1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The implementation for the loop memory dependence that was originally 11 // developed for the loop vectorizer. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/LoopAccessAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/ScalarEvolutionExpander.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/DiagnosticInfo.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 using namespace llvm; 27 28 #define DEBUG_TYPE "loop-accesses" 29 30 static cl::opt<unsigned, true> 31 VectorizationFactor("force-vector-width", cl::Hidden, 32 cl::desc("Sets the SIMD width. Zero is autoselect."), 33 cl::location(VectorizerParams::VectorizationFactor)); 34 unsigned VectorizerParams::VectorizationFactor; 35 36 static cl::opt<unsigned, true> 37 VectorizationInterleave("force-vector-interleave", cl::Hidden, 38 cl::desc("Sets the vectorization interleave count. " 39 "Zero is autoselect."), 40 cl::location( 41 VectorizerParams::VectorizationInterleave)); 42 unsigned VectorizerParams::VectorizationInterleave; 43 44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 45 "runtime-memory-check-threshold", cl::Hidden, 46 cl::desc("When performing memory disambiguation checks at runtime do not " 47 "generate more than this number of comparisons (default = 8)."), 48 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 50 51 /// \brief The maximum iterations used to merge memory checks 52 static cl::opt<unsigned> MemoryCheckMergeThreshold( 53 "memory-check-merge-threshold", cl::Hidden, 54 cl::desc("Maximum number of comparisons done when trying to merge " 55 "runtime memory checks. (default = 100)"), 56 cl::init(100)); 57 58 /// Maximum SIMD width. 59 const unsigned VectorizerParams::MaxVectorWidth = 64; 60 61 /// \brief We collect interesting dependences up to this threshold. 62 static cl::opt<unsigned> MaxInterestingDependence( 63 "max-interesting-dependences", cl::Hidden, 64 cl::desc("Maximum number of interesting dependences collected by " 65 "loop-access analysis (default = 100)"), 66 cl::init(100)); 67 68 bool VectorizerParams::isInterleaveForced() { 69 return ::VectorizationInterleave.getNumOccurrences() > 0; 70 } 71 72 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, 73 const Function *TheFunction, 74 const Loop *TheLoop, 75 const char *PassName) { 76 DebugLoc DL = TheLoop->getStartLoc(); 77 if (const Instruction *I = Message.getInstr()) 78 DL = I->getDebugLoc(); 79 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, 80 *TheFunction, DL, Message.str()); 81 } 82 83 Value *llvm::stripIntegerCast(Value *V) { 84 if (CastInst *CI = dyn_cast<CastInst>(V)) 85 if (CI->getOperand(0)->getType()->isIntegerTy()) 86 return CI->getOperand(0); 87 return V; 88 } 89 90 const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE, 91 const ValueToValueMap &PtrToStride, 92 Value *Ptr, Value *OrigPtr) { 93 94 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 95 96 // If there is an entry in the map return the SCEV of the pointer with the 97 // symbolic stride replaced by one. 98 ValueToValueMap::const_iterator SI = 99 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 100 if (SI != PtrToStride.end()) { 101 Value *StrideVal = SI->second; 102 103 // Strip casts. 104 StrideVal = stripIntegerCast(StrideVal); 105 106 // Replace symbolic stride by one. 107 Value *One = ConstantInt::get(StrideVal->getType(), 1); 108 ValueToValueMap RewriteMap; 109 RewriteMap[StrideVal] = One; 110 111 const SCEV *ByOne = 112 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 113 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 114 << "\n"); 115 return ByOne; 116 } 117 118 // Otherwise, just return the SCEV of the original pointer. 119 return SE->getSCEV(Ptr); 120 } 121 122 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 123 unsigned DepSetId, unsigned ASId, 124 const ValueToValueMap &Strides) { 125 // Get the stride replaced scev. 126 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 127 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 128 assert(AR && "Invalid addrec expression"); 129 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 130 131 const SCEV *ScStart = AR->getStart(); 132 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 133 const SCEV *Step = AR->getStepRecurrence(*SE); 134 135 // For expressions with negative step, the upper bound is ScStart and the 136 // lower bound is ScEnd. 137 if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) { 138 if (CStep->getValue()->isNegative()) 139 std::swap(ScStart, ScEnd); 140 } else { 141 // Fallback case: the step is not constant, but the we can still 142 // get the upper and lower bounds of the interval by using min/max 143 // expressions. 144 ScStart = SE->getUMinExpr(ScStart, ScEnd); 145 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 146 } 147 148 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 149 } 150 151 SmallVector<RuntimePointerChecking::PointerCheck, 4> 152 RuntimePointerChecking::generateChecks() const { 153 SmallVector<PointerCheck, 4> Checks; 154 155 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 156 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 157 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 158 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 159 160 if (needsChecking(CGI, CGJ)) 161 Checks.push_back(std::make_pair(&CGI, &CGJ)); 162 } 163 } 164 return Checks; 165 } 166 167 void RuntimePointerChecking::generateChecks( 168 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 169 assert(Checks.empty() && "Checks is not empty"); 170 groupChecks(DepCands, UseDependencies); 171 Checks = generateChecks(); 172 } 173 174 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 175 const CheckingPtrGroup &N) const { 176 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 177 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 178 if (needsChecking(M.Members[I], N.Members[J])) 179 return true; 180 return false; 181 } 182 183 /// Compare \p I and \p J and return the minimum. 184 /// Return nullptr in case we couldn't find an answer. 185 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 186 ScalarEvolution *SE) { 187 const SCEV *Diff = SE->getMinusSCEV(J, I); 188 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 189 190 if (!C) 191 return nullptr; 192 if (C->getValue()->isNegative()) 193 return J; 194 return I; 195 } 196 197 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 198 const SCEV *Start = RtCheck.Pointers[Index].Start; 199 const SCEV *End = RtCheck.Pointers[Index].End; 200 201 // Compare the starts and ends with the known minimum and maximum 202 // of this set. We need to know how we compare against the min/max 203 // of the set in order to be able to emit memchecks. 204 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 205 if (!Min0) 206 return false; 207 208 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 209 if (!Min1) 210 return false; 211 212 // Update the low bound expression if we've found a new min value. 213 if (Min0 == Start) 214 Low = Start; 215 216 // Update the high bound expression if we've found a new max value. 217 if (Min1 != End) 218 High = End; 219 220 Members.push_back(Index); 221 return true; 222 } 223 224 void RuntimePointerChecking::groupChecks( 225 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 226 // We build the groups from dependency candidates equivalence classes 227 // because: 228 // - We know that pointers in the same equivalence class share 229 // the same underlying object and therefore there is a chance 230 // that we can compare pointers 231 // - We wouldn't be able to merge two pointers for which we need 232 // to emit a memcheck. The classes in DepCands are already 233 // conveniently built such that no two pointers in the same 234 // class need checking against each other. 235 236 // We use the following (greedy) algorithm to construct the groups 237 // For every pointer in the equivalence class: 238 // For each existing group: 239 // - if the difference between this pointer and the min/max bounds 240 // of the group is a constant, then make the pointer part of the 241 // group and update the min/max bounds of that group as required. 242 243 CheckingGroups.clear(); 244 245 // If we need to check two pointers to the same underlying object 246 // with a non-constant difference, we shouldn't perform any pointer 247 // grouping with those pointers. This is because we can easily get 248 // into cases where the resulting check would return false, even when 249 // the accesses are safe. 250 // 251 // The following example shows this: 252 // for (i = 0; i < 1000; ++i) 253 // a[5000 + i * m] = a[i] + a[i + 9000] 254 // 255 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 256 // (0, 10000) which is always false. However, if m is 1, there is no 257 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 258 // us to perform an accurate check in this case. 259 // 260 // The above case requires that we have an UnknownDependence between 261 // accesses to the same underlying object. This cannot happen unless 262 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies 263 // is also false. In this case we will use the fallback path and create 264 // separate checking groups for all pointers. 265 266 // If we don't have the dependency partitions, construct a new 267 // checking pointer group for each pointer. This is also required 268 // for correctness, because in this case we can have checking between 269 // pointers to the same underlying object. 270 if (!UseDependencies) { 271 for (unsigned I = 0; I < Pointers.size(); ++I) 272 CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 273 return; 274 } 275 276 unsigned TotalComparisons = 0; 277 278 DenseMap<Value *, unsigned> PositionMap; 279 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 280 PositionMap[Pointers[Index].PointerValue] = Index; 281 282 // We need to keep track of what pointers we've already seen so we 283 // don't process them twice. 284 SmallSet<unsigned, 2> Seen; 285 286 // Go through all equivalence classes, get the the "pointer check groups" 287 // and add them to the overall solution. We use the order in which accesses 288 // appear in 'Pointers' to enforce determinism. 289 for (unsigned I = 0; I < Pointers.size(); ++I) { 290 // We've seen this pointer before, and therefore already processed 291 // its equivalence class. 292 if (Seen.count(I)) 293 continue; 294 295 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 296 Pointers[I].IsWritePtr); 297 298 SmallVector<CheckingPtrGroup, 2> Groups; 299 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 300 301 // Because DepCands is constructed by visiting accesses in the order in 302 // which they appear in alias sets (which is deterministic) and the 303 // iteration order within an equivalence class member is only dependent on 304 // the order in which unions and insertions are performed on the 305 // equivalence class, the iteration order is deterministic. 306 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 307 MI != ME; ++MI) { 308 unsigned Pointer = PositionMap[MI->getPointer()]; 309 bool Merged = false; 310 // Mark this pointer as seen. 311 Seen.insert(Pointer); 312 313 // Go through all the existing sets and see if we can find one 314 // which can include this pointer. 315 for (CheckingPtrGroup &Group : Groups) { 316 // Don't perform more than a certain amount of comparisons. 317 // This should limit the cost of grouping the pointers to something 318 // reasonable. If we do end up hitting this threshold, the algorithm 319 // will create separate groups for all remaining pointers. 320 if (TotalComparisons > MemoryCheckMergeThreshold) 321 break; 322 323 TotalComparisons++; 324 325 if (Group.addPointer(Pointer)) { 326 Merged = true; 327 break; 328 } 329 } 330 331 if (!Merged) 332 // We couldn't add this pointer to any existing set or the threshold 333 // for the number of comparisons has been reached. Create a new group 334 // to hold the current pointer. 335 Groups.push_back(CheckingPtrGroup(Pointer, *this)); 336 } 337 338 // We've computed the grouped checks for this partition. 339 // Save the results and continue with the next one. 340 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); 341 } 342 } 343 344 bool RuntimePointerChecking::arePointersInSamePartition( 345 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 346 unsigned PtrIdx2) { 347 return (PtrToPartition[PtrIdx1] != -1 && 348 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 349 } 350 351 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 352 const PointerInfo &PointerI = Pointers[I]; 353 const PointerInfo &PointerJ = Pointers[J]; 354 355 // No need to check if two readonly pointers intersect. 356 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 357 return false; 358 359 // Only need to check pointers between two different dependency sets. 360 if (PointerI.DependencySetId == PointerJ.DependencySetId) 361 return false; 362 363 // Only need to check pointers in the same alias set. 364 if (PointerI.AliasSetId != PointerJ.AliasSetId) 365 return false; 366 367 return true; 368 } 369 370 void RuntimePointerChecking::printChecks( 371 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 372 unsigned Depth) const { 373 unsigned N = 0; 374 for (const auto &Check : Checks) { 375 const auto &First = Check.first->Members, &Second = Check.second->Members; 376 377 OS.indent(Depth) << "Check " << N++ << ":\n"; 378 379 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 380 for (unsigned K = 0; K < First.size(); ++K) 381 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 382 383 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 384 for (unsigned K = 0; K < Second.size(); ++K) 385 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 386 } 387 } 388 389 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 390 391 OS.indent(Depth) << "Run-time memory checks:\n"; 392 printChecks(OS, Checks, Depth); 393 394 OS.indent(Depth) << "Grouped accesses:\n"; 395 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 396 const auto &CG = CheckingGroups[I]; 397 398 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 399 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 400 << ")\n"; 401 for (unsigned J = 0; J < CG.Members.size(); ++J) { 402 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 403 << "\n"; 404 } 405 } 406 } 407 408 namespace { 409 /// \brief Analyses memory accesses in a loop. 410 /// 411 /// Checks whether run time pointer checks are needed and builds sets for data 412 /// dependence checking. 413 class AccessAnalysis { 414 public: 415 /// \brief Read or write access location. 416 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 417 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 418 419 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, 420 MemoryDepChecker::DepCandidates &DA) 421 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), 422 IsRTCheckAnalysisNeeded(false) {} 423 424 /// \brief Register a load and whether it is only read from. 425 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 426 Value *Ptr = const_cast<Value*>(Loc.Ptr); 427 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 428 Accesses.insert(MemAccessInfo(Ptr, false)); 429 if (IsReadOnly) 430 ReadOnlyPtr.insert(Ptr); 431 } 432 433 /// \brief Register a store. 434 void addStore(MemoryLocation &Loc) { 435 Value *Ptr = const_cast<Value*>(Loc.Ptr); 436 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); 437 Accesses.insert(MemAccessInfo(Ptr, true)); 438 } 439 440 /// \brief Check whether we can check the pointers at runtime for 441 /// non-intersection. 442 /// 443 /// Returns true if we need no check or if we do and we can generate them 444 /// (i.e. the pointers have computable bounds). 445 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 446 Loop *TheLoop, const ValueToValueMap &Strides, 447 bool ShouldCheckStride = false); 448 449 /// \brief Goes over all memory accesses, checks whether a RT check is needed 450 /// and builds sets of dependent accesses. 451 void buildDependenceSets() { 452 processMemAccesses(); 453 } 454 455 /// \brief Initial processing of memory accesses determined that we need to 456 /// perform dependency checking. 457 /// 458 /// Note that this can later be cleared if we retry memcheck analysis without 459 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). 460 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 461 462 /// We decided that no dependence analysis would be used. Reset the state. 463 void resetDepChecks(MemoryDepChecker &DepChecker) { 464 CheckDeps.clear(); 465 DepChecker.clearInterestingDependences(); 466 } 467 468 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 469 470 private: 471 typedef SetVector<MemAccessInfo> PtrAccessSet; 472 473 /// \brief Go over all memory access and check whether runtime pointer checks 474 /// are needed and build sets of dependency check candidates. 475 void processMemAccesses(); 476 477 /// Set of all accesses. 478 PtrAccessSet Accesses; 479 480 const DataLayout &DL; 481 482 /// Set of accesses that need a further dependence check. 483 MemAccessInfoSet CheckDeps; 484 485 /// Set of pointers that are read only. 486 SmallPtrSet<Value*, 16> ReadOnlyPtr; 487 488 /// An alias set tracker to partition the access set by underlying object and 489 //intrinsic property (such as TBAA metadata). 490 AliasSetTracker AST; 491 492 LoopInfo *LI; 493 494 /// Sets of potentially dependent accesses - members of one set share an 495 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 496 /// dependence check. 497 MemoryDepChecker::DepCandidates &DepCands; 498 499 /// \brief Initial processing of memory accesses determined that we may need 500 /// to add memchecks. Perform the analysis to determine the necessary checks. 501 /// 502 /// Note that, this is different from isDependencyCheckNeeded. When we retry 503 /// memcheck analysis without dependency checking 504 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared 505 /// while this remains set if we have potentially dependent accesses. 506 bool IsRTCheckAnalysisNeeded; 507 }; 508 509 } // end anonymous namespace 510 511 /// \brief Check whether a pointer can participate in a runtime bounds check. 512 static bool hasComputableBounds(ScalarEvolution *SE, 513 const ValueToValueMap &Strides, Value *Ptr) { 514 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 515 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 516 if (!AR) 517 return false; 518 519 return AR->isAffine(); 520 } 521 522 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 523 ScalarEvolution *SE, Loop *TheLoop, 524 const ValueToValueMap &StridesMap, 525 bool ShouldCheckStride) { 526 // Find pointers with computable bounds. We are going to use this information 527 // to place a runtime bound check. 528 bool CanDoRT = true; 529 530 bool NeedRTCheck = false; 531 if (!IsRTCheckAnalysisNeeded) return true; 532 533 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 534 535 // We assign a consecutive id to access from different alias sets. 536 // Accesses between different groups doesn't need to be checked. 537 unsigned ASId = 1; 538 for (auto &AS : AST) { 539 int NumReadPtrChecks = 0; 540 int NumWritePtrChecks = 0; 541 542 // We assign consecutive id to access from different dependence sets. 543 // Accesses within the same set don't need a runtime check. 544 unsigned RunningDepId = 1; 545 DenseMap<Value *, unsigned> DepSetId; 546 547 for (auto A : AS) { 548 Value *Ptr = A.getValue(); 549 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 550 MemAccessInfo Access(Ptr, IsWrite); 551 552 if (IsWrite) 553 ++NumWritePtrChecks; 554 else 555 ++NumReadPtrChecks; 556 557 if (hasComputableBounds(SE, StridesMap, Ptr) && 558 // When we run after a failing dependency check we have to make sure 559 // we don't have wrapping pointers. 560 (!ShouldCheckStride || 561 isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) { 562 // The id of the dependence set. 563 unsigned DepId; 564 565 if (IsDepCheckNeeded) { 566 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 567 unsigned &LeaderId = DepSetId[Leader]; 568 if (!LeaderId) 569 LeaderId = RunningDepId++; 570 DepId = LeaderId; 571 } else 572 // Each access has its own dependence set. 573 DepId = RunningDepId++; 574 575 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 576 577 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 578 } else { 579 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 580 CanDoRT = false; 581 } 582 } 583 584 // If we have at least two writes or one write and a read then we need to 585 // check them. But there is no need to checks if there is only one 586 // dependence set for this alias set. 587 // 588 // Note that this function computes CanDoRT and NeedRTCheck independently. 589 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 590 // for which we couldn't find the bounds but we don't actually need to emit 591 // any checks so it does not matter. 592 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) 593 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && 594 NumWritePtrChecks >= 1)); 595 596 ++ASId; 597 } 598 599 // If the pointers that we would use for the bounds comparison have different 600 // address spaces, assume the values aren't directly comparable, so we can't 601 // use them for the runtime check. We also have to assume they could 602 // overlap. In the future there should be metadata for whether address spaces 603 // are disjoint. 604 unsigned NumPointers = RtCheck.Pointers.size(); 605 for (unsigned i = 0; i < NumPointers; ++i) { 606 for (unsigned j = i + 1; j < NumPointers; ++j) { 607 // Only need to check pointers between two different dependency sets. 608 if (RtCheck.Pointers[i].DependencySetId == 609 RtCheck.Pointers[j].DependencySetId) 610 continue; 611 // Only need to check pointers in the same alias set. 612 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 613 continue; 614 615 Value *PtrI = RtCheck.Pointers[i].PointerValue; 616 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 617 618 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 619 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 620 if (ASi != ASj) { 621 DEBUG(dbgs() << "LAA: Runtime check would require comparison between" 622 " different address spaces\n"); 623 return false; 624 } 625 } 626 } 627 628 if (NeedRTCheck && CanDoRT) 629 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 630 631 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 632 << " pointer comparisons.\n"); 633 634 RtCheck.Need = NeedRTCheck; 635 636 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 637 if (!CanDoRTIfNeeded) 638 RtCheck.reset(); 639 return CanDoRTIfNeeded; 640 } 641 642 void AccessAnalysis::processMemAccesses() { 643 // We process the set twice: first we process read-write pointers, last we 644 // process read-only pointers. This allows us to skip dependence tests for 645 // read-only pointers. 646 647 DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 648 DEBUG(dbgs() << " AST: "; AST.dump()); 649 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 650 DEBUG({ 651 for (auto A : Accesses) 652 dbgs() << "\t" << *A.getPointer() << " (" << 653 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 654 "read-only" : "read")) << ")\n"; 655 }); 656 657 // The AliasSetTracker has nicely partitioned our pointers by metadata 658 // compatibility and potential for underlying-object overlap. As a result, we 659 // only need to check for potential pointer dependencies within each alias 660 // set. 661 for (auto &AS : AST) { 662 // Note that both the alias-set tracker and the alias sets themselves used 663 // linked lists internally and so the iteration order here is deterministic 664 // (matching the original instruction order within each set). 665 666 bool SetHasWrite = false; 667 668 // Map of pointers to last access encountered. 669 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 670 UnderlyingObjToAccessMap ObjToLastAccess; 671 672 // Set of access to check after all writes have been processed. 673 PtrAccessSet DeferredAccesses; 674 675 // Iterate over each alias set twice, once to process read/write pointers, 676 // and then to process read-only pointers. 677 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 678 bool UseDeferred = SetIteration > 0; 679 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 680 681 for (auto AV : AS) { 682 Value *Ptr = AV.getValue(); 683 684 // For a single memory access in AliasSetTracker, Accesses may contain 685 // both read and write, and they both need to be handled for CheckDeps. 686 for (auto AC : S) { 687 if (AC.getPointer() != Ptr) 688 continue; 689 690 bool IsWrite = AC.getInt(); 691 692 // If we're using the deferred access set, then it contains only 693 // reads. 694 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 695 if (UseDeferred && !IsReadOnlyPtr) 696 continue; 697 // Otherwise, the pointer must be in the PtrAccessSet, either as a 698 // read or a write. 699 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 700 S.count(MemAccessInfo(Ptr, false))) && 701 "Alias-set pointer not in the access set?"); 702 703 MemAccessInfo Access(Ptr, IsWrite); 704 DepCands.insert(Access); 705 706 // Memorize read-only pointers for later processing and skip them in 707 // the first round (they need to be checked after we have seen all 708 // write pointers). Note: we also mark pointer that are not 709 // consecutive as "read-only" pointers (so that we check 710 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 711 if (!UseDeferred && IsReadOnlyPtr) { 712 DeferredAccesses.insert(Access); 713 continue; 714 } 715 716 // If this is a write - check other reads and writes for conflicts. If 717 // this is a read only check other writes for conflicts (but only if 718 // there is no other write to the ptr - this is an optimization to 719 // catch "a[i] = a[i] + " without having to do a dependence check). 720 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 721 CheckDeps.insert(Access); 722 IsRTCheckAnalysisNeeded = true; 723 } 724 725 if (IsWrite) 726 SetHasWrite = true; 727 728 // Create sets of pointers connected by a shared alias set and 729 // underlying object. 730 typedef SmallVector<Value *, 16> ValueVector; 731 ValueVector TempObjects; 732 733 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 734 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); 735 for (Value *UnderlyingObj : TempObjects) { 736 UnderlyingObjToAccessMap::iterator Prev = 737 ObjToLastAccess.find(UnderlyingObj); 738 if (Prev != ObjToLastAccess.end()) 739 DepCands.unionSets(Access, Prev->second); 740 741 ObjToLastAccess[UnderlyingObj] = Access; 742 DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 743 } 744 } 745 } 746 } 747 } 748 } 749 750 static bool isInBoundsGep(Value *Ptr) { 751 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 752 return GEP->isInBounds(); 753 return false; 754 } 755 756 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 757 /// i.e. monotonically increasing/decreasing. 758 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 759 ScalarEvolution *SE, const Loop *L) { 760 // FIXME: This should probably only return true for NUW. 761 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 762 return true; 763 764 // Scalar evolution does not propagate the non-wrapping flags to values that 765 // are derived from a non-wrapping induction variable because non-wrapping 766 // could be flow-sensitive. 767 // 768 // Look through the potentially overflowing instruction to try to prove 769 // non-wrapping for the *specific* value of Ptr. 770 771 // The arithmetic implied by an inbounds GEP can't overflow. 772 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 773 if (!GEP || !GEP->isInBounds()) 774 return false; 775 776 // Make sure there is only one non-const index and analyze that. 777 Value *NonConstIndex = nullptr; 778 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 779 if (!isa<ConstantInt>(*Index)) { 780 if (NonConstIndex) 781 return false; 782 NonConstIndex = *Index; 783 } 784 if (!NonConstIndex) 785 // The recurrence is on the pointer, ignore for now. 786 return false; 787 788 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 789 // AddRec using a NSW operation. 790 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 791 if (OBO->hasNoSignedWrap() && 792 // Assume constant for other the operand so that the AddRec can be 793 // easily found. 794 isa<ConstantInt>(OBO->getOperand(1))) { 795 auto *OpScev = SE->getSCEV(OBO->getOperand(0)); 796 797 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 798 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 799 } 800 801 return false; 802 } 803 804 /// \brief Check whether the access through \p Ptr has a constant stride. 805 int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp, 806 const ValueToValueMap &StridesMap) { 807 Type *Ty = Ptr->getType(); 808 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 809 810 // Make sure that the pointer does not point to aggregate types. 811 auto *PtrTy = cast<PointerType>(Ty); 812 if (PtrTy->getElementType()->isAggregateType()) { 813 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 814 << *Ptr << "\n"); 815 return 0; 816 } 817 818 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 819 820 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 821 if (!AR) { 822 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " 823 << *Ptr << " SCEV: " << *PtrScev << "\n"); 824 return 0; 825 } 826 827 // The accesss function must stride over the innermost loop. 828 if (Lp != AR->getLoop()) { 829 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << 830 *Ptr << " SCEV: " << *PtrScev << "\n"); 831 } 832 833 // The address calculation must not wrap. Otherwise, a dependence could be 834 // inverted. 835 // An inbounds getelementptr that is a AddRec with a unit stride 836 // cannot wrap per definition. The unit stride requirement is checked later. 837 // An getelementptr without an inbounds attribute and unit stride would have 838 // to access the pointer value "0" which is undefined behavior in address 839 // space 0, therefore we can also vectorize this case. 840 bool IsInBoundsGEP = isInBoundsGep(Ptr); 841 bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, SE, Lp); 842 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 843 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 844 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 845 << *Ptr << " SCEV: " << *PtrScev << "\n"); 846 return 0; 847 } 848 849 // Check the step is constant. 850 const SCEV *Step = AR->getStepRecurrence(*SE); 851 852 // Calculate the pointer stride and check if it is constant. 853 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 854 if (!C) { 855 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << 856 " SCEV: " << *PtrScev << "\n"); 857 return 0; 858 } 859 860 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 861 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 862 const APInt &APStepVal = C->getValue()->getValue(); 863 864 // Huge step value - give up. 865 if (APStepVal.getBitWidth() > 64) 866 return 0; 867 868 int64_t StepVal = APStepVal.getSExtValue(); 869 870 // Strided access. 871 int64_t Stride = StepVal / Size; 872 int64_t Rem = StepVal % Size; 873 if (Rem) 874 return 0; 875 876 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 877 // know we can't "wrap around the address space". In case of address space 878 // zero we know that this won't happen without triggering undefined behavior. 879 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 880 Stride != 1 && Stride != -1) 881 return 0; 882 883 return Stride; 884 } 885 886 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 887 switch (Type) { 888 case NoDep: 889 case Forward: 890 case BackwardVectorizable: 891 return true; 892 893 case Unknown: 894 case ForwardButPreventsForwarding: 895 case Backward: 896 case BackwardVectorizableButPreventsForwarding: 897 return false; 898 } 899 llvm_unreachable("unexpected DepType!"); 900 } 901 902 bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) { 903 switch (Type) { 904 case NoDep: 905 case Forward: 906 return false; 907 908 case BackwardVectorizable: 909 case Unknown: 910 case ForwardButPreventsForwarding: 911 case Backward: 912 case BackwardVectorizableButPreventsForwarding: 913 return true; 914 } 915 llvm_unreachable("unexpected DepType!"); 916 } 917 918 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 919 switch (Type) { 920 case NoDep: 921 case Forward: 922 case ForwardButPreventsForwarding: 923 return false; 924 925 case Unknown: 926 case BackwardVectorizable: 927 case Backward: 928 case BackwardVectorizableButPreventsForwarding: 929 return true; 930 } 931 llvm_unreachable("unexpected DepType!"); 932 } 933 934 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 935 unsigned TypeByteSize) { 936 // If loads occur at a distance that is not a multiple of a feasible vector 937 // factor store-load forwarding does not take place. 938 // Positive dependences might cause troubles because vectorizing them might 939 // prevent store-load forwarding making vectorized code run a lot slower. 940 // a[i] = a[i-3] ^ a[i-8]; 941 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 942 // hence on your typical architecture store-load forwarding does not take 943 // place. Vectorizing in such cases does not make sense. 944 // Store-load forwarding distance. 945 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 946 // Maximum vector factor. 947 unsigned MaxVFWithoutSLForwardIssues = 948 VectorizerParams::MaxVectorWidth * TypeByteSize; 949 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 950 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 951 952 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 953 vf *= 2) { 954 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 955 MaxVFWithoutSLForwardIssues = (vf >>=1); 956 break; 957 } 958 } 959 960 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 961 DEBUG(dbgs() << "LAA: Distance " << Distance << 962 " that could cause a store-load forwarding conflict\n"); 963 return true; 964 } 965 966 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 967 MaxVFWithoutSLForwardIssues != 968 VectorizerParams::MaxVectorWidth * TypeByteSize) 969 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 970 return false; 971 } 972 973 /// \brief Check the dependence for two accesses with the same stride \p Stride. 974 /// \p Distance is the positive distance and \p TypeByteSize is type size in 975 /// bytes. 976 /// 977 /// \returns true if they are independent. 978 static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride, 979 unsigned TypeByteSize) { 980 assert(Stride > 1 && "The stride must be greater than 1"); 981 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 982 assert(Distance > 0 && "The distance must be non-zero"); 983 984 // Skip if the distance is not multiple of type byte size. 985 if (Distance % TypeByteSize) 986 return false; 987 988 unsigned ScaledDist = Distance / TypeByteSize; 989 990 // No dependence if the scaled distance is not multiple of the stride. 991 // E.g. 992 // for (i = 0; i < 1024 ; i += 4) 993 // A[i+2] = A[i] + 1; 994 // 995 // Two accesses in memory (scaled distance is 2, stride is 4): 996 // | A[0] | | | | A[4] | | | | 997 // | | | A[2] | | | | A[6] | | 998 // 999 // E.g. 1000 // for (i = 0; i < 1024 ; i += 3) 1001 // A[i+4] = A[i] + 1; 1002 // 1003 // Two accesses in memory (scaled distance is 4, stride is 3): 1004 // | A[0] | | | A[3] | | | A[6] | | | 1005 // | | | | | A[4] | | | A[7] | | 1006 return ScaledDist % Stride; 1007 } 1008 1009 MemoryDepChecker::Dependence::DepType 1010 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1011 const MemAccessInfo &B, unsigned BIdx, 1012 const ValueToValueMap &Strides) { 1013 assert (AIdx < BIdx && "Must pass arguments in program order"); 1014 1015 Value *APtr = A.getPointer(); 1016 Value *BPtr = B.getPointer(); 1017 bool AIsWrite = A.getInt(); 1018 bool BIsWrite = B.getInt(); 1019 1020 // Two reads are independent. 1021 if (!AIsWrite && !BIsWrite) 1022 return Dependence::NoDep; 1023 1024 // We cannot check pointers in different address spaces. 1025 if (APtr->getType()->getPointerAddressSpace() != 1026 BPtr->getType()->getPointerAddressSpace()) 1027 return Dependence::Unknown; 1028 1029 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 1030 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 1031 1032 int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides); 1033 int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides); 1034 1035 const SCEV *Src = AScev; 1036 const SCEV *Sink = BScev; 1037 1038 // If the induction step is negative we have to invert source and sink of the 1039 // dependence. 1040 if (StrideAPtr < 0) { 1041 //Src = BScev; 1042 //Sink = AScev; 1043 std::swap(APtr, BPtr); 1044 std::swap(Src, Sink); 1045 std::swap(AIsWrite, BIsWrite); 1046 std::swap(AIdx, BIdx); 1047 std::swap(StrideAPtr, StrideBPtr); 1048 } 1049 1050 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 1051 1052 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1053 << "(Induction step: " << StrideAPtr << ")\n"); 1054 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1055 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1056 1057 // Need accesses with constant stride. We don't want to vectorize 1058 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1059 // the address space. 1060 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1061 DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1062 return Dependence::Unknown; 1063 } 1064 1065 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1066 if (!C) { 1067 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1068 ShouldRetryWithRuntimeCheck = true; 1069 return Dependence::Unknown; 1070 } 1071 1072 Type *ATy = APtr->getType()->getPointerElementType(); 1073 Type *BTy = BPtr->getType()->getPointerElementType(); 1074 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1075 unsigned TypeByteSize = DL.getTypeAllocSize(ATy); 1076 1077 // Negative distances are not plausible dependencies. 1078 const APInt &Val = C->getValue()->getValue(); 1079 if (Val.isNegative()) { 1080 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1081 if (IsTrueDataDependence && 1082 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1083 ATy != BTy)) 1084 return Dependence::ForwardButPreventsForwarding; 1085 1086 DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n"); 1087 return Dependence::Forward; 1088 } 1089 1090 // Write to the same location with the same size. 1091 // Could be improved to assert type sizes are the same (i32 == float, etc). 1092 if (Val == 0) { 1093 if (ATy == BTy) 1094 return Dependence::NoDep; 1095 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); 1096 return Dependence::Unknown; 1097 } 1098 1099 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1100 1101 if (ATy != BTy) { 1102 DEBUG(dbgs() << 1103 "LAA: ReadWrite-Write positive dependency with different types\n"); 1104 return Dependence::Unknown; 1105 } 1106 1107 unsigned Distance = (unsigned) Val.getZExtValue(); 1108 1109 unsigned Stride = std::abs(StrideAPtr); 1110 if (Stride > 1 && 1111 areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) { 1112 DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1113 return Dependence::NoDep; 1114 } 1115 1116 // Bail out early if passed-in parameters make vectorization not feasible. 1117 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1118 VectorizerParams::VectorizationFactor : 1); 1119 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1120 VectorizerParams::VectorizationInterleave : 1); 1121 // The minimum number of iterations for a vectorized/unrolled version. 1122 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1123 1124 // It's not vectorizable if the distance is smaller than the minimum distance 1125 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1126 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1127 // TypeByteSize (No need to plus the last gap distance). 1128 // 1129 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1130 // foo(int *A) { 1131 // int *B = (int *)((char *)A + 14); 1132 // for (i = 0 ; i < 1024 ; i += 2) 1133 // B[i] = A[i] + 1; 1134 // } 1135 // 1136 // Two accesses in memory (stride is 2): 1137 // | A[0] | | A[2] | | A[4] | | A[6] | | 1138 // | B[0] | | B[2] | | B[4] | 1139 // 1140 // Distance needs for vectorizing iterations except the last iteration: 1141 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1142 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1143 // 1144 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1145 // 12, which is less than distance. 1146 // 1147 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1148 // the minimum distance needed is 28, which is greater than distance. It is 1149 // not safe to do vectorization. 1150 unsigned MinDistanceNeeded = 1151 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1152 if (MinDistanceNeeded > Distance) { 1153 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance 1154 << '\n'); 1155 return Dependence::Backward; 1156 } 1157 1158 // Unsafe if the minimum distance needed is greater than max safe distance. 1159 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1160 DEBUG(dbgs() << "LAA: Failure because it needs at least " 1161 << MinDistanceNeeded << " size in bytes"); 1162 return Dependence::Backward; 1163 } 1164 1165 // Positive distance bigger than max vectorization factor. 1166 // FIXME: Should use max factor instead of max distance in bytes, which could 1167 // not handle different types. 1168 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1169 // void foo (int *A, char *B) { 1170 // for (unsigned i = 0; i < 1024; i++) { 1171 // A[i+2] = A[i] + 1; 1172 // B[i+2] = B[i] + 1; 1173 // } 1174 // } 1175 // 1176 // This case is currently unsafe according to the max safe distance. If we 1177 // analyze the two accesses on array B, the max safe dependence distance 1178 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1179 // is 8, which is less than 2 and forbidden vectorization, But actually 1180 // both A and B could be vectorized by 2 iterations. 1181 MaxSafeDepDistBytes = 1182 Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes; 1183 1184 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1185 if (IsTrueDataDependence && 1186 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1187 return Dependence::BackwardVectorizableButPreventsForwarding; 1188 1189 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1190 << " with max VF = " 1191 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); 1192 1193 return Dependence::BackwardVectorizable; 1194 } 1195 1196 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1197 MemAccessInfoSet &CheckDeps, 1198 const ValueToValueMap &Strides) { 1199 1200 MaxSafeDepDistBytes = -1U; 1201 while (!CheckDeps.empty()) { 1202 MemAccessInfo CurAccess = *CheckDeps.begin(); 1203 1204 // Get the relevant memory access set. 1205 EquivalenceClasses<MemAccessInfo>::iterator I = 1206 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1207 1208 // Check accesses within this set. 1209 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 1210 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 1211 1212 // Check every access pair. 1213 while (AI != AE) { 1214 CheckDeps.erase(*AI); 1215 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 1216 while (OI != AE) { 1217 // Check every accessing instruction pair in program order. 1218 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1219 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1220 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 1221 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 1222 auto A = std::make_pair(&*AI, *I1); 1223 auto B = std::make_pair(&*OI, *I2); 1224 1225 assert(*I1 != *I2); 1226 if (*I1 > *I2) 1227 std::swap(A, B); 1228 1229 Dependence::DepType Type = 1230 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1231 SafeForVectorization &= Dependence::isSafeForVectorization(Type); 1232 1233 // Gather dependences unless we accumulated MaxInterestingDependence 1234 // dependences. In that case return as soon as we find the first 1235 // unsafe dependence. This puts a limit on this quadratic 1236 // algorithm. 1237 if (RecordInterestingDependences) { 1238 if (Dependence::isInterestingDependence(Type)) 1239 InterestingDependences.push_back( 1240 Dependence(A.second, B.second, Type)); 1241 1242 if (InterestingDependences.size() >= MaxInterestingDependence) { 1243 RecordInterestingDependences = false; 1244 InterestingDependences.clear(); 1245 DEBUG(dbgs() << "Too many dependences, stopped recording\n"); 1246 } 1247 } 1248 if (!RecordInterestingDependences && !SafeForVectorization) 1249 return false; 1250 } 1251 ++OI; 1252 } 1253 AI++; 1254 } 1255 } 1256 1257 DEBUG(dbgs() << "Total Interesting Dependences: " 1258 << InterestingDependences.size() << "\n"); 1259 return SafeForVectorization; 1260 } 1261 1262 SmallVector<Instruction *, 4> 1263 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1264 MemAccessInfo Access(Ptr, isWrite); 1265 auto &IndexVector = Accesses.find(Access)->second; 1266 1267 SmallVector<Instruction *, 4> Insts; 1268 std::transform(IndexVector.begin(), IndexVector.end(), 1269 std::back_inserter(Insts), 1270 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1271 return Insts; 1272 } 1273 1274 const char *MemoryDepChecker::Dependence::DepName[] = { 1275 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1276 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1277 1278 void MemoryDepChecker::Dependence::print( 1279 raw_ostream &OS, unsigned Depth, 1280 const SmallVectorImpl<Instruction *> &Instrs) const { 1281 OS.indent(Depth) << DepName[Type] << ":\n"; 1282 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1283 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1284 } 1285 1286 bool LoopAccessInfo::canAnalyzeLoop() { 1287 // We need to have a loop header. 1288 DEBUG(dbgs() << "LAA: Found a loop: " << 1289 TheLoop->getHeader()->getName() << '\n'); 1290 1291 // We can only analyze innermost loops. 1292 if (!TheLoop->empty()) { 1293 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1294 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); 1295 return false; 1296 } 1297 1298 // We must have a single backedge. 1299 if (TheLoop->getNumBackEdges() != 1) { 1300 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1301 emitAnalysis( 1302 LoopAccessReport() << 1303 "loop control flow is not understood by analyzer"); 1304 return false; 1305 } 1306 1307 // We must have a single exiting block. 1308 if (!TheLoop->getExitingBlock()) { 1309 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1310 emitAnalysis( 1311 LoopAccessReport() << 1312 "loop control flow is not understood by analyzer"); 1313 return false; 1314 } 1315 1316 // We only handle bottom-tested loops, i.e. loop in which the condition is 1317 // checked at the end of each iteration. With that we can assume that all 1318 // instructions in the loop are executed the same number of times. 1319 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1320 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1321 emitAnalysis( 1322 LoopAccessReport() << 1323 "loop control flow is not understood by analyzer"); 1324 return false; 1325 } 1326 1327 // ScalarEvolution needs to be able to find the exit count. 1328 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 1329 if (ExitCount == SE->getCouldNotCompute()) { 1330 emitAnalysis(LoopAccessReport() << 1331 "could not determine number of loop iterations"); 1332 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1333 return false; 1334 } 1335 1336 return true; 1337 } 1338 1339 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) { 1340 1341 typedef SmallVector<Value*, 16> ValueVector; 1342 typedef SmallPtrSet<Value*, 16> ValueSet; 1343 1344 // Holds the Load and Store *instructions*. 1345 ValueVector Loads; 1346 ValueVector Stores; 1347 1348 // Holds all the different accesses in the loop. 1349 unsigned NumReads = 0; 1350 unsigned NumReadWrites = 0; 1351 1352 PtrRtChecking.Pointers.clear(); 1353 PtrRtChecking.Need = false; 1354 1355 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1356 1357 // For each block. 1358 for (Loop::block_iterator bb = TheLoop->block_begin(), 1359 be = TheLoop->block_end(); bb != be; ++bb) { 1360 1361 // Scan the BB and collect legal loads and stores. 1362 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 1363 ++it) { 1364 1365 // If this is a load, save it. If this instruction can read from memory 1366 // but is not a load, then we quit. Notice that we don't handle function 1367 // calls that read or write. 1368 if (it->mayReadFromMemory()) { 1369 // Many math library functions read the rounding mode. We will only 1370 // vectorize a loop if it contains known function calls that don't set 1371 // the flag. Therefore, it is safe to ignore this read from memory. 1372 CallInst *Call = dyn_cast<CallInst>(it); 1373 if (Call && getIntrinsicIDForCall(Call, TLI)) 1374 continue; 1375 1376 // If the function has an explicit vectorized counterpart, we can safely 1377 // assume that it can be vectorized. 1378 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1379 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 1380 continue; 1381 1382 LoadInst *Ld = dyn_cast<LoadInst>(it); 1383 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 1384 emitAnalysis(LoopAccessReport(Ld) 1385 << "read with atomic ordering or volatile read"); 1386 DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1387 CanVecMem = false; 1388 return; 1389 } 1390 NumLoads++; 1391 Loads.push_back(Ld); 1392 DepChecker.addAccess(Ld); 1393 continue; 1394 } 1395 1396 // Save 'store' instructions. Abort if other instructions write to memory. 1397 if (it->mayWriteToMemory()) { 1398 StoreInst *St = dyn_cast<StoreInst>(it); 1399 if (!St) { 1400 emitAnalysis(LoopAccessReport(it) << 1401 "instruction cannot be vectorized"); 1402 CanVecMem = false; 1403 return; 1404 } 1405 if (!St->isSimple() && !IsAnnotatedParallel) { 1406 emitAnalysis(LoopAccessReport(St) 1407 << "write with atomic ordering or volatile write"); 1408 DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1409 CanVecMem = false; 1410 return; 1411 } 1412 NumStores++; 1413 Stores.push_back(St); 1414 DepChecker.addAccess(St); 1415 } 1416 } // Next instr. 1417 } // Next block. 1418 1419 // Now we have two lists that hold the loads and the stores. 1420 // Next, we find the pointers that they use. 1421 1422 // Check if we see any stores. If there are no stores, then we don't 1423 // care if the pointers are *restrict*. 1424 if (!Stores.size()) { 1425 DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1426 CanVecMem = true; 1427 return; 1428 } 1429 1430 MemoryDepChecker::DepCandidates DependentAccesses; 1431 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1432 AA, LI, DependentAccesses); 1433 1434 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1435 // multiple times on the same object. If the ptr is accessed twice, once 1436 // for read and once for write, it will only appear once (on the write 1437 // list). This is okay, since we are going to check for conflicts between 1438 // writes and between reads and writes, but not between reads and reads. 1439 ValueSet Seen; 1440 1441 ValueVector::iterator I, IE; 1442 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 1443 StoreInst *ST = cast<StoreInst>(*I); 1444 Value* Ptr = ST->getPointerOperand(); 1445 // Check for store to loop invariant address. 1446 StoreToLoopInvariantAddress |= isUniform(Ptr); 1447 // If we did *not* see this pointer before, insert it to the read-write 1448 // list. At this phase it is only a 'write' list. 1449 if (Seen.insert(Ptr).second) { 1450 ++NumReadWrites; 1451 1452 MemoryLocation Loc = MemoryLocation::get(ST); 1453 // The TBAA metadata could have a control dependency on the predication 1454 // condition, so we cannot rely on it when determining whether or not we 1455 // need runtime pointer checks. 1456 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1457 Loc.AATags.TBAA = nullptr; 1458 1459 Accesses.addStore(Loc); 1460 } 1461 } 1462 1463 if (IsAnnotatedParallel) { 1464 DEBUG(dbgs() 1465 << "LAA: A loop annotated parallel, ignore memory dependency " 1466 << "checks.\n"); 1467 CanVecMem = true; 1468 return; 1469 } 1470 1471 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 1472 LoadInst *LD = cast<LoadInst>(*I); 1473 Value* Ptr = LD->getPointerOperand(); 1474 // If we did *not* see this pointer before, insert it to the 1475 // read list. If we *did* see it before, then it is already in 1476 // the read-write list. This allows us to vectorize expressions 1477 // such as A[i] += x; Because the address of A[i] is a read-write 1478 // pointer. This only works if the index of A[i] is consecutive. 1479 // If the address of i is unknown (for example A[B[i]]) then we may 1480 // read a few words, modify, and write a few words, and some of the 1481 // words may be written to the same address. 1482 bool IsReadOnlyPtr = false; 1483 if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) { 1484 ++NumReads; 1485 IsReadOnlyPtr = true; 1486 } 1487 1488 MemoryLocation Loc = MemoryLocation::get(LD); 1489 // The TBAA metadata could have a control dependency on the predication 1490 // condition, so we cannot rely on it when determining whether or not we 1491 // need runtime pointer checks. 1492 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1493 Loc.AATags.TBAA = nullptr; 1494 1495 Accesses.addLoad(Loc, IsReadOnlyPtr); 1496 } 1497 1498 // If we write (or read-write) to a single destination and there are no 1499 // other reads in this loop then is it safe to vectorize. 1500 if (NumReadWrites == 1 && NumReads == 0) { 1501 DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1502 CanVecMem = true; 1503 return; 1504 } 1505 1506 // Build dependence sets and check whether we need a runtime pointer bounds 1507 // check. 1508 Accesses.buildDependenceSets(); 1509 1510 // Find pointers with computable bounds. We are going to use this information 1511 // to place a runtime bound check. 1512 bool CanDoRTIfNeeded = 1513 Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides); 1514 if (!CanDoRTIfNeeded) { 1515 emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); 1516 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1517 << "the array bounds.\n"); 1518 CanVecMem = false; 1519 return; 1520 } 1521 1522 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); 1523 1524 CanVecMem = true; 1525 if (Accesses.isDependencyCheckNeeded()) { 1526 DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 1527 CanVecMem = DepChecker.areDepsSafe( 1528 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 1529 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 1530 1531 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 1532 DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 1533 1534 // Clear the dependency checks. We assume they are not needed. 1535 Accesses.resetDepChecks(DepChecker); 1536 1537 PtrRtChecking.reset(); 1538 PtrRtChecking.Need = true; 1539 1540 CanDoRTIfNeeded = 1541 Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true); 1542 1543 // Check that we found the bounds for the pointer. 1544 if (!CanDoRTIfNeeded) { 1545 emitAnalysis(LoopAccessReport() 1546 << "cannot check memory dependencies at runtime"); 1547 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 1548 CanVecMem = false; 1549 return; 1550 } 1551 1552 CanVecMem = true; 1553 } 1554 } 1555 1556 if (CanVecMem) 1557 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 1558 << (PtrRtChecking.Need ? "" : " don't") 1559 << " need runtime memory checks.\n"); 1560 else { 1561 emitAnalysis(LoopAccessReport() << 1562 "unsafe dependent memory operations in loop"); 1563 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 1564 } 1565 } 1566 1567 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 1568 DominatorTree *DT) { 1569 assert(TheLoop->contains(BB) && "Unknown block used"); 1570 1571 // Blocks that do not dominate the latch need predication. 1572 BasicBlock* Latch = TheLoop->getLoopLatch(); 1573 return !DT->dominates(BB, Latch); 1574 } 1575 1576 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { 1577 assert(!Report && "Multiple reports generated"); 1578 Report = Message; 1579 } 1580 1581 bool LoopAccessInfo::isUniform(Value *V) const { 1582 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1583 } 1584 1585 // FIXME: this function is currently a duplicate of the one in 1586 // LoopVectorize.cpp. 1587 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1588 Instruction *Loc) { 1589 if (FirstInst) 1590 return FirstInst; 1591 if (Instruction *I = dyn_cast<Instruction>(V)) 1592 return I->getParent() == Loc->getParent() ? I : nullptr; 1593 return nullptr; 1594 } 1595 1596 /// \brief IR Values for the lower and upper bounds of a pointer evolution. We 1597 /// need to use value-handles because SCEV expansion can invalidate previously 1598 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1599 /// a previous one. 1600 struct PointerBounds { 1601 TrackingVH<Value> Start; 1602 TrackingVH<Value> End; 1603 }; 1604 1605 /// \brief Expand code for the lower and upper bound of the pointer group \p CG 1606 /// in \p TheLoop. \return the values for the bounds. 1607 static PointerBounds 1608 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 1609 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 1610 const RuntimePointerChecking &PtrRtChecking) { 1611 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 1612 const SCEV *Sc = SE->getSCEV(Ptr); 1613 1614 if (SE->isLoopInvariant(Sc, TheLoop)) { 1615 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr 1616 << "\n"); 1617 return {Ptr, Ptr}; 1618 } else { 1619 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1620 LLVMContext &Ctx = Loc->getContext(); 1621 1622 // Use this type for pointer arithmetic. 1623 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1624 Value *Start = nullptr, *End = nullptr; 1625 1626 DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1627 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 1628 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 1629 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 1630 return {Start, End}; 1631 } 1632 } 1633 1634 /// \brief Turns a collection of checks into a collection of expanded upper and 1635 /// lower bounds for both pointers in the check. 1636 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 1637 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 1638 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 1639 const RuntimePointerChecking &PtrRtChecking) { 1640 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1641 1642 // Here we're relying on the SCEV Expander's cache to only emit code for the 1643 // same bounds once. 1644 std::transform( 1645 PointerChecks.begin(), PointerChecks.end(), 1646 std::back_inserter(ChecksWithBounds), 1647 [&](const RuntimePointerChecking::PointerCheck &Check) { 1648 PointerBounds 1649 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 1650 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 1651 return std::make_pair(First, Second); 1652 }); 1653 1654 return ChecksWithBounds; 1655 } 1656 1657 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 1658 Instruction *Loc, 1659 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 1660 const { 1661 1662 SCEVExpander Exp(*SE, DL, "induction"); 1663 auto ExpandedChecks = 1664 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking); 1665 1666 LLVMContext &Ctx = Loc->getContext(); 1667 Instruction *FirstInst = nullptr; 1668 IRBuilder<> ChkBuilder(Loc); 1669 // Our instructions might fold to a constant. 1670 Value *MemoryRuntimeCheck = nullptr; 1671 1672 for (const auto &Check : ExpandedChecks) { 1673 const PointerBounds &A = Check.first, &B = Check.second; 1674 // Check if two pointers (A and B) conflict where conflict is computed as: 1675 // start(A) <= end(B) && start(B) <= end(A) 1676 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 1677 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 1678 1679 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 1680 (AS1 == A.End->getType()->getPointerAddressSpace()) && 1681 "Trying to bounds check pointers with different address spaces"); 1682 1683 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1684 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1685 1686 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 1687 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 1688 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 1689 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 1690 1691 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1692 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1693 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1694 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1695 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1696 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1697 if (MemoryRuntimeCheck) { 1698 IsConflict = 1699 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1700 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1701 } 1702 MemoryRuntimeCheck = IsConflict; 1703 } 1704 1705 if (!MemoryRuntimeCheck) 1706 return std::make_pair(nullptr, nullptr); 1707 1708 // We have to do this trickery because the IRBuilder might fold the check to a 1709 // constant expression in which case there is no Instruction anchored in a 1710 // the block. 1711 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1712 ConstantInt::getTrue(Ctx)); 1713 ChkBuilder.Insert(Check, "memcheck.conflict"); 1714 FirstInst = getFirstInst(FirstInst, Check, Loc); 1715 return std::make_pair(FirstInst, Check); 1716 } 1717 1718 std::pair<Instruction *, Instruction *> 1719 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 1720 if (!PtrRtChecking.Need) 1721 return std::make_pair(nullptr, nullptr); 1722 1723 return addRuntimeChecks(Loc, PtrRtChecking.getChecks()); 1724 } 1725 1726 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 1727 const DataLayout &DL, 1728 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 1729 DominatorTree *DT, LoopInfo *LI, 1730 const ValueToValueMap &Strides) 1731 : PtrRtChecking(SE), DepChecker(SE, L), TheLoop(L), SE(SE), DL(DL), 1732 TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0), 1733 MaxSafeDepDistBytes(-1U), CanVecMem(false), 1734 StoreToLoopInvariantAddress(false) { 1735 if (canAnalyzeLoop()) 1736 analyzeLoop(Strides); 1737 } 1738 1739 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 1740 if (CanVecMem) { 1741 if (PtrRtChecking.Need) 1742 OS.indent(Depth) << "Memory dependences are safe with run-time checks\n"; 1743 else 1744 OS.indent(Depth) << "Memory dependences are safe\n"; 1745 } 1746 1747 if (Report) 1748 OS.indent(Depth) << "Report: " << Report->str() << "\n"; 1749 1750 if (auto *InterestingDependences = DepChecker.getInterestingDependences()) { 1751 OS.indent(Depth) << "Interesting Dependences:\n"; 1752 for (auto &Dep : *InterestingDependences) { 1753 Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions()); 1754 OS << "\n"; 1755 } 1756 } else 1757 OS.indent(Depth) << "Too many interesting dependences, not recorded\n"; 1758 1759 // List the pair of accesses need run-time checks to prove independence. 1760 PtrRtChecking.print(OS, Depth); 1761 OS << "\n"; 1762 1763 OS.indent(Depth) << "Store to invariant address was " 1764 << (StoreToLoopInvariantAddress ? "" : "not ") 1765 << "found in loop.\n"; 1766 } 1767 1768 const LoopAccessInfo & 1769 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) { 1770 auto &LAI = LoopAccessInfoMap[L]; 1771 1772 #ifndef NDEBUG 1773 assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) && 1774 "Symbolic strides changed for loop"); 1775 #endif 1776 1777 if (!LAI) { 1778 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1779 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, 1780 Strides); 1781 #ifndef NDEBUG 1782 LAI->NumSymbolicStrides = Strides.size(); 1783 #endif 1784 } 1785 return *LAI.get(); 1786 } 1787 1788 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const { 1789 LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this); 1790 1791 ValueToValueMap NoSymbolicStrides; 1792 1793 for (Loop *TopLevelLoop : *LI) 1794 for (Loop *L : depth_first(TopLevelLoop)) { 1795 OS.indent(2) << L->getHeader()->getName() << ":\n"; 1796 auto &LAI = LAA.getInfo(L, NoSymbolicStrides); 1797 LAI.print(OS, 4); 1798 } 1799 } 1800 1801 bool LoopAccessAnalysis::runOnFunction(Function &F) { 1802 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1803 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1804 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1805 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1806 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1807 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1808 1809 return false; 1810 } 1811 1812 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 1813 AU.addRequired<ScalarEvolutionWrapperPass>(); 1814 AU.addRequired<AAResultsWrapperPass>(); 1815 AU.addRequired<DominatorTreeWrapperPass>(); 1816 AU.addRequired<LoopInfoWrapperPass>(); 1817 1818 AU.setPreservesAll(); 1819 } 1820 1821 char LoopAccessAnalysis::ID = 0; 1822 static const char laa_name[] = "Loop Access Analysis"; 1823 #define LAA_NAME "loop-accesses" 1824 1825 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1826 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1827 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 1828 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1829 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1830 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) 1831 1832 namespace llvm { 1833 Pass *createLAAPass() { 1834 return new LoopAccessAnalysis(); 1835 } 1836 } 1837