2016 2017 MemoryLocation Loc = MemoryLocation::get(LD); 2018 // The TBAA metadata could have a control dependency on the predication 2019 // condition, so we cannot rely on it when determining whether or not we 2020 // need runtime pointer checks. 2021 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2022 Loc.AATags.TBAA = nullptr; 2023 2024 Accesses.addLoad(Loc, IsReadOnlyPtr); 2025 } 2026 2027 // If we write (or read-write) to a single destination and there are no 2028 // other reads in this loop then is it safe to vectorize. 2029 if (NumReadWrites == 1 && NumReads == 0) { 2030 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2031 CanVecMem = true; 2032 return; 2033 } 2034 2035 // Build dependence sets and check whether we need a runtime pointer bounds 2036 // check. 2037 Accesses.buildDependenceSets(); 2038 2039 // Find pointers with computable bounds. We are going to use this information 2040 // to place a runtime bound check. 2041 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 2042 TheLoop, SymbolicStrides); 2043 if (!CanDoRTIfNeeded) { 2044 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 2045 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2046 << "the array bounds.\n"); 2047 CanVecMem = false; 2048 return; 2049 } 2050 2051 LLVM_DEBUG( 2052 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2053 2054 CanVecMem = true; 2055 if (Accesses.isDependencyCheckNeeded()) { 2056 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2057 CanVecMem = DepChecker->areDepsSafe( 2058 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2059 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2060 2061 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2062 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2063 2064 // Clear the dependency checks. We assume they are not needed. 2065 Accesses.resetDepChecks(*DepChecker); 2066 2067 PtrRtChecking->reset(); 2068 PtrRtChecking->Need = true; 2069 2070 auto *SE = PSE->getSE(); 2071 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 2072 SymbolicStrides, true); 2073 2074 // Check that we found the bounds for the pointer. 2075 if (!CanDoRTIfNeeded) { 2076 recordAnalysis("CantCheckMemDepsAtRunTime") 2077 << "cannot check memory dependencies at runtime"; 2078 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2079 CanVecMem = false; 2080 return; 2081 } 2082 2083 CanVecMem = true; 2084 } 2085 } 2086 2087 if (HasConvergentOp) { 2088 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2089 << "cannot add control dependency to convergent operation"; 2090 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2091 "would be needed with a convergent operation\n"); 2092 CanVecMem = false; 2093 return; 2094 } 2095 2096 if (CanVecMem) 2097 LLVM_DEBUG( 2098 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2099 << (PtrRtChecking->Need ? "" : " don't") 2100 << " need runtime memory checks.\n"); 2101 else { 2102 recordAnalysis("UnsafeMemDep") 2103 << "unsafe dependent memory operations in loop. Use " 2104 "#pragma loop distribute(enable) to allow loop distribution " 2105 "to attempt to isolate the offending operations into a separate " 2106 "loop"; 2107 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2108 } 2109 } 2110 2111 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2112 DominatorTree *DT) { 2113 assert(TheLoop->contains(BB) && "Unknown block used"); 2114 2115 // Blocks that do not dominate the latch need predication. 2116 BasicBlock* Latch = TheLoop->getLoopLatch(); 2117 return !DT->dominates(BB, Latch); 2118 } 2119 2120 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2121 Instruction *I) { 2122 assert(!Report && "Multiple reports generated"); 2123 2124 Value *CodeRegion = TheLoop->getHeader(); 2125 DebugLoc DL = TheLoop->getStartLoc(); 2126 2127 if (I) { 2128 CodeRegion = I->getParent(); 2129 // If there is no debug location attached to the instruction, revert back to 2130 // using the loop's. 2131 if (I->getDebugLoc()) 2132 DL = I->getDebugLoc(); 2133 } 2134 2135 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2136 CodeRegion); 2137 return *Report; 2138 } 2139 2140 bool LoopAccessInfo::isUniform(Value *V) const { 2141 auto *SE = PSE->getSE(); 2142 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2143 // never considered uniform. 2144 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2145 // trivially loop-invariant FP values to be considered uniform. 2146 if (!SE->isSCEVable(V->getType())) 2147 return false; 2148 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2149 } 2150 2151 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2152 Value *Ptr = nullptr; 2153 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 2154 Ptr = LI->getPointerOperand(); 2155 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 2156 Ptr = SI->getPointerOperand(); 2157 else 2158 return; 2159 2160 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2161 if (!Stride) 2162 return; 2163 2164 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2165 "versioning:"); 2166 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2167 2168 // Avoid adding the "Stride == 1" predicate when we know that 2169 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2170 // or zero iteration loop, as Trip-Count <= Stride == 1. 2171 // 2172 // TODO: We are currently not making a very informed decision on when it is 2173 // beneficial to apply stride versioning. It might make more sense that the 2174 // users of this analysis (such as the vectorizer) will trigger it, based on 2175 // their specific cost considerations; For example, in cases where stride 2176 // versioning does not help resolving memory accesses/dependences, the 2177 // vectorizer should evaluate the cost of the runtime test, and the benefit 2178 // of various possible stride specializations, considering the alternatives 2179 // of using gather/scatters (if available). 2180 2181 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2182 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2183 2184 // Match the types so we can compare the stride and the BETakenCount. 2185 // The Stride can be positive/negative, so we sign extend Stride; 2186 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2187 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2188 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); 2189 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); 2190 const SCEV *CastedStride = StrideExpr; 2191 const SCEV *CastedBECount = BETakenCount; 2192 ScalarEvolution *SE = PSE->getSE(); 2193 if (BETypeSize >= StrideTypeSize) 2194 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2195 else 2196 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2197 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2198 // Since TripCount == BackEdgeTakenCount + 1, checking: 2199 // "Stride >= TripCount" is equivalent to checking: 2200 // Stride - BETakenCount > 0 2201 if (SE->isKnownPositive(StrideMinusBETaken)) { 2202 LLVM_DEBUG( 2203 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2204 "Stride==1 predicate will imply that the loop executes " 2205 "at most once.\n"); 2206 return; 2207 } 2208 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); 2209 2210 SymbolicStrides[Ptr] = Stride; 2211 StrideSet.insert(Stride); 2212 } 2213 2214 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2215 const TargetLibraryInfo *TLI, AAResults *AA, 2216 DominatorTree *DT, LoopInfo *LI) 2217 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2218 PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)), 2219 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 2220 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 2221 HasConvergentOp(false), 2222 HasDependenceInvolvingLoopInvariantAddress(false) { 2223 if (canAnalyzeLoop()) 2224 analyzeLoop(AA, LI, TLI, DT); 2225 } 2226 2227 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2228 if (CanVecMem) { 2229 OS.indent(Depth) << "Memory dependences are safe"; 2230 if (MaxSafeDepDistBytes != -1ULL) 2231 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2232 << " bytes"; 2233 if (PtrRtChecking->Need) 2234 OS << " with run-time checks"; 2235 OS << "\n"; 2236 } 2237 2238 if (HasConvergentOp) 2239 OS.indent(Depth) << "Has convergent operation in loop\n"; 2240 2241 if (Report) 2242 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2243 2244 if (auto *Dependences = DepChecker->getDependences()) { 2245 OS.indent(Depth) << "Dependences:\n"; 2246 for (auto &Dep : *Dependences) { 2247 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2248 OS << "\n"; 2249 } 2250 } else 2251 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2252 2253 // List the pair of accesses need run-time checks to prove independence. 2254 PtrRtChecking->print(OS, Depth); 2255 OS << "\n"; 2256 2257 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2258 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2259 << "found in loop.\n"; 2260 2261 OS.indent(Depth) << "SCEV assumptions:\n"; 2262 PSE->getUnionPredicate().print(OS, Depth); 2263 2264 OS << "\n"; 2265 2266 OS.indent(Depth) << "Expressions re-written:\n"; 2267 PSE->print(OS, Depth); 2268 } 2269 2270 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2271 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2272 } 2273 2274 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2275 auto &LAI = LoopAccessInfoMap[L]; 2276 2277 if (!LAI) 2278 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2279 2280 return *LAI.get(); 2281 } 2282 2283 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2284 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2285 2286 for (Loop *TopLevelLoop : *LI) 2287 for (Loop *L : depth_first(TopLevelLoop)) { 2288 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2289 auto &LAI = LAA.getInfo(L); 2290 LAI.print(OS, 4); 2291 } 2292 } 2293 2294 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2295 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2296 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2297 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2298 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2299 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2300 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2301 2302 return false; 2303 } 2304 2305 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2306 AU.addRequired<ScalarEvolutionWrapperPass>(); 2307 AU.addRequired<AAResultsWrapperPass>(); 2308 AU.addRequired<DominatorTreeWrapperPass>(); 2309 AU.addRequired<LoopInfoWrapperPass>(); 2310 2311 AU.setPreservesAll(); 2312 } 2313 2314 char LoopAccessLegacyAnalysis::ID = 0; 2315 static const char laa_name[] = "Loop Access Analysis"; 2316 #define LAA_NAME "loop-accesses" 2317 2318 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2319 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2320 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2321 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2322 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2323 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2324 2325 AnalysisKey LoopAccessAnalysis::Key; 2326 2327 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2328 LoopStandardAnalysisResults &AR) { 2329 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2330 } 2331 2332 namespace llvm { 2333 2334 Pass *createLAAPass() { 2335 return new LoopAccessLegacyAnalysis(); 2336 } 2337 2338 } // end namespace llvm 2339